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(:5757:] Amendments from Version 1

We have made revisions to the following manuscript and Bioconductor package based on reviewer feedback. Major
changes to the manuscript include an additional section “Approximating Observed Microbiome Data” that highlights
using the simulator to generate data from a historical microbiome clinical trial along with reproducible code and figures,
additional rationale for using the simulator tools in study design, and updated code within the manuscript. Updates to
the package software require users to specify an interval of time for simulating longitudinal data with time points sampled
uniformly or randomly, additional functions to match observed data, and the ability to convert simulated data into
commonly used objects in the metagenomeSeq and phyloseq packages. Individual responses to reviewer comments
are available in the Reviewer Report tab.

Any further responses from the reviewers can be found at the end of the article

Introduction

Analysis of the microbiome aims to characterize the composition and functional potential of microbes in
a particular ecosystem. Recent studies have shown the gut microbiome plays an important role in various
diseases, from the efficacy of cancer immunotherapy to the pathogenesis of inflammatory bowel disease
(IBD)'~. While many studies profile static community “snapshots”, microbial communities do not exist within
an equilibrium’. To better understand bacterial population dynamics, many studies are expanding to longitu-
dinal sampling and foregoing cross-sectional or single time-point explorations. With a decrease in sequencing
costs, more longitudinal data will be generated for varying communities of interest. While data generation will
present fewer difficulties, there remain several statistical challenges involved in analyzing these datasets.

The common approach in the marker-gene survey literature is to perform pairwise differential abundance tests
between specific time points and visually confirm, sometimes using smoothing methods like splines, how differ-
ences are manifested across time®. These methods require that analysts provide one or more specific time points to
test, and the statistical inferences derived from these procedures are specific to these pairwise tests. Other stand-
ard methods for longitudinal analysis test for global differences across time, sometimes using non-linear methods
including splines to capture dynamic profiles across time’. Incorporating confounding sources of variability,
both biological and technical is essential in high-throughput studies® and require statistical methods capable
of estimating both smooth functions and sample-specific characteristics.

Simulating marker-gene amplicon sequencing data presents a variety of challenges related to biological and tech-
nical limitations when collecting data. We present a framework for simulating data that can be used across
multiple methods for estimating longitudinal differential abundance. This simulation framework allows
for appropriate comparison between methods while taking into account some of the unique challenges for
the marker-gene amplicon sequencing data, including the following:

1. Non-negative restriction

2. Presence of Missing Data/High Number of Zero Reads
3. Low Number of Repeated Measurements

4. Asynchronous Repeated Measures

5. Small Number of Subjects

The first two challenges described above are related to the data generating process itself while the follow-
ing three represent logistical challenges often faced when collecting the data. In microbiomeDASim’, we
attempt to address these data generating challenges through specific simulation mechanisms described in the
Microbiome adaptions section. Similarly, logistical challenges are addressed by allowing users to specify
these values flexibly and investigate the corresponding effects, tailoring the simulation to an appropriate setting.

This package allows investigators to simulate longitudinal differentially abundant microbiome features with
a variety of known functional forms along with flexible parameters to control design aspects such as signal to
noise ratio, correlation structure, and effect size. This feature simulation paradigm can be used in study design
evaluation by either matching previously observed trends from small scale studies or evaluating the power to
detect differential abundance with a specified study duration, sample size, effect size, effect shape and sample
collection schedule. We highlight the ability of the package to use results from a historical longitudinal study on
the human gut microbiome in gnotobiotic mice'’ to simulate differential abundance for a hypothetical large
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scale expansion of this study and then demonstrate using the simulation package to evaluate the performance
of one particular method of differential abundance estimation across a range of parameter values, metaSplines''.

Methods

Distributional assumptions

Sequencing data are often non-normal. However, transformations, such as log(-) or arcsinh(:), are often applied
to raw marker-gene amplicon sequencing data so that the subsequent data is approximately normally distrib-
uted. As such, we generate simulated data from a multivariate normal distribution. Using a multivariate normal is
a natural choice in this setting as longitudinal correlation structure can be easily incorporated. The following
methods focus on cases where the desired microbiome features following appropriate transformation are
approximately normally distributed.

Assume that we have data generated from the following distribution,

Y~N (,ua 2) )
where
Y,
Y,
Y/ g
\'4 ‘
Y= .z = YZ] s

YT

" YZ‘Iz

nq,

with Y, representing the i individual at the j” time point and each individual has g, repeated measurements with
i€{l,...,n}andj€ {1, ..., g} We define the total number of observations as N=3"" g. While this model
holds for different choices of ¢, throughout this article we will assume, without loss of generality, that the
number of repeated measurements is constant, i.e., ¢, = ¢ ¥V i € {1, ..., n}. This means that the total number of
observations simplifies to the expression N = gn. Similarly, we split the total patients (n) into two groups, con-
trol (n,) and treatment (n ), with the first n patients representing the control patients and the remaining n—n,
representing the treatment patients. Subsequently we define the total number of observations in each group
as Ny=n,-qand N, = n, - g respectively. Y represents a single taxa/feature to be simulated across the N sam-
ples. When simulating multiple features as shown later in the gen norm microbiome, these features are
assumed to be independent.

Mean components

Partitioning our observations into control and treatment groups in this way allows us to define the mean vector
separately for each group as g = (u,p) where g is an Ny x 1 vector and g is an N, x 1 vector. To
generate differential abundance the mean for the control group is held constant u lnn ., but allow the mean
vector for the treatment group to vary as a function of time ,u“/.(t) =y, + f(tj) fori=1,..,nandj=1,..,q.
The form of f(t/) will dictate the functional form of the differential abundance. Note that if f(z) = 0, then both

groups have equal mean at baseline.

Polynomial functional forms
We allow ft) to be specified using polynomial basis as

f(tj):ﬁ()+ﬁltj+ﬁ2t]2'+...+ﬁpt‘jp

for a p dimensional polynomial. We restrict the allowed polynomials to be either linear, p=1, quadratic, p = 2, or
cubic, p = 3. For instance, to define a quadratic polynomial one would specify f = (B, B,, B,)" in the following
equation,

f(tj):ﬁo +ﬂ1tj +132112"
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Again, it is important to note that if # = 0, that the treatment group is assumed to have no differentially
abundant timepoints. Typically to simulate no differential abundance, a linear trend is chosen with 3 = §, = 0.

Oscillating functional forms

While polynomial functions are often natural choices for longitudinal trends, interest also lies in exploring
other non-smooth, i.e., non-differentiable, types of trends. One such form we refer to as oscillating functional
forms. These trends include types that transition from linearly increasing to linear decreasing at a point, or vice
versa from linearly decreasing to linear increasing. One of the most well known trends of this type is the abso-
lute value function. To allow for flexible choices in oscillating type trends, we allow for these non differentiable
linearly connected trends to repeat forming what we call M and W trends. From a biological perspective we
could think of these trends as representing spikes in a particular feature that may occur immediately after
a treatment dose is given, but then decays rapidly to baseline levels followed by a similar spike and decay upon
repeated dosing. These functional trends are operationalized as

F)=B+BI@, <)t +(B,+BIP ) (1P, <t, <TP, }+ (B, + BIP)I ¢, 2 IP,)

P, -BIP)
+ﬁI(IPIStj<IPZXtI—IPI)
+ B 1P
+%I(IPZ <t,<IP,)(,~1P,)

(ﬂo ﬁl l)l(t >IP)(t —IP),

t—I

where IP_for k = 1, 2, 3 denotes an inflection point where the linear trend changes from increasing to decreas-
ing or vice versa. Note that for these types of trends that the sign of 3, determines whether the trend is initially
increasing, i.e. M, (B, > 0) or initially decreasing, i.e. W, (B, < 0). By construction, we force the trend line to
be exactly zero at IP, and by doing so the trend is specified completely as # = (B, 8)" and IP = (IP, IP,, IP)".
An implicit restriction on the functional trend is that 1P, # 1,- However, we can construct absolute value and
inverted absolute value type trends by defining IP, € (7, t) and P, IP, > 1. Again, the key difference for these
set of trends is that the inflection points create non—smooth trends

Hockey stick functional forms

An additional extension to linear functional trends is the family of Hockey Stick functional forms. There are
two available families of hockey stick functional forms, which are referred to as L_up and L_down within the
package. Both of these trends are designed to create two mutually exclusive regions over the time frame
specified. These two regions are defined as %, = (¢,, IP) and Z, = (IP, tq) where one of the regions Z, or Z,
has linear differential abundance while the other has no differential abundance and IP denotes the inflec-
tion point. In the case of the L_up trend, Z, is defined as the non-differentially abundant region and %, is
a linearly increasing region. We can define the functional form as

F)=CEBXP) (@ 21P B (1, 2 1P,

Note that with this specification that we do not specify the intercept 3, and instead only need to specify
the slope term S, and the appropriate point of change. We restrict the slope term to be positive, i.e., 5, € (0, o)
to create the “up” trend.

Conversely, the L_down trend assumes that Z, is a differentially abundant region that begins with the treatment
group higher than the control group and then linearly decreases to the region 2, where there is no differential
abundance. We define this functional form as

6 auls <P pailo <)

Note that in this case we do not specify the point of change directly, but rather it is implicitly implied by
the choice of 3 and 3, i.e. IP = - /f,. To ensure that the trend in %, is properly specified, we place additional
restrictions on the parameters so that 3 € (0, «) and 3, € (—o°, 0) to ensure the trend is decreasing and check that
the choice of 3 and f3, are appropriately defined so that IP € (¢, 7).

Example trends are shown in Figure 1 generated using the mean trend function.

Page 5 of 28



F1000Research 2020, 8:1769 Last updated: 26 FEB 2020

No Difference Linear Increasing Linear Decreasing Quadratic Concave Up
0.050- 6 g
4-
0.025-
3-
o~ — 4 —~ 47 —
Z 0000 —M8M = = =
= = = = 5.
-0.025- 2 2- 1-
0050- . . | | ) ! | 0 s e s !
3 4 5 6 12 3 4 5 6 12 3 4 5 6 12 3 4 5 &6
Time Time Time Time
Quadratic Concave Dowr Oscillating 1 Oscillating 2 Oscillating 3
3- 6- 0-
4-
5-
3 2- 1=
= = = 4- =
= - = = =
1 2=
1 3-
0 0- 2= 3-
12 3 4 5 6 12 3 4 5 6 12 3 4 5 6 12 3 4 5 6
Time Time Time Time
Oscillating 4 Hockey Stick 1 Hockey Stick 2 Hockey Stick 3
-2- 3= 2.0- 4=
3- 1.5- 3-
2-
- — —_ -
= 4 = = 107 =
1-
5- 0.5- 1=
6+ 0 0.0- 0-
1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 [
Time Time Time Time

Figure 1. Different functional forms available using the mean_trend () function.

Covariance components
As discussed in the Introduction, the multivariate normal is a natural choice for longitudinal simulation due
to the ease with which dependency of repeated measures is specified. To encode this longitudinal dependency

observations within an individual are assumed to be correlated, i.e. Cor(YU, K/,) #0Vj#j andi € {1, ..., n},
but observations between individuals are assumed independent, i.e. Cor(Yl./., Y,-',-) =0vVvi#i'andje€ {l,..,q}
To accomplish this we define the block diagonal matrix X as £ = bdiag(X, ... , X ), where each X is a ¢ X ¢

covariance matrix for individual i and bdiag(-) indicates that the matrix is block diagonal with all off diagonal
elements not in X, equal to zero. For each individuals covariance matrix, we assume a global standard deviation
parameter and correlation component p, i.e. £, = 0°Q(p).

For instance, if we want to specify an autoregressive correlation structure for individual i the covariance matrix is
defined as

1 o P
P 1 p o p‘z_q‘
=0 p* p 1 :
_p\q-l\ p\q‘z\ S

In this case we are using the first order autoregressive definition and therefore will refer to this as AR(1).
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Alternatively, for the compound correlation structure for an individual i’ we define the covariance matrix as

L p p P
p 1 p p
L.=c'lp p 1

Finally, we allow the user to specify an independent correlation structure for an individual i"”, which assumes that
repeated observations are in fact uncorrelated and is defined as

100 0
010 0
Y.=0°10 0 1 :
00 - 1

Each of these correlation structures are referred as AR(1), compound, and independent respectively.

Microbiome adaptions

As discussed in the Introduction, simulating microbiome data presents a variety of unique challenges. In par-
ticular there are two data generating restrictions, 1. non-negative restriction and 2. presence of missing data/
high number of zero reads, that must be addressed when simulating this data. In this section we will outline
some of the specific adaptions of the simulation framework designed to address these issues.

1. Non-negative restriction. One of the most relevant challenges faced with microbiome data, is the restric-
tion of the domain to non-negative values. To assure that the simulated normalized counts are non-negative,
one solution is to simply replace the multivariate normal distribution with a multivariate truncated normal
distribution. The new data generating distribution is now

Y ~ TN(. X, aly),

where TN indicates the multivariate truncated normal distribution and a is the left-truncation value.
To impose zero truncation it is assumed that @ = 0. Values from the multivariate truncated normal are
drawn using the package tmvtnorm'’. Note that the default method for drawing observations from this
distribution is rejection sampling which proceeds by first drawing from a multivariate normal and then for
all values that fall below a to reject the observed sample and re-sample. This procedure works well when
the majority of the distribution falls above the truncation point, but can be computational intensive when
the probability of acceptance, Pop = P(Y > al,), is low. In our simulation design if the value of g is sufficiently
close to a then rejection sampling is not feasible. In the case there the P 0.1, non-negative restriction is
imposed by censoring negative values and using point imputation with the truncation value a as shown below

Y* ~N(,u52)7
Y, ifY; 20,

Y. e
v 0 1le.j<O.

To remove the non-negative restriction there is an option in the function mvrnorm sim which can be
used to turn-off the domain restriction, but by default the zero truncation is imposed. Note that an alterna-
tive option to using the multivariate truncated normal is to use the Johnson translation system which can allow
samples to be drawn from a multivariate log normal distribution via an appropriate translation function'’. The
current implementation uses only the multivariate truncated normal distribution for drawing samples via the
zero_trunc option within the mvrnorm sim() and gen norm microbiome () functions.
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2. Presence of missing data/high number of zero reads. The second major data generating challenge when
simulating microbiome data is the presence of missing data along with a high percentage of features with
zero counts. Based on technical limitations when amplifying and sequencing microbiome data, certain fea-
tures may be present but remain undetected. To approximate this potential for missing features that are truly
present, options within mvrnorm sim allow the user to specify: 1) the percent of individuals to gener-
ate missing values from (missing pct), 2) the number of measurements per individual to assign as missing
(missing per subject), and 3) the value to impute for missing observations (miss_val). Sample IDs
are randomly chosen without replacement across all n units and for each selected ID measurements are randomly
selected without replacement from {7, ..., tq} until the specified number of measurements per individual is achieved.
For each missing measurement selected the observed value is replaced with the user specified missing value.
Typically the missing value is specified as O or as NA with the first case representing a situation where the feature
was not included due to technical limitations and the second representing an individual whose data was not col-
lected for a particular time point. The initial value 7 cannot be assigned as missing since it is assumed
that all individuals have baseline values collected.

Implementation
The current version of the R Bioconductor software package microbiomeDASim’ can be installed in
R with the following executable code:

if (!requireNamespace ("BiocManager", quietly = TRUE)) {
install.packages ("BiocManager")

}

BiocManager::install ("microbiomeDASim")

Alternatively, a development version is available from GitHub and can be accessed at the following reposi-
tory williazo/microbiomeDASim. The developmental version may contain additional features that are being
developed before they are officially introduced into the Biocondutor version. The developmental version can be
installed using the following code:

if (!requireNamespace ("devtools", quietly = TRUE)) {
install.packages ("devtools")

}

devtools::install github("williazo/microbiomeDASim")

For a guided introduction into using the functions see either the package vignette for a static example of how to
set up and interact with various options for simulating data or for a dynamic guide see mvrnorm_demo.ipynb,
a Jupyter notebook on the GitHub page under the inst/script directory. This notebook can be loaded using Google
Collab allowing the code to be run without installing Jupyter locally.

Operation
microbiomeDASim’ is compatible with major operating systems including Mac OS, Windows and Linux.
Package dependencies and system requirements are outlined in the documentation available at GitHub.

Use cases

Data generating procedure

The primary mechanism for simulating data in the microbiomeDASim package’ is the function
mvrnorm_sim. Through this function, the number of subjects in each group is specified along with the neces-
sary parameters, i.e f8, >, p, and IP, to generate # and X. Below is an example of generating differential abundance
using a quadratic trend. This type of example could be part of an initial attempt to understand the effects of pro-
posed sample sizes per group, hypothetical functional forms for differential abundance, and sensitivity
to signal to noise ratios. In this case there may be a sparsity of empirical evidence and many possible simulation
designs can be tested, or on the other end of the spectrum the ecological process could be well understood
and the parameter values are well known with emphasis focused on constraints such as collection timepoints
and sample size.
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> library (microbiomeDASim)
> sim dt <- mvrnorm sim(n control=20, n treat=20, control mean=2, sigma=1,
+ num_ timepoints=7, t interval=c(0, 6), rho=0.7,
s corr str="compound", func form="quadratic",
+ beta=c (0, 3, -0.5), missing pct=0, missing per subject=0,
+ asynch time=FALSE, dis plot=TRUE)
> typeof (sim dt)
[1] "list"
> names (sim_dt)
[1] "df" "y" "Mu" "Sigma" "N" "miss data" "Y obs"
> head (sim_dt$df)
Y ID time group Y obs
1 0.2132845 1 0 Control 0.2132845
2 0.7784994 1 1 Control 0.7784994
3 1.6464264 1 2 Control 1.6464264
4 1.6283489 1 3 Control 1.6283489
5 0.8769442 1 4 Control 0.8769442
6 0.7625660 1 5 Control 0.7625660
> head(sim dtS$miss data)
[

1] miss_id
<0 rows> (or O-length row.names)

The output of the simulation function is a list with 7 total objects. The main object of interest is df, which is a
data.frame that contains the complete outcome, Y, IDs for each subject i = 1, ... , n, the corresponding time for
each observation 1, a group variable indicator, and the outcome with missing data, Y obs. The time inter-
val of interest must be specified as a parameter in t interval, and by default timepoints are drawn at
equidistant points along this interval. Both the complete and missing data vectors are also returned as independent
objects, Y and Y_obs, respectively, along with the complete mean, #, , = Mu, and covariance matrix, X=Sigma.
The function also includes a data.frame miss_data which lists any IDs and time points for which missing data was
induced. Finally, the function also returns the total number of observations, N=X, q.. The option dis_plot is used to
automatically generate a time-series plot tracking each individuals trajectory along with group mean trajectories. The
corresponding plot for this data is shown in Figure 2a.

Simulated Microbiome Data from Multivariate Normal Simulated Microbiome Data from Multivariate Normal
a-
8-
7o
¢ \ 8 Ll
/ 4 ~
8 \ $ 3 S
e I Group & e s Group
§ 4 \ == Control E o ’ A == Control
§ I == Treatment E ? ‘ == Treatment
5 \ 5 14 s
; s . A}
2 - 4 '
g 2 R
0- 0
0 2 4 6 0 2 4 6
Time Time
(a) Quadratic Trend without Missing Data and Equadistant (b) Quadratic Trend with Induced Missing Data and Asyhc-
Sampling nronous Time Measurements

Figure 2. Simulating a quadratic differential abundance trend with compound correlation structure and
parameters: = (0,3, - 0.5)",p =0.7,6 = 1,n, = n, = 20, q = 6. Missing data in Figure 2b is generated with 20%
of subjects randomly selected to have missing values and for each of these subjects to have 2 non-baseline times
randomly selected to be missing with the missing observations imputed as 0.

Page 9 of 28



F1000Research 2020, 8:1769 Last updated: 26 FEB 2020

One important thing to note about the example above is that we generated no missing observations as both
missing_pct and missing_per_subject were set to 0. Therefore miss data was empty. We can compare this to the
case below where we induce missingness into the data.

sim dt <- mvrnorm sim(n control=20, n treat=20, control mean=2, sigma=1l,
num timepoints=7, t interval=c(0, 6), rho=0.7,
corr str="compound", func form="quadratic",
beta=c (0, 3, -0.5), missing pct=0.2,
missing per subject=2, miss val=0, asynch time=TRUE)
head (sim dt$miss datalorder (sim dtSmiss datas$miss id, sim dtSmiss dataSmiss time),])
miss id miss time

>
+
+
+
+
>

11 6 9

12 6 6

13 13 2

14 13 4

10 16 3

9 16 4

> head(sim dt$df[sim dt$df$SID %in% sim dtS$miss dataSmiss_id, ])
Y ID time group Y obs

36 1.7663067 6 0.0000000 Control 1.7663067

37 0.5918298 6 0.1084354 Control 0.5918298

38 2.0162980 6 1.8372196 Control 2.0162980

39 1.7626451 6 1.8900365 Control 1.7626451

40 2.0873529 6 3.2812129 Control 0.0000000

41 2.1775117 6 5.2906868 Control 0.0000000

In this case we see that for t; and 1 for subject 6 that our outcome with missing data, Y_obs, is now set as
0 which was specified as our missing value while the complete data has the original value before inducing
missingness. Another feature demonstrated in this second example is using the asynch time option. When
this variable is set to true, timepoints are randomly drawn from a uniform distribution over the interval [z, tq].
By construction it is assumed that all individuals have a baseline measurement recorded at 7, but all remain-
ing timepoints are drawn at random. The corresponding plot of the outcome Y obs for this simulation which
contains the induced missing observations and asynchronous time measurements is shown in Figure 2b.

As mentioned in the Distributional assumptions section, data are generally generated one feature at a time.
However, we may want to simultaneously create data with similar patterns across a number of features with
certain features experiencing differential abundance while others have no differential abundance patterns. To do
this we can use the function gen norm microbiome which lets users specify the number of total features to
simulate, features, and the number of total features to be differentially abundant, diff abun features.
In the example below 10 total features are generated with 4 features having longitudinal differential abundance
with an L_down hockey stick type trend.

> bug gen <- gen norm microbiome (features=10, diff abun features=4, n control=20,
+ n treat=20, control mean=2, sigma=1,

+ num_timepoints=5, t interval=c(0,10), rho=0.7,
i corr str="compound", func form="L down",

+ beta=c (2, -0.5), missing pct=0.2,

+ missing per subject=2, miss val=0)

Simulating Diff Bugs

| ++++++++++++++++++H+++++++++ Attt | 1003 elapsed=05s
Simulating No-Diff Bugs
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> head (bug genSbug feat)
ID time group Sample ID

Sample 1 1 0.0 Control Sample 1
Sample 2 1 2.5 Control Sample 2
Sample 3 1 5.0 Control Sample 3
Sample 4 1 7.0 Control Sample 4
Sample 5 1 10.0 Control Sample 5
Sample 6 1 0.0 Control Sample 6
> bug genS$Y[, 1:5]

Sample 1 Sample 2 Sample 3

Diff Bugl 2.78721292 3.034923 2.448909
Diff Bug2 2.17420076 2.126378 1.875765
Diff Bug3 3.00420764 2.667490 2.919144
Diff Bug4 2.79533312 2.526658 2.254584
NoDiffBug 1 1.91089105 2.000122 1.265382
NoDiffBug 2 3.20731129 3.446508 3.389278
NoDiffBug 3 0.05647967 0.000000 1.553321
NoDiffBug 4 2.08900175 1.566923 1.917273
NoDiffBug 5 0.03105152 2.350758 2.139133
NoDiffBug 6 2.24743076 3.082808 2.526052

PP O WwWRFE WwNDDNDW

Sample 4
SAAT2145
.1224031
.5646103
-4089330
.1625345
.1057941
0 2595164
SA543ZALT
.5934641
.8868046

There are two objects returned in this function, bug feat and Y.
the sample specific information including Subject ID, timepoint t, an indicator for group assignment and the
Sample_ID which ranges from Sample_1 up to Sample_N. The other object Y is the typical OTU (operational
taxonomic unit) table with rows corresponding to features and column to samples that are commonly used for

analysis in packages such as metagenomeSeqg

14,15
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Sample 5
.01708421
.45393399
.98241611
.46269243
.97581881
.21898174
.08792209
.34799811
.58829093
.33309314

N OB O O Wk EFEDN

The object bug feat contains all of

and phyloseq'®. There are two additional helper functions

that will convert the simulated data into MRexperiment or phyloseq objects respectively to allow practitioners to use
simulated data in either of these familiar environments.

> # convert

to MRexperiment object

> MR bug gen <- simulate2MRexperiment (bug gen)

> MR bug gen
MRexperiment
assayData: 1

(storageMode: environment)
0 features, 200 samples

element names: counts

protocolData:

phenoData

sampleName

varLabels:

varMetadat
featureData:
experimentDa
Annotation:
> head (pData

ID

Sample 1 1
Sample 2
Sample 3
Sample 4
Sample 5
Sample 6
>

N e e

none
s: Sample 1 Sample 2 ... Sample 200
ID time group Sample ID

a: labelDescription
none

ta: use ’experimentData (object)’

(MR _bug gen))
time group Sample ID

0.0 Control Sample 1
2.5 Control Sample 2
5.0 Control Sample 3
7.5 Control Sample 4
10.0 Control Sample 5
0.0 Control Sample 6

(200 total)
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> # convert to phyloseqg object

> phylo bug gen <- simulate2phyloseq(bug gen)
> phylo bug gen

phyloseg-class experiment-level object

otu table () OTU Table: [ 10 taxa and 200 samples ]

sample data() Sample Data: [ 200 samples by 4 sample variables ]
> head (sample data (phylo bug gen))

Sample Data: [6 samples by 4 sample variables]:

ID time group Sample ID

Sample 1 1 0.0 Control Sample 1
Sample 2 1 2.5 Control Sample 2
Sample 3 1 5.0 Control Sample 3
Sample 4 1 7.5 Control Sample 4
Sample 5 1 10.0 Control Sample 5
Sample 6 2 0.0 Control Sample 6

Approximating observed microbiome data

Another important goal of the simulation software is the ability to closely approximate real data from longitudi-
nal experiments where sequencing was performed. To demonstrate this ability using microbiomeDASim
we will approximate observed data from a longitudinal study on the human gut microbiome in gnotobiotic
mice'’. This data file is available within the metagenomeSeq package, and is particularly interesting to simu-
late for several reasons. The experiment was performed with a total of 12 mice, 6 in each treatment arm, to test
the effect of a low-fat, plan polysaccharide-rich diet (BK) versus a high-fat, high-sugar (Western) diet. This small
scale study showed promising results and may warrant a larger scale clinical design to investigate the robustness
of the effect of diet on the gut microbiome. As such, we can use the simulation tools to generate hypotheti-
cal results for this large scale trial assuming that we observe either the same functional trend as the original study
or any of the possible hypothetical functional trends at our disposal, including no differential abundance. We
will show how to generate hypothetical data for a large scale version of this experiment by increasing the sample
size by five fold and replicating the observed functional trend for a particular feature of interest.

As a first step we need to identify a particular feature of interest at an appropriate taxonomic level. The original
data contains sequenced counts on over 10,000 OTUs with the majority of these being extremely low frequency
features. Since the total sample size (n=12) is too small for central limit theory approximations to be valid, we
aggregate counts to the genus level for modelling. We further filter genus level features by imposing a minimum
depth of 1000 and presence of 10, leaving a set of 35 features. Of these 35 features, we select one at random which
we will want to replicate using our simulation framework. In our case we select the genus Sutterella. The raw
sequencing counts are then log normalized using the default procedure available in the metagenomeSeq package
which will serve as our primary outcome of interest. We plot these results over time as shown in Figure 3.

There is significant variability between the groups with a marked decrease in both groups prior to the
implementation of the intervention. We see a bounce back effect to baseline levels occurring in the BK
diet group while the Western diet group have significantly lower values across the remainder of the study
period. We see that the measurement timepoints for each individual vary slightly and are not equally
spaced over the entire study window.

As the primary interest lies in the difference between the diet groups across time, we develop our simulation
model by re-scaling the BK reference group to a constant level across time and allowing theWestern group to
vary. To obtain an initial estimate of this treatment functional trend we use the metagenomeSeq package
to fit a Gaussian smoothing spline ANOVA (SS-ANOVA) shown in Figure 4.

We see that over the initial 21 days that the 95% confidence intervals for the differential abundance over-
laps zero, and that after the intervention begins that the Western group is significantly lower than the BK
group. While the estimated trend is non-linear, we may expect that this is a function of small sample size
noise and that the true functional trend is a linearly decreasing trend. We therefore construct our hypotheti-
cal functional form using the L up designation assuming there is no differential abundance over the interval
t € [0, 21] followed by a linearly decreasing trend over the interval 7 € (22,80]. We show this chosen functional form
alongside the estimated differential abundance in Figure 5.
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Figure 3. Observed longitudinal trends for the two diet groups in Turnbaugh et al.'® study for the Genus Sutterella
with estimated LOESS curves for each group. Note that both groups had equivalent diets over the first 21 days with
half of the mice switching to the Western diet at this point marked with the vertical dotted line.

fit

0 20 40 60 80
timePoints

Figure 4. Estimated functional form of the longitudinal differential abundance for the Western diet group
from Turnbaugh et al.’” study for the Genus Sutterella. The black line represents the point estimate with the
dashed red lines corresponding to 95% confidence intervals fit using Gaussian smoothed spline ANOVA.
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Figure 5. Estimated functional form of the longitudinal differential abundance for the Western diet group from
Turnbaugh et al."® study for the Genus Sutterella with the corresponding functional form chosen for the simulation
shown in blue. The black line represents the point estimate with the dashed red lines corresponding to 95% confidence
intervals fit using Gaussian smoothed spline ANOVA.

In general our hypothetical trend is contained within the estimated bounds of the smoothed fig, and we may believe
that it is an ecologically valid representation of the expected change over time.

With microbiomeDASim we can use the observed times for each ID, and replicate each subject five times
creating a total sample size of n=60 with 30 mice in each treatment arm. We use the data to obtain estimates
for sigma and control mean along with the functional form chosen above to generate the simulated
data using the mvrnorm sim obs () function with an AR1 correlation structure. The results for the simulated data

are shown in Figure 6.

This simulated data could then be used to conduct power analyses of detecting differential abundance at time
t e [z, tq] or this process could be repeated multiple times to generate feasible bounds for what the trend may
look like in this larger sample. Alternatively, the observed data could be altered to change the planned time point
measurements to see the effect of collecting fewer samples during the follow-up period. In addition, as men-
tioned earlier in this section multiple functional forms could be tested including situations where no differential
abundance is observed to determine the likelihood of committing Type 1 errors. Further details and code for this
example are available on GitHub at inst/script/mouse_microbiome_approximation.pdf

Longitudinal differential abundance estimation

Next, we want to use our simulation design to test some of the available methods to estimate longi-
tudinal differential abundance. We will examine properties of the estimation method available in the
metagenomeSeqg"” package to fit a Gaussian smoothing spline ANOVA (SS-ANOVA) model''""* referred
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Diet
== BK

- Western

Figure 6. Estimated functional form of the longitudinal differential abundance for the Western diet group
from Turnbaugh et al.”® study for the Genus Sutterella with the corresponding functional form chosen for the
simulation shown in blue. The black line represents the point estimate with the dashed red lines corresponding
to 95% confidence intervals using metaSplines to fit smoothed spline ANOVA.

to here after as the metaSplines method. We start by generating our simulated data. In this example we

parameters to have g = 10 repeated measurements on each individual with n, = n = 30 individuals per arm.

MRexperiment (storageMode: environment)

assayData: 1 features, 600 samples
element names: counts

protocolData: none

phenoData
sampleNames: 1 2 ... 600 (600 total)
varLabels: ID time group
varMetadata: labelDescription

featureData: none

experimentData: use ’'experimentData (object)’

Annotation:

> #generating the simulated data

> out sim <- mvrnorm sim(n_control = 30, n treat = 30, control mean = 2, sigma
+ num timepoints = 10, t interval=c (1, 10),

+ rho = 0.8, corr str = "compound",

+ func form = "L up", beta = 0.5, missing pct = 1,
+ missing per subject = 2, IP = 5)

>

> #capturing the true mean values for the specified functional form

> true mean <- mean trend(timepoints=seq len(10), form = "L up", beta = 0.5, IP
>

> MR mvrnorm <- simulate2MRexperiment (out sim)

> MR mvrnorm

will fix

=1,
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After generating the simulated data, we fit the model. Note that one can fit either the outcome with the com-
plete data or the outcome with imputed missing data. In this example we use the complete data. To use
the induced missing data when creating the MRexperiment object we would set the missing variable in
simulate2MRexperiment to TRUE.

> #fitting the metaSplines model with random intercept

> metasplines mod <- fitTimeSeries(obj = MR mvrnorm, formula = abundance ~ time*class,
+ id = "ID", time = "time", class = "group",

+ feature = 1, norm = FALSE, log = FALSE, B = 1000,
+ random = ~ 1]id)

Loading required namespace: gss

100

200

300

400

500

600

700

800

900

1000

=

R = = = = = ==

Now we can display the estimated interval of differential abundance

> metasplines modS$timeIntervals
Interval start Interval end Area p.value
[1,] 6 10 6.457622 0.000999001

We compare the estimated trend 7 () to the truth f(t) as shown in Figure 7. We observe that the
metaSplines estimate falls closely to the true functlonal form. Further, the confidence intervals for the
functional form completely contain the true trend reflecting that the variability in estimation is accurately reflected.

Evaluating estimation procedures

In the example for metaSplines above we looked at performance using a visual inspection for a single choice
of parameter values. Using our simulation framework we can expand our investigation of performance. By
knowing the true underlying functional form we can quantify how accurate a particular estimation method
captures the truth as a function of sample size per group, number of repeated observations, signal-to-noise
strength, type of functional form etc. In order to use the simulated data to compare different longitudinal meth-
ods for estimating differential abundance we need to define performance metrics that quantify how accurate an
estimate is to the truth. We propose four different performance metrics that can be used when comparing methods.

1. Sensitivity/Specificity € [0, 1]

2. Cosine Similarity f ( ) f() IS [ 1 1]

[ORQ]

3. Euclidean Distance "j ©)-r (t)" € [O,oo]

4. Normalized Euclidean Distance | /() - JAON €[0,2]

I 7 Il
lror  1r®l
To ensure robustness, for each set of parameter values simulated multiple repetitions, B, are required. Sensi-
tivity is defined as the number of repetitions where any differential abundance at any value ¢, € {7, ..., ¢} is

detected over the total number of repetitions given that the functional form had some true dlfferentlal abundance
over time, i.e. f (tj) #0 Vi, S # o, Likewise, specificity is defined as the number of repetitions where no
differential abundance was detected across all timepoints over the total number of repetitions given that the
function form had no true differential abundance over time, i.e., f (t].) =0 th. The other remaining metrics are
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Estimated Differential Abundance with metaSplines

Time

Figure 7. Comparison of the estimated functional form for the metaSplines method, in red, to the truth, in black.

continuous values that look to compare how closely the estimated mean trend is to the true trend at a set of
points I, € {t, ... tq}. Cosine similarity is comparable across different lengths of t, but is not particularly
discriminant especially near the boundaries around —1 and 1. The Euclidean distance quantifies how far apart each
point is but the length of t is highly influential. Therefore, to make the Euclidean distance comparable across dif-
ferent lengths of repeated observations we can use the normalized Euclidean distance which first transforms
the estimated and true functional form into unit vectors and then calculates the distance between these unit vectors.

Sensitivity and specificity results

Using these performance metrics we simulated data across a range of different parameters settings and then
estimated the functional form of the trend using the metaSplines procedure described earlier for a total of 100
repetitions for each parameter setting. Below we show the performance results for a simulation where the func-
tional form was fixed as L_up with an AR(1) correlation structure, p = 0.7, and varied the sample size per
group, standard deviation, and timepoints from small, medium, and large respectively. The corresponding
sensitivity and specificity results are shown in Figure 8a and Figure 8b.

Looking at Figure 8a, in general the sensitivity decreases as o increases for a fixed sample size and ¢g. For
example when n; = n, = 10 and g = 6 the estimation procedure is perfectly sensitive (100%) when ¢ = 1 but
has lower sensitivity (42%) when o = 4. Also as the sample sizes increases for a fixed ¢ and o, sensitivity gen-
erally increases. Likewise, as the number of repeated observations increase, i.e. g increases, the sensitiv-
ity increases quite dramatically. This figure suggests that 6 repeated measurements is sufficiently large to detect
differential abundance for strong (o = 1) or medium (o = 2) signals regardless of the sample size per group.
On the other hand, we can look at the specificity in Figure 8b to see that these trends are no longer monotonic.
In general we note that as ¢ increases the specificity decreases and that as ¢ increases the specificity tends to
increase. However, the trend for sample size is more nuanced and may variable due to the number of repeti-
tions that were estimable. Using the metaSplines method there were cases with small sample size and repeated
observations that the method returned no estimate.

The sensitivity results shown above were for a single choice of functional form, but this is another potential
parameter of interest to test. We ran a similar set of parameter combinations for 7 other functional forms shown in

Table 1 below to compare the sensitivity as a function of the type of trend. In this table we can see that the
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Figure 8. Sensitivity and specificity results for L_up Hockey Stick type trend for an AR(1) correlation structure
with parameters: =1, IP = (t, +1)/12, p =0.7. Remaining parameters were varied to create 27 different combinations
of repeated measurements, sample size per group, and c. Points plot are the average result of B = 100 repetitions.

Table 1. Estimated sensitivity from metaSplines method for data simulated from each
respective functional form for a total of 100 repetitions across 27 different parameter
settings fixing the correlation structure to be AR(1) with p = 0.7. Parameter values used: ¢ €
(1,2, 4}, n,=n, € {10, 20, 50}, g € {3, 6, 12}. Note that the Total Non-Missing Observations is less

than the Total Observations.

Functional Form Sensitivity Total Repetitions Non-Missing Estimates
Linear Increasing 1.00 2700 2686
Linear Decreasing 0.97 2700 2634
Quadratic: Concave Up 0.91 2700 2154
Quadratic: Concave Down 0.95 2700 2600
Oscillating 1 0.96 2700 2614
Oscillating 2 0.84 2700 2501
Hockey Stick 1 0.78 2700 2261
Hockey Stick 2 0.77 2700 2280

non-differential trends, Oscillating, and variable trends, Hockey Stick, had lower average sensitivity while the linear
and quadratic trends tended to perform the best.

Continuous performance results

The continuous performance metrics for the cosine similarity, Euclidean distance and normalized Euclidean
distance are shown in Figure 9 for the L_up trend with AR(1), p = 0.7. From this figure we see similar trends
as the sensitivity results. Starting from the left most panel we see that the cosine similarity is highest when o is
small, g, n, n, are large. The spread of cosine similarity scores when g = 12 are very tightly clustered around 1
while the spread of values when ¢ = 3 or g = 6 is larger. The center plot illustrates that using raw Euclidean dis-
tances with a small number of repeated measurements tend to have smaller distances, but this trend is not seen
with normalized Euclidean distance in the last panel. Within each value of ¢ in this middle panel there is a con-
sistent trend that as the sample size per group increases the distance generally decreases. Finally moving to
the last panel we have the normalized Euclidean distance, which can now be used to compare across differ-
ent repeated measurement panels. We see a similar trend to the cosine similarity where the distance decreases,
meaning better performance, for small o and large g and n, = n,.

Similar to the sensitivity performance metrics shown in Table 1, we can also compare the average value of the
continuous performance metrics based on functional form. This is shown in Table 2. Similar trends appear in this
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Figure 9. Estimated values of performance metrics including cosine similarity, Euclidean distance, and normalized
Euclidean distance based on 100 repetitions for an L_up Hockey Stick trend with AR(1) correlation structure,
p = 0.7, simulated across multiple settings varying repeated measurements q, sample size per group, n, and n,
and ¢. Note that the red dashed line serves as a reference point at 0.5 and the green dot in each panel represents the
mean value across the 100 repetitions

Table 2. Average continuous performance metrics from metaSplines method for data simulated
from each respective functional form for a total of 100 repetitions across 27 different parameter
settings fixing the correlation structure to be AR(1) with p = 0.7. Parameter values used: o € {1, 2, 4},
n,=n, € {10, 20, 50}, g € {3, 6, 12}. Note that the Total Non-Missing Observations is less than the Total

Observations.
Functional Form Total Non-Missing Avg.Cosine Avg. Euc. Avg. Norm.
Repetitions Estimates Similarity Distance Euc. Distance
Linear Increasing 2700 2686 0.99 1.26 0.07
Linear Decreasing 2700 2634 0.98 1.27 0.09
Quadratic: Concave Up 2700 2154 0.94 1.60 0.23
Quadratic: Concave Down 2700 2600 0.97 1.55 0.15
Oscillating 1 2700 2614 0.97 1.69 0.14
Oscillating 2 2700 2501 0.88 1.71 0.35
Hockey Stick 1 2700 2261 0.84 1.35 0.40
Hockey Stick 2 2700 2280 0.84 1.38 0.38

table with the linear trends having the highest average cosine similarity scores and lowest average normalized
Euclidean distance and non-differentiable trends peforming worse.

Conclusions

With an increasing emphasis on understanding the dynamics of microbial communities in various settings,
longitudinal sampling studies are underway. There remain many statistical challenges when dealing with longitudi-
nal data collected from marker-gene amplicon sequencing. In order to validate and compare methods of estimation
for longitudinal differential abundance a unified simulation framework is needed. Currently available simula-
tion tools include R packages seqtime!” and untb”. These packages focus primarily on simulation from the
perspective of ecological processes aimed to capture the entire community dynamics. With microboimeDASim
package’ we instead provide the tools to simulate various functional forms for longitudinal differential
abundance with added flexibility to control important factors such as the number of repeated measurements
per subject, the number of subjects per group, within subject correlation, sequencing of time measurements,
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etc. for a specific feature of interest. We have shown the benefit of these simulation tools by constructing a simu-
lation design based on real microbiome data and showed the utility in methods evaluation using the metaSplines
estimation procedure to compare the performance across a wide range of different parameter settings. In this man-
ner the microbiomeDASim helps meet an important need in the research community to help in study design and
compare existing methods as well as validate potentially novel methods.

Data availability
All data underlying the results are available as part of the article and no additional source data are required.

Software availability
microbiomeDASim is available at: http://bioconductor.org/packages/microbiomeDASim.

Source code available from: https://github.com/williazo/microbiomeDASim
Archived source code at time of publication: https://doi.org/10.528 1/zenodo.3458563°.

License: MIT.

Author contributions
JW performed analyses, implemented software and wrote first draft of article. HCB contributed to analysis and
article review. JT and JNP oversaw analyses and designed experiment.

Acknowledgments
Authors would like to acknowledge Jane Fridlyand and Christina Rabe for helpful discussions and support.

References
1. Gopalakrishnan V, Spencer CN, Nezi L, et al.: Gut microbiome gnotobiotic mice. Sci Trans/ Med. 2009; 1(6): 6rai4.
modulates response to anti-PD-1 immunotherapy in melanoma PubMed Abstract | Publisher Full Text | Free Full Text
patients. Science. 2018; 359(6371): 97-103. 11. Paulson JN, Talukder H, Bravo HC: Longitudinal differential
PubMed Abstract | Publisher Full Text | Free Full Text abundance analysis of microbial marker-gene surveys using
2. Routy B, Le Chatelier E, Derosa L, et al.: Gut microbiome smoothing splines. bioRxiv. 2017.
influences efficacy of PD-1-based immunotherapy against Publisher Full Text
epithelial tumors. Science. 2018; 359(6371): 91-97. 12.  Wilhelm S, Manjunath BG: tmvtnorm: Truncated Multivariate
PubMed Abstract | Publisher Full Text Normal and Student t Distribution. 2015.
3. Matson V, Fessler J, Bao R, et al.: The commensal microbiome Reference Source
is associated with anti-PD-1 efficacy in metastatic melanoma 13.  Johnson NL: Systems of frequency curves generated by methods
patients. Science. 2018; 359(6371): 104-108. of translation. Biometrika. 1949; 36(Pt. 1-2): 149-76.
PubMed Abstract | Publisher Full Text | Free Full Text PubMed Abstract | Publisher Full Text
4. Sivan A, Corrales L, Hubert N, et a.: Commensal Bifidobacterium 14.  Paulson JN, Stine OC, Bravo HC, et al.: Differential abundance
promotes antitumor immunity and facilitates anti-PD-L1 efficacy. analysis for microbial marker-gene surveys. Nat Methods. 2013;
Sci Transl Med. 2015; 350(6264): 1084-9. 10(12): 1200-2.
PubMed Abstract | Publisher Full Text | Free Full Text PubMed Abstract | Publisher Full Text | Free Full Text
5. Yatsunenko T, Rey FE, Manary MJ, et al.: Human gut microbiome 15.  Paulson JN, Pop M, Bravo HC: metagenomeSeq: Statistical
viewed across age and geography. Nature. 2012; 486(7402): analysis for sparse high-throughput sequncing. Bioconductor
222-27. package. 2013.
PubMed Abstract | Publisher Full Text | Free Full Text Reference Source
6. Kostic AD, Gevers D, Siljander H, et al.: The dynamics of the 16.  McMurdie PJ, Holmes S: phyloseq: an R package for reproducible
human infant gut microbiome in development and in progression interactive analysis and graphics of microbiome census data.
toward type 1 diabetes. Cell Host Microbe. 2015; 17(2): 260-73. PL0S One. 2013; 8(4): e61217.
PubMed Abstract | Publisher Full Text | Free Full Text PubMed Abstract | Publisher Full Text | Free Full Text
7. Morris A, Paulson JN, Talukder H, et al.: Longitudinal analysis of 17.  GU C: Smoothing spline anova models: R package gss. J Stat
the lung microbiota of cynomolgous macaques during long-term Softw. 2014; 58(5): 1-25.
SHIV infection. Microbiome. 2016; 4(1): 38. Publisher Full Text
PubMed Abstract | Publisher Full Text | Free Full Text 18.  GU C: Smoothing spline ANOVA models. Springer, New York, 2nd
8. Leek JT, Scharpf RB, Bravo HC, et al.: Tackling the widespread and edition, 2013.
critical impact of batch effects in high-throughput data. Nat Rev Publisher Full Text
Genet. 2010; 11(10): 733-9. 19.  Faust K, Bauchinger F, Laroche B, et al.: Signatures of ecological
PubMed Abstract | Publisher Full Text | Free Full Text processes in microbial community time series. Microbiome. 2018;
9. Williams J, Bravo HC, Tom J, et al.: williazo/microbiomeDASim: 6(1): 120. )
Tools to simulate longitudinal differential abundance for PubMed Abstract | Publisher Full Text | Free Full Text
microbiome data (v0.99.2). 2019. 20. Hankin RKS: Introducing untb, an R package for simulating
http://www.doi.org/10.5281/zenodo.3458563 ecological drift under the unified neutral theory of biodiversity.
10.  Tumbaugh PJ, Ridaura VK, Faith JJ, et al.: The effect of diet on the J Stat Softw. 2007; 22(12).
human gut microbiome: a metagenomic analysis in humanized Publisher Full Text

Page 20 of 28


http://www.ncbi.nlm.nih.gov/pubmed/29097493
http://dx.doi.org/10.1126/science.aan4236
http://www.ncbi.nlm.nih.gov/pmc/articles/5827966
http://www.ncbi.nlm.nih.gov/pubmed/29097494
http://dx.doi.org/10.1126/science.aan3706
http://www.ncbi.nlm.nih.gov/pubmed/29302014
http://dx.doi.org/10.1126/science.aao3290
http://www.ncbi.nlm.nih.gov/pmc/articles/6707353
http://www.ncbi.nlm.nih.gov/pubmed/26541606
http://dx.doi.org/10.1126/science.aac4255
http://www.ncbi.nlm.nih.gov/pmc/articles/4873287
http://www.ncbi.nlm.nih.gov/pubmed/22699611
http://dx.doi.org/10.1038/nature11053
http://www.ncbi.nlm.nih.gov/pmc/articles/3376388
http://www.ncbi.nlm.nih.gov/pubmed/25662751
http://dx.doi.org/10.1016/j.chom.2015.01.001
http://www.ncbi.nlm.nih.gov/pmc/articles/4689191
http://www.ncbi.nlm.nih.gov/pubmed/27391224
http://dx.doi.org/10.1186/s40168-016-0183-0
http://www.ncbi.nlm.nih.gov/pmc/articles/4939015
http://www.ncbi.nlm.nih.gov/pubmed/20838408
http://dx.doi.org/10.1038/nrg2825
http://www.ncbi.nlm.nih.gov/pmc/articles/3880143
http://www.doi.org/10.5281/zenodo.3458563
http://www.ncbi.nlm.nih.gov/pubmed/20368178
http://dx.doi.org/10.1126/scitranslmed.3000322
http://www.ncbi.nlm.nih.gov/pmc/articles/2894525
http://dx.doi.org/10.1101/099457
http://CRAN.R-project.org/package=tmvtnorm
http://www.ncbi.nlm.nih.gov/pubmed/18132090
http://dx.doi.org/10.2307/2332539
http://www.ncbi.nlm.nih.gov/pubmed/24076764
http://dx.doi.org/10.1038/nmeth.2658
http://www.ncbi.nlm.nih.gov/pmc/articles/4010126
http://www.cbcb.umd.edu/software/metagenomeSeq
http://www.ncbi.nlm.nih.gov/pubmed/23630581
http://dx.doi.org/10.1371/journal.pone.0061217
http://www.ncbi.nlm.nih.gov/pmc/articles/3632530
http://dx.doi.org/10.18637/jss.v058.i05
http://dx.doi.org/10.1007/978-1-4614-5369-7
http://www.ncbi.nlm.nih.gov/pubmed/29954432
http://dx.doi.org/10.1186/s40168-018-0496-2
http://www.ncbi.nlm.nih.gov/pmc/articles/6022718
http://dx.doi.org/10.18637/jss.v022.i12
http://bioconductor.org/packages/microbiomeDASim
https://github.com/williazo/microbiomeDASim
https://doi.org/10.5281/zenodo.3458563
https://github.com/williazo/microbiomeDASim/blob/v0.99.2/DESCRIPTION

FIOOOResearch F1000Research 2020, 8:1769 Last updated: 26 FEB 2020

Open Peer Review

Current Peer Review Status: v Vv

Reviewer Report 26 February 2020

https://doi.org/10.5256/f1000research.24837.r60557

© 2020 Lahti L. This is an open access peer review report distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

v

Leo Lahti
Department of Future Technologies, University of Turku, Turku, Finland

The authors have responded to my review comments appropriately.
Competing Interests: No competing interests were disclosed.
Reviewer Expertise: Microbiome bioinformatics.

I confirm that | have read this submission and believe that | have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard.

Reviewer Report 06 November 2019

https://doi.org/10.5256/f1000research.22722.r55802

© 2019 Sankaran K. This is an open access peer review report distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

v

Kris Sankaran
Montreal Institute for Learning Algorithms (MILA), Montreal, QC, Canada

Contributions

The authors have developed an R package to simulate longitudinal microbiome time course data,
especially where there are difference in trajectories between treatment and control groups. This can be
used to address,
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1.

Experimental design: Simulations can guide power analysis, to see whether a proposed study will
be well-powered, as a function of assumptions on the generating mechanisms.

2. Methods comparisons: The effectiveness of different methods will depend on the structure of the

data, and simulations provide ground truth from which to make assessments.

They simulate data one species at a time. Both treatment and control groups are assumed to have
gaussian data, truncated below at 0 to reflect transformed counts. Control data are assumed to be drawn
from some common mean, but with specified correlation structure over time. Treatment data are assumed
to have a mean that deviates from the control according to some function f(), but have the same
correlation structure. The authors provide an interface for simulating a few patterns of f() that are believed
to be common in real data (e.g., oscillating, quadratic, and linear shapes).

The authors share code to display simulated data. They also describe a study evaluating the power of a
particular method, 'metaSplines', as simulation parameters are changed.

Evaluation

Strengths:

| like the idea of formalizing simulation-based power analysis. In the microbiome setting,
simulations make more sense than theory, but have two issues (1) they are potentially
labor-intensive and (2) they can be ad hoc, and never published. By preparing a package, the
authors lower the barrier to entry to / introduce a more formal standard for this work, hopefully
enabling simulation-based power analysis in the field.

® The paper is generally technically sound, and reads well. Code is available publicly, is clearly
documented, and written in a professional style.
Weaknesses:
o

The simulated data are never properly evaluated -- this is my reason for the "partly" response in my
report. Of course, any simulation is only an approximation of reality, but it would be nice to know
along which dimensions the approximation is close, and along which it is poor. This would also set
the stage for studying whether the conclusions that you're aiming for (study design or methods
choices) are substantially affected by / robust to these deviations in real data. Something in the
spirit of graphical inference could be quite interesting here.'

Missed Opportunities:

The 'metaSplines' analysis ends somewhat abruptly, because it's not clear what actual conclusions
would be drawn from it. | think it would be interesting if you compared another method against it,
because you'd be getting at something like the relative efficiency of the approaches (you could also
measure their robustness to particular assumptions).

The functional forms seem somewhat restrictive, though | see their value for people who don't want
to spend time writing code. Could you define some kind of interface that makes it easier for people
to specify classes of alternatives? E.g., maybe you could let people draw functions interactively, or
use as input some examples of microbiome series they see in real data.

Discussion

Page 22 of 28



FIOOOResearch F1000Research 2020, 8:1769 Last updated: 26 FEB 2020

| have trouble believing in any kind of i.i.d. assumption across species. First, the scale of
abundance across species tends to differ by orders of magnitude. Second, many species exhibit
very similar behavior.

Among the controls, couldn't some species also vary over time, because of factors in that
individual that change which are not specifically treatment?

Setting missing data to 0 is generally bad practice, because then you can't distinguish true zeros
from missingness. You should either do proper missing data imputation, or recommend methods
that explicitly model the missign values / don't require measurements at equal timepoints.

The different correlation structures you propose reflect an equispaced sampling design. It wouldn't
be too hard to change the correlation structure to allow for unevenly spaced sampling, and it would
address your point (4, "Asynchronous repeated measures").

Could you create an interactive notebook? E.g., using binder:
https://mybinder.org/v2/gh/krisrs1128/microbiome_dasim_example/master. This would make it
easier for people (esp. nonexperts) to get acquainted with your work, without having to install
jupyter etc.

For dosage effects, I'd find a (reversed) sawtooth or wavelet-style spike more believable than an
oscillating function. But again, this is related to the point of letting people choose their own
alternatives.

Minor Comments

® The caption in Figure 5 seems deprecated.
® | don't think you ever defined "OTU".
®  The library load should say "microbiome" not "microbime".
® There are still a few typos here and there (e.g., "differential abundant" features and "metrics of
success results"), so | recommend another careful read.
References

1. Wickham H, Cook D, Hofmann H, Buja A: Graphical inference for Infovis./EEE Trans Vis Comput Graph
.16 (6): 973-9 PubMed Abstract | Publisher Full Text

Is the rationale for developing the new software tool clearly explained?

Yes

Is the description of the software tool technically sound?

Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow
replication of the software development and its use by others?

Yes
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Is sufficient information provided to allow interpretation of the expected output datasets and
any results generated using the tool?

Yes

Are the conclusions about the tool and its performance adequately supported by the findings
presented in the article?

Partly

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: statistics

I confirm that | have read this submission and believe that | have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard.

Justin Williams, Genentech, Inc, South San Francisco, USA

Thank you for your careful review of the manuscript and suggestions. Responses to issues raised
are shown below for specific points raised.

Weakness
In the vein of evaluating the robustness of the simulation in approximating reality we have included
an additional section “Approximating Observed Microbiome Data” that aims to show how the
current package could complement real-world microbiome data. Some of the implications and
thought processes for using the simulation package in this setting are discussed within the details
of this section.
Missed Opportunities

1. We thank the reviewer for this comment. The metaSplines analysis that is included in the

manuscript is meant to serve as an illustration of how the simulator could be used to
evaluate longitudinal differential abundance methods. In the interest of focusing this
software tools manuscript on the simulator package itself, a full comparison of different
methods was not investigated. However, this would be a valuable avenue to explore in more
depth in a subsequent write-up.

Presently we are not aware of any interface within R that would dynamically allow users to
draw functions. This would be highly useful and we would like to continue adding in different
functional forms within the package. The currently available forms were an initial foray into
some potentially relevant types of trends that might be observed. Users with R expertise can
modify the mean_trend function to create alternative functional forms, but allowing full user
specification may create an unintended burden for many practitioners. In the future, we will
consider some alternative options that allow for higher flexibility while maintaining usability.

Discussion

In our simulation design we are restricting to a single feature of interest when generating
data and therefore are inherently ignoring variability across species. This feature simulation
can be tailored for individual species of interest and would be run separately in each case.
The control group could also vary over time, but from a simulation perspective we are
treating the design as if the sample has been norm referenced across time for the control
group. Since the main goal of estimation is calculating the difference between the treatment
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and control group over time, restricting the control group to be invariant over time simplifies
the user input and maintains the primary goal of estimation.

® By default when inducing missingness in the data, the values are treated as NA rather than
0. However, we included the option to specify the value of the missing data to represent
cases where there may be some true non-zero occurrence but due to technical limitations
such as read depth the values do not appear. The process of generating missingness is
meant to align with some of the typical issues such as loss to follow-up when conducting
these types of longitudinal designs.

®  Thank you for this comment - as a result we have decided to expand the functionality to
allow for asynchronous sampling over a specified interval (using asynch_time=TRUE) or
alternatively to have the user specify discrete sampling times for each individual with the
mvrnorm_sim_obs function. An example of using each of these asynchronous sampling
schemes have been included in the updated manuscript. The compound and independent
correlation structures remain unchanged in this unevenly spaced sampling design, but the
AR(1) correlation structure now incorporates the amount of time between each sample as
It_{i}-t_{j}I.

®  Thank you for this suggestion. The original instructions for installing and running Jupyter
with an R kernel were indeed cumbersome. To make the notebook easily interactive, we
have re-compiled the materials using Google Colab with a simple badge on top that will
allow users to run the code without requiring local installation and setup of Jupyter.

®  Thank you for pointing out these possible functional forms. We will work to expand the
functional forms available to include these types of trends in the future. As mentioned earlier
the ability to define the mean trend has a natural tradeoff between flexibility and useability.

Minor Comments
Caption texts, grammatical errors, and typos pointed out have been corrected. Additional read
throughs have also been performed to minimize these types of mistakes in the latest draft.

Competing Interests: No competing interests were disclosed.

Reviewer Report 05 November 2019

https://doi.org/10.5256/f1000research.22722.r55801

© 2019 Lahti L. This is an open access peer review report distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

? Leo Lahti
Department of Future Technologies, University of Turku, Turku, Finland

This manuscript introduces a new method for simulating longitudinal differential abundance for
microbiome data. The method is implemented as an R/Bioc package. The proposed package allows the
user to simulate longitudinal microbiome data based on various assumptions, and allows the tuning of key
design aspects such as signal-to-noise ratio, correlation structure, effect size and zero inflation. One of
the available methods is validated with benchmarking comparisons.
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The manuscript is technically sound and written in a fluent and easily understandable English.
Experiments and statistical analyses have been conducted rigorously. The source code and experiments
are openly available via Github but | have not tried to replicate the analysis.

Realistic simulations are valuable for study design, and help to address questions about sample size,
density of time points, experimental costs, etc. The work provides pragmatic solutions to a topical
problem in microbiome bioinformatics.

Major comments:

1. The simulator provides versatile options to tune signal shape, correlations, and noise. However, |
am left wondering how well the simulations correspond to real microbiome data. In particular, it is
not clear nor validated how the time series shape and correlation structures correspond to known
processes in microbial ecology, such as neutral process, competition models (such as generalized
Lotka-Volterra), compositionally aware naive models (Dirichlet-Multinomial), mean-reversing
processes (Ornstein-Uhlenbeck). All of these have ecological interpretations and have been visible
in recent microbiome time series literature. These models are motivated by known ecological
processes, rather than technical modifications on the signal shape; it would be relevant to know
how large impact the chosen modeling assumptions might have on the results. Can we expect that
the proposed simulator will yield qualitative similar conclusions, even if the connection to
ecological mechanisms might be weak?

2. The proposed model does not (explicitly) account for heteroschedasticity or overdispersion, and its
performance has not been demonstrated with recently popular models of differential abundance,
such as DESeq2. It could be true that longitudinal testing of differential abundance requires
different methodology. But longitudinal simulators can be also used to simulate cross-sectional
data, which is always a snap-shot of longitudinal data. | wonder if the simulator would perform well
with standard methods for cross-sectional data; or if it can be shown to yield similar overall
distributions. This could provide some additional support for the simulations as the feasibility of the
modeling assumptions and their impact on the conclusions remains open.

Minor comments:

1. Other simulators for microbiome data and time series are available. One that | am aware of is the
seqgtime package (https://github.com/hallucigenia-sparsa/seqtime), although that is only available
as an R package (and not formally published), but there may be other recent simulators. | did not
find other simulation works being cited, it would be good to check if other simulators can be
identified in the recent literature, and how they relate to this work.

2. Lack of integration with phyloseq is a weakness, as this class structure is now very popular among
the microbiome R users, and many tools build directly on that class structure. It would be useful
addition to the package if the simulations could be made available in a phyloseq format.

Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow
replication of the software development and its use by others?
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Yes

Is sufficient information provided to allow interpretation of the expected output datasets and
any results generated using the tool?
Yes

Are the conclusions about the tool and its performance adequately supported by the findings
presented in the article?
Partly

Competing Interests: No competing interests were disclosed.
Reviewer Expertise: Microbiome bioinformatics.

I confirm that | have read this submission and believe that | have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard, however | have significant
reservations, as outlined above.

Justin Williams, Genentech, Inc, South San Francisco, USA

Thank you for your review of the manuscript and suggestions for improvement. Both the
manuscript and package have been updated to reflect issues raised above. In the following we
address point wise specific comments raised from Version 1 of the manuscript.

Major Comments:

(1) Thank you for this comment. As an additional step to address the ability of the simulator to
reflect real microbiome data we have provided an example of approximating clinical data with
longitudinal microbiome data in mice from Turnbaugh et. al, 2009. This section was added to the
manuscript under “Approximating Observed Microbiome Data” with further details about how the
simulator can be used to complement and expand clinical efforts.

In particular, we outline some of the steps to consider when constructing a simulated dataset to
approximate a real-world study. Although our simulation design does not explicitly account for
ecological processes as mentioned, the focus on the underlying distributional assumption defines
the scope of problems which can be addressed.

The simulator looks to construct values for a single feature (aggregated at the taxonomic level of
interest) and thus does not incorporate correlation between features or compositional constraints.
By focusing on only single features of interest we expect that the simulator will yield similar
conclusions to those observed in clinical experiments, and thus offers practitioners a useful tool
when designing or expanding a longitudinal microbiome study.

(2) During the construction of the simulator the variance between both groups is held constant,
partly in order to reduce the burden of parameter specification on the user. This choice also
reflects a belief that the two groups differ only in their mean trend over time, which is often an
appropriate default assumption without particular beliefs about how the heteroskedasticity may
differ by group over time. However, it is worthwhile to consider adding a heteroskedastic option to
the simulator to incorporate potential differences in noise between groups. While the goal of the
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simulator focuses on longitudinal designs, it is worthwhile to explore its applicability to
cross-sectional data. The simulator function can simulate cross-sectional data by setting
num_timepoints=1. Further evaluation of the performance in these cases is merited, but falls
outside the scope of this initial software tools manuscript.

Minor Comments:

(1) We thank the reviewer for pointing to these additional simulator packages. A further
investigation of the literature returned multiple packages including seqtime, untb, and WrightFisher
with similar goals for simulating longitudinal trends. These packages however focus on simulations
from a compositional perspective rather than at a single feature level, and lack some of the
documentation and formal publication that accompanies our present package. | have updated the
manuscript to include references to these additional packages and note some of the differences in
the conclusion.

(2) Thank you for this comment. We have added additional conversion functions
simulate2MRexperiment and simulate2phyloseq that format simulated data into the respective
objects of interest for the metagenomeSeq and phyloseq packages. We have also added details
about using these functions within the manuscript.

Competing Interests: No competing interests were disclosed.
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