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Abstract
In a previous study with normal-hearing listeners, we evaluated consonant identification

masked by two or more spectrally contiguous bands of noise, with asynchronous square-

wave modulation applied to neighboring bands. Speech recognition thresholds were 5.1–

8.5 dB better when neighboring bands were presented to different ears (dichotic) than when

all bands were presented to one ear (monaural), depending on the spectral width of the fre-

quency bands. This dichotic advantage was interpreted as reflecting masking release from

peripheral spread of masking from neighboring frequency bands. The present study evalu-

ated this effect in listeners with sensorineural hearing loss, a population more susceptible to

spread of masking. Speech perception (vowel-consonant-vowel stimuli, as in /aBa/) was
measured in the presence of fluctuating noise that was either modulated synchronously

across frequency or asynchronously. Hearing-impaired listeners (n = 9) and normal-

hearing controls were tested at either the same intensity (n = 7) or same sensation level

(n = 8). Hearing-impaired listeners had mild-to-moderate hearing loss and symmetrical,

flat audiometric thresholds. While all groups of listeners performed better in the dichotic

than monaural condition, this effect was smaller for the hearing-impaired (3.5 dB) and

equivalent-sensation-level controls (3.3 dB) than controls tested at the same intensity

(11.0 dB). The present study is consistent with the idea that dichotic presentation can

improve speech-in-noise listening for hearing-impaired listeners, and may be enhanced

when combined with amplification.

Introduction
Recognizing speech in a spectro-temporally dynamic background relies, in part, on a listener’s
ability to integrate speech cues from the time/frequency regions where the signal-to-noise ratio
(SNR) is favorable [1–6]. The ability to use isolated segments of the speech stream, sometimes
referred to as speech “glimpsing” [4], is enhanced in the presence of masker fluctuation relative
to steady maskers. The benefit associated with this masker fluctuation has been called the
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fluctuating masker benefit [7, 8] or masking release [9]. Hearing-impaired (HI) listeners are
often shown to have less ability to benefit from dynamic changes in local SNR compared to
normal-hearing (NH) listeners. Though the mechanisms responsible for this are not fully
understood, a number of factors associated with hearing loss have been implicated, including
reductions or deficiencies in: audibility [10], temporal resolution [10–12], frequency selectivity
[13–17], temporal fine structure processing [18–20], across-frequency integration [21, 22], and
effects related to SNR in the baseline condition [7]. The purpose of the present study was to
specifically asses the roles that frequency selectivity and audibility have on HI listeners’ limited
ability to benefit from masker fluctuation for speech perception.

We used a unique masking release paradigm with temporally-modulated noise maskers that
were either comodulated or uncomodulated across frequency [2]. So as not to be confused with
a well-established psychoacoustic phenomenon, comodulated masking release (CMR [23]), we
refer to the comodulated and uncomodulated maskers as synchronously- and asynchronously-
modulated maskers, respectively. One motivation for testing these unique maskers is that asyn-
chronously-modulated maskers are more ecologically relevant than synchronously-modulated
maskers, as many natural listening environments contain multiple sound sources. However,
the periodic modulation pattern and constant level of the asynchronously-modulated maskers
does not capture the variability and unpredictability associated with many real-world sounds.
Masking release associated with these modulated maskers has previously been reported for NH
listeners [2, 24], but not for HI listeners, who are likely to show less masking release than NH
listeners [7, 10–22].

Our previous work showed that glimpsing in spectro-temporally complex environments
improves when negative effects of masking spread are removed [24]. For asynchronously-mod-
ulated maskers, in particular, potentially favorable SNRs in spectro-temporal regions of masker
minima are influenced by neighboring spectro-temporal regions of masker maxima. The sever-
ity of masking spread is dependent on the frequency selectivity of the individual. This was pre-
viously assessed by measuring performance in the asynchronously-modulated masker
presented either monaurally or dichotically. Dichotic presentation meant that alternating fre-
quency regions were separated across the ears to avoid peripheral masking spread from proxi-
mal frequency regions [25–29]. Masking release in dichotic, asynchronously-modulated
masker conditions was larger than in the monaural case, and this was interpreted as the direct
result of removing negative effects of masking spread. Recent work by Stone and colleagues [8],
however, suggests that dichotic presentation could have reduced masking by eliminating inter-
modulations resulting from an interaction between masker bands in the periphery. Neverthe-
less, the potential for a benefit in HI listeners from dichotic presentation has not been
evaluated for these maskers, and results may provide further support for the role of frequency
selectivity in masked speech perception.

A number of studies have indicated that frequency selectivity is often reduced in listeners
with sensorineural hearing loss [30–33]. One manifestation of reduced frequency selectivity in
hearing impairment is a greater effect of spread of masking [31, 34, 35], although not all studies
have observed consistent differences between listeners with and without hearing loss ([36], for
a review, see [37]). The HI listeners in the present study were expected to experience a robust
benefit from dichotic presentation of stimuli in the asynchronously-modulated masker condi-
tion. Such a result would be consistent with an interpretation that poor frequency selectivity
limits glimpsing in spectro-temporally complex backgrounds. We also considered the possibil-
ity that HI listeners would have a limited ability to integrate information across frequency.
Some support for this possibility was reported by Healy and Bacon [21] and Healy and Carson
[22], although this deficit has not been seen in all paradigms [5]. If such limitations are present
for HI listeners, it is unclear whether these factors would limit the extent to which dichotic
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presentation could help performance via reduced spread of masking. We included control con-
ditions to evaluate spectro-temporal integration, allowing us to test whether HI listeners have
comparable integration abilities to those seen in NH listeners [24]. Finally, the role of audibility
was separately evaluated by including normal-hearing control listeners who received either
equal intensity or equivalent sensation level as the HI test group.

The goal of the present study was to assess HI listeners’ speech perception in conditions
where masking spread could be alleviated through a dichotic manipulation. Results showed
that HI listeners were susceptible to limits in masking release overall, believed to be an effect of
poor audibility. Nonetheless, dichotic listening was demonstrated to be beneficial for HI listen-
ers under some masking conditions, thereby leaving the possibility that frequency selectivity
was a viable target for remediation. In addition, these results offer further insight into HI listen-
ers’ abilities to integrate speech glimpses across time and frequency [5, 22], and under certain
scenarios, we believe dichotic presentation may lead to better speech perception for bilateral
hearing-instrument users.

Materials and Methods

Ethics Statement
All testing followed the ethical guidelines provided by the National Institutes of Health of the
United States of America. Subjects provided written informed consent prior to all test measures
and were compensated for their participation. The study, including consent and compensation,
was approved by the Institutional Review Board at the University of North Carolina at Chapel
Hill.

Listeners
Twenty-four native English-speaking adults were recruited from the local and surrounding
communities. The HI group (n = 9) received the same stimuli as the normal-hearing control
group (NH, n = 7), and additional data were collected from a secondary, normal-hearing group
(NHSL, n = 8) who received stimuli near the sensation level of the HI group. The NH and NHSL

listeners had pure-tone thresholds of 20 dB HL or lower at octave frequencies from 0.25 to 8
kHz in each ear [38]. The HI listeners had bilateral mild-to-moderate sensorineural hearing
loss of no more than 60 dB HL between 0.25 and 8 kHz. Thresholds were approximately sym-
metric (� 20 dB difference between ears) and relatively flat (� 25 dB difference between 500
and 4000 Hz in all but one ear). Flat hearing loss was desirable to ensure approximately compa-
rable access to speech cues across the speech spectrum. Ages ranged from 21 to 68 years old
and were roughly matched across NH and HI groups (NH group: mean 42.9 yrs ± 14.4 sd; HI
group: mean 46.6 yrs ±17.4 sd). Because the NHSL group was a secondary dataset, no attempt
was made to match age with the two primary groups (mean 29.5 yrs ± 13.5 sd). Listeners over
the age of 60 years (1 NH and 2 HI listeners) completed a cognitive assessment before the
experiment (Montreal Cognitive Assessment; [39]). These older listeners were required to
obtain a score of 26 or better for inclusion in the study, and all three met this criterion. Demo-
graphic information is reported in the left-most columns of Table 1, and Fig 1 presents the
average audiograms for each group.

Stimuli
Speech stimuli were identical to those used in an earlier study [24]. The speech material
included five recordings each for 12 vowel-consonant-vowels ([b d f g k m n p s t v z] as in
/aga/), spoken by an adult female speaker and recorded at a sampling rate of 44.1 kHz.
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Stimulus duration ranged from 528 to 664 ms, with a mean duration of 608 ms. Each token
was normalized to equal root-mean-square level and filtered into 2, 4, 8, or 16 frequency bands
using sixth-order Butterworth band-pass filters. For a given number of bands, filter bandwidths
were equivalent in logarithmic units, with bands spanning 0.1 to 10 kHz.

As in previous studies using these methods, maskers were based on broadband pink noise
samples which, by definition, contained equal energy per octave band. Each masker sample
was generated digitally with duration equal to the longest possible speech token plus 300 ms
(964 ms total duration). Speech stimuli began 150 ms after the onset of the noise masker.
Masker modulation was either synchronous (Sync) or asynchronous (Async). Spectral repre-
sentations of the modulated maskers are depicted in Fig 2, including asynchronously-modu-
lated maskers with increasing numbers of filtered frequency bands. Sync maskers were
modulated in the time-domain with a 10-Hz quasi-square wave with a random starting phase;
10-ms raised cosines were used to smooth level transitions and limit spectral splatter. To create

Table 1. Individual age and audiometric data.

Group ID Age (yrs) PTA-L (dB) PTA-R (dB) VCV in Quiet (dB)

HI02 34.8 43.3 50.0 n/a

HI08 21.2 55.0 55.0 n/a

HI09 56.1 43.3 40.0 59.6

HI10 53.7 41.7 38.3 57.5

HI13 41.5 45.0 41.7 67.0

HI14 23.6 35.0 30.0 51.3

HI16 68.9 33.3 28.3 48.4

HI17 67.1 23.3 30.0 46.2

HI18 52.8 40.0 45.0 63.8

MEAN (sem) 46.6 (5.8) 40.0 (2.9) 39.8 (3.1) 56.2 (3.0)

Group ID Age (yrs) PTA-L (dB) PTA-R (dB) VCV in Quiet (dB)

NH01 18.4 13.3 15.0 28.0

NH03 44.8 6.7 6.7 33.6

NH04 38.1 3.3 -3.3 30.4

NH06 48.3 8.3 3.3 28.9

NH07 45.0 8.3 6.7 26.7

NH11 38.8 1.7 5.0 28.5

NH12 66.8 8.3 11.7 37.8

MEAN (sem) 42.9 (5.4) 7.1 (1.4) 6.4 (2.2) 30.6 (1.5)

Group ID Age (yrs) PTA-L (dB) PTA-R (dB) VCV in Quiet (dB)

NHSL19 47.5 5.0 1.7 n/a

NHSL20 54.3 10.0 5.0 n/a

NHSL21 20.5 3.3 8.3 23.4

NHSL22 25.6 5.0 8.3 25.0

NHSL23 24.6 6.7 13.3 28.7

NHSL24 21.5 6.7 5.0 27.9

NHSL25 21.3 1.7 5.0 24.6

NHSL26 20.5 5.0 8.3 31.1

MEAN (sem) 29.5 (4.8) 5.4 (0.9) 6.9 (1.2) 26.8 (1.2)

PTA-L, pure-tone average in left ear; PTA-R, pure-tone average in right ear; VCV, vowel-consonant-vowel

threshold; HI, hearing-impaired; NH, normal-hearing; NHSL, normal-hearing with equivalent sensation level;

sem, standard error of the mean

doi:10.1371/journal.pone.0154920.t001
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Async maskers, the pink noise was filtered into 2, 4, 8, or 16 bands using sixth-order Butter-
worth band-pass filters. Then a 10-Hz quasi-square wave was applied to each noise band via
multiplication. A single, randomly selected starting phase was chosen for the odd-numbered
bands, and the inverse phase was used for the even-numbered bands. Bands were numbered by
frequency region, beginning with the lowest frequency band. Before stimulus presentation,
speech and noise signals were up-sampled to 48828 Hz to conform to hardware specifications
(Tucker-Davis Technologies, Alachua, FL).

Either monaural (left [L] or right [R] ear only) or dichotic (D) stimuli were presented in a
single block of trials. Monaural stimuli consisted of combined speech and noise signals. Dich-
otic stimuli included the odd-numbered bands of the combined speech and noise presented to
the left ear, and even-numbered bands of the combined speech and noise presented to the right
ear. In some cases, masker bands were presented to a single ear without the associated speech
bands (see dichotic control conditions described below).

Procedure and conditions
Procedures of the speech identification task were similar to those used in a previous study [24].
On each trial, speech tokens were randomly selected with replacement, and the task was to

Fig 1. Pure-tone audiometry for participants. Audiograms for normal-hearing (NH; n = 7; dotted lines),
normal-hearing at equivalent sensation level (NHSL; n = 8; dashed line), and hearing-impaired (HI; n = 9; solid
lines) listeners for both left (blue X’s) and right (red circles) ears in dB HL. The HI listeners were screened to
have roughly flat and symmetric mild-to-moderate hearing losses. Error bars represent one standard error of
the mean.

doi:10.1371/journal.pone.0154920.g001

Fig 2. Spectrograms of modulated maskers used in the glimpsing task. From left to right, the
synchronously-modulated masker (Sync) and the asynchronously-modulated masker (Async) with 2, 4, 8, or
16 numbers of frequency bands. Modulation rates were set at 10 Hz, and initial phase of modulation was
random.

doi:10.1371/journal.pone.0154920.g002
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indicate the consonant that was heard by selecting one of the 12 alternatives on the computer
screen using a mouse. The speech recognition thresholds (SRTs) were measured using an adap-
tive up-down tracking algorithm using 4 dB steps, which estimated 50% correct identification
[40]. The SRTs were determined based on the last 24 of 26 track reversals. This procedure was
controlled using a customMatlab (Mathworks, Inc., Natick, MA) script. Stimuli were pre-
sented through a pair of insert earphones (Etymotic ER-2, Elk Grove Village, IL), and listeners
were seated in a single-wall, sound-treated booth. The first block of trials was a speech identifi-
cation task with no masking. This served both to familiarize listeners with the task, and as a
measure of in-quiet SRTs (results reported in Table 1). For the first two hearing-impaired and
two normal-hearing listeners, in-quiet SRTs are not available due to an initial requirement of
100% speech identification accuracy at a comfortably loud presentation level. This initial
requirement was subsequently replaced with an in-quiet threshold measure of speech
reception.

For testing in quiet, thresholds were obtained by adjusting the level of the signal. Subsequent
blocks of trials contained a masker. In these trials the SNR was adjusted adaptively, starting
with an initial SNR of 10 dB. In the unmodulated noise condition, the level of the stimulus (sig-
nal plus masker) was fixed at 85 dB SPL for the HI and NH groups, and it was attenuated to 55
dB SPL for the NHSL group. To achieve the fixed level with varying SNR, two scalars were gen-
erated–one for the target, to produce the desired SNR, and the other for the summed target-
plus-masker, to control the overall level. Both scalars were generated based on a bandpass fil-
tered target (0.1–10 kHz) and a steady noise masker sample. This same procedure, generating a
total level of 85 dB SPL, was the first stage for all other masked speech identification conditions.
For the synchronous modulation, the noise was bandpass filtered and subsequently amplitude
modulated. For the asynchronous monaural conditions, the noise was filtered and modulated
before presentation. For the asynchronous dichotic conditions, the noise was modulated on a
band-by-band basis prior to presentation. The full intensity was consequently reduced 3.2 dB
by amplitude modulation in the Sync and Async conditions, and reduced further, in an ear-
specific way, in the dichotic conditions. Trials were blocked by condition, and the order of con-
ditions was quasi-randomly selected for each listener to avoid order effects. Each listener per-
formed either three or four tracks for each condition. The fourth estimate was obtained if the
first three thresholds were not all within 3 dB of each other. Overall testing time was roughly 5
h, typically spread out over five sessions on multiple days.

Fig 3 illustrates the key features of the 28 total conditions described in the remainder of this
paragraph. In the baseline conditions, unmodulated noise was presented monaurally to either
the left or right ear (Unmod-L and Unmod-R). The Sync condition was presented monaurally
to each ear as well (Sync-L and Sync-R). For each Async monaural and dichotic condition
(Async-L, Async-R and Async-D, respectively), stimuli were processed into 2, 4, 8, or 16 bands
for a total of twelve Async test conditions. Additionally, there were two control conditions for
the Async-D conditions. The first set of control conditions presented the Async-D masker
(with 2, 4, 8, or 16 bands) but included only half of the speech bands: in Async-D-EVEN, the
even-numbered speech bands were presented to the right ear, and in Async-D-ODD, the odd-
numbered speech bands were presented to the left ear. These control conditions were intended
to reveal whether performance in the Async-D conditions could be accounted for solely by
either the even or odd speech bands alone. By including the masker in both ears but speech in
only one ear, we were also able to test the possibility that contralateral maskers could affect per-
formance. Two additional control conditions were included to assess masking in the Async-D
condition from a single ear. In the Async-L-ODD and Async-L-EVEN conditions, only the
odd-numbered or even-numbered frequency bands were presented to the left ear, respectively
(the right-ear conditions were also tested but are not depicted in Fig 3). These conditions were
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only run using 8 band-pass filters (i.e., 4 bands per ear). All conditions were tested for the HI
and NH groups, whereas the NHSL group was tested only on conditions with 4 or 8 bands.

Data analysis
Although we tested monaural conditions in both left and right ears, the performance obtained
from each of the two ears was very closely matched in both the NH or HI groups. For example,
the absolute value of the difference in SRTs for the Unmod-L and Unmod-R conditions was
(on average) 0.8 dB for NH listeners and 1.2 dB for HI listeners. Given the similarity across
ears, data were analyzed after taking the average of the left and right ear SRTs. The resulting
values are identified with an ‘M’ (e.g., Unmod-M) to indicate monaural presentation. More-
over, reporting of data in the control conditions was limited to the best-case performance. For
instance, on a subject-by-subject basis, the better threshold in either the Async-D-ODD or
Async-D-EVEN was the only dichotic control threshold used to assess the performance on
control conditions. The better of the two dichotic control conditions is reported as Control-D,
and the better of the monaural control conditions is reported as Control-M. We used the lower
(better) of the two control thresholds to evaluate performance in the primary Async conditions
because it would provide the most conservative measure of integration when all bands were
available. Additionally, this simplification mitigates effects related to subtle asymmetries in
hearing between ears.

Data in each test condition were submitted to a Shapiro-Wilk test of normality. Significant
values were obtained in only two cases: the 16-band, monaural Async condition for the NH
group (p = 0.001) and the 8-band, dichotic Async condition for the NHSL group (p = 0.01). It
was decided to conduct parametric analyses despite evidence of non-normality in these two
conditions due to simplicity and ease of interpretation.

Fig 3. Schematics of monaural and dichotic masking conditions.Primary conditions are represented on
the top row, and control conditions are shown below. Only left-ear (L) schematics are visually depicted for
monaural conditions, but right (R) ear conditions were also tested. As the legend indicates, each condition is
represented as a 2-by-2 box in which the left and right columns represent stimulation of the left and right ears,
respectively, and the top and bottom rows represent the speech and noise stimuli, respectively. In each box,
frequency from 0.1 to 10 kHz is represented vertically, and a time span of 200 ms is represented horizontally.
Speech is represented via spectrogram, and noise is represented in black. Amplitude modulation is performed
at a rate of 10 Hz, and frequency bands are equally spaced on a logarithmic scale. The order of the primary
conditions in the top row is an indication of the expected ranking in thresholds, with the worst performance
starting on the left, with the Unmod-L and Unmod-R conditions, and the best performance on the right, with the
Sync-L and Sync-R conditions. The numbers of bands tested per condition are given below each condition
schematic.

doi:10.1371/journal.pone.0154920.g003
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Results

Hearing-impaired listener thresholds
Mean SRTs for the HI listeners are presented in Table 2 (top) for all primary conditions and
the better of the control conditions. To measure the ability to glimpse speech in a fluctuating
masker, data were analyzed in terms of masking release, quantified as the difference in SRT
between a condition with modulated noise and the Unmod-M condition. Fig 4 (left panel)
shows masking release (in dB) for the average of the monaural Async conditions (Async-M),
the dichotic condition (Async-D), the average of the Sync conditions (Sync-M), and better of
the Async-D control conditions (Control-D), expressed relative to the SRT for the Unmod-M
reference value. Error bars show one standard error of the mean, and symbols indicate the
masker condition, as defined in the legend. The shaded region at the bottom of the figure indi-
cates the range of values that can be accounted for by the fact that modulation reduces the
overall masker level by 3.2 dB. The masking release for HI listeners was greatest for Sync-M
(average of 8.0 dB) and for Async-D (ranging from 6.0 to 9.4 dB), but it was consistently
smaller for Async-M (ranging from 2.4 to 5.9 dB). Masking release was evaluated with single-
sample one-tailed t-tests, with a reference of 3.2 dB (the reduction in masker level associated
with modulation). Masking release was greater than 3.2 dB for all four Async-D conditions and
for the 2-band Async-M condition (p< 0.05), but not for the other Async-M conditions
(p� 0.421). A two-way repeated-measures ANOVA was performed to compare performance

Table 2. Mean speech recognition thresholds (in dB SNR) for each primary test condition and the better of the control conditions.

HI Number of Bands

2 4 8 16

Unmod-M 0.3 (0.5)

Sync-M -7.7 (1.2)

Async-M -5.6 (0.9) -3.0 (0.5) -2.1 (0.5) -2.9 (0.4)

Async-D -9.1 (1.3) -6.0 (1.4) -5.7 (1.2) -7.1 (1.0)

Control-D -2.8 (1.8) -2.4 (0.7) -1.5 (0.6) -1.4 (0.8)

Control-M -5.4 (1.4)

NH Number of Bands

2 4 8 16

Unmod-M -0.3 (0.6)

Sync-M -25.5 (1.5)

Async-M -17.8 (1.3) -13.0 (0.6) -4.7 (1.2) -4.1 (0.8)

Async-D -24.9 (1.7) -20.8 (1.8) -20.1 (1.7) -18.9 (1.0)

Control-D -19.0 (1.4) -10.6 (1.8) -10.7 (1.1) -10.4 (1.7)

Control-M -14.7 (1.5)

NHSL Number of Bands

2 4 8 16

Unmod-M -2.2 (0.6)

Sync-M -12.4 (1.1)

Async-M -9.6 (1.1) -5.3 (1.1)

Async-D -11.6 (1.3) -10.0 (1.6)

Control-D -4.0 (1.4) -3.3 (1.6)

HI, hearing-impaired; NH, normal-hearing; NHSL, normal-hearing with equivalent sensation level; Unmod-M, monaural unmodulated masker; Sync-M,

monaural synchronously-modulated masker; Async-M, monaural asynchronously-modulated masker; Async-D, dichotic asynchronously-modulated

masker; Control-M, monaural controls; Control-D, dichotic controls

doi:10.1371/journal.pone.0154920.t002
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in the Async-D and Async-M conditions, with two levels of condition and four levels of band
number. This analysis yielded a main effect of condition (F1,8 = 10.2, p = 0.013), a main effect
of the number of bands (F3, 24 = 15.7, p< 0.001), but no interaction (F3, 24 = 0.43, p = 0.73).
Simple main effects testing was performed to compare masking release in the Async-D to the
Async-M conditions; in all cases more masking release was observed in the dichotic than the
monaural presentation condition (p< 0.05, with Bonferroni correction), as was the case for
NH listeners in the previous study [24].

Normal-hearing listeners–Equal Intensity
Mean SRTs for NH listeners tested at 85 dB SPL are presented in Table 2 (middle) for all pri-
mary test conditions and the better dichotic control conditions. Fig 4 (middle panel) shows the
mean masking release (in dB) of the NH group for the Async-M, Async-D, Sync-M, and Con-
trol-D, measured relative to the SRT for the Unmod-M reference. Error bars show one stan-
dard error of the mean, and symbols indicate the masker condition, as defined in the legend.
The masking release for NH listeners was greatest for Sync-M (average of 25.3 dB), intermedi-
ate for Async-D (ranging from 18.6 to 24.6 dB), and least for Async-M (ranging from 3.9 to
17.5 dB), with some values in this last condition being consistent with a reduction in overall
masker level (in contrast to glimpsing). Masking release was significantly greater than 3.2 dB
for all modulated masker conditions (p< 0.001) in all Async-M and Async-D conditions
except the Async-M-8 condition (p = 0.090) and the Async-M-16 condition (p = 0.211). A two-
way repeated-measures ANOVA was performed to compare performance in Async-D and
Async-M, with two levels of condition and four levels of band number. This analysis yielded a
main effect of condition (F1,6 = 108.8, p< 0.001), a main effect of the number of bands (F3,18 =
64.5, p< 0.001), and an interaction (F3,18 = 15.1, p< 0.001). The interaction is explained by
the greater separation between masking release observed in the different conditions as the

Fig 4. Masking release relative to unmodulated noise.Mean masking release is plotted for modulated noise conditions relative to the
unmodulated condition for hearing-impaired (HI; left panel) normal controls with stimulus presentation at either the same intensity (NH; middle panel)
or same sensation level (NHSL; right panel). The difference in mean thresholds relative to the Unmod-M condition at 2, 4, 8, and 16 bands are plotted
for the monaural asynchronous condition (Async-M; circles), the dichotic asynchronous condition (Async-D; triangles), the better of the dichotic
control conditions (Control-D; bowties), and the mean of the synchronous conditions (Sync-M; dashed line). Error bars indicate standard error of the
mean (n = 9 for HI group; n = 7 for NH group; n = 8 for NHSL group). The shaded region at the bottom of each panel indicates the range over which
masking release might be accounted for by reductions in masker level associated with amplitude modulation (3.2 dB).

doi:10.1371/journal.pone.0154920.g004
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band number increased. Simple main effects testing was performed to compare masking release
in the Async-D to the Async-M conditions; in all cases better performance was observed in the
dichotic than the monaural presentation condition (p� 0.005, with Bonferroni correction).

Normal-hearing listeners–Equal sensation level
Mean SRTs for NHSL listeners tested at 55 dB SPL are presented in Table 2 (bottom). Fig 4
(right panel) shows the mean masking release (in dB) of the NHSL group for the Async-M,
Async-D, Sync-M, and Control-D, measured relative to the SRT for the Unmod-M reference.
Error bars show one standard error of the mean, and symbols indicate the masker condition, as
defined in the legend. The masking release for NHSL listeners was greatest for Sync-M (average
of 10.2 dB), intermediate for Async-D (4 bands: 9.3 dB; 8 bands: 7.7 dB), and least for Async-M
(4 bands: 7.4 dB; 8 bands: 3.1 dB). Masking release was significantly greater than 3.2 dB for all
modulated masker conditions (p< 0.01) except the Async-M-8 condition (p = 0.85). A two-
way repeated-measures ANOVA was performed to compare performance in Async-D and
Async-M, with two levels of condition and two levels of band number. This analysis yielded a
main effect of condition (F1,7 = 34.0, p = 0.001), a main effect of the number of bands (F1,7 =
186.8, p< 0.001), and an interaction (F1,7 = 7.9, p< 0.05). As before with the NH group, the
interaction is explained by the greater separation between masking release observed in the dif-
ferent conditions as the band number increased from 4 to 8 bands. Moreover, post-hoc testing
showed greater masking release in the dichotic than the monaural presentation for both 4 and
8 bands (p< 0.005, with Bonferroni correction).

Between-group analyses
Comparisons at same intensity. The SRTs in the Unmod-M case were submitted to a

one-way ANOVA. This analysis showed no significant difference between the NH and HI lis-
teners (F1,14 = 0.53, p = 0.48), which indicated that at an overall presentation level of 85 dB
SPL, hearing impairment did not reliably affect speech recognition in steady noise. It is evident
from Fig 4, however, that NH listeners had greater masking release in most modulated-noise
conditions compared to the HI group. A one-way ANOVA for Sync-M masking release indi-
cated that the difference was significant (F1,14 = 90.55, p< 0.001). With respect to the Async
noise conditions, masking release data were submitted to a three-way ANOVA with two levels
of presentation type (dichotic and monaural), four levels of number of bands (2, 4, 8, and 16),
and two levels of listener group (NH and HI). This analysis showed significant main effects of
presentation type (F1,14 = 87.4, p< 0.001), number of bands (F3,42 = 77.9, p< 0.001), and lis-
tener group (F1,14] = 83.3, p< 0.001). There were also significant interactions between condi-
tion and band number (F3,42 = 12.4, p< 0.001), between condition and group (F1,14 = 23.6,
p< 0.001), and between band number and group (F3,42 = 27.7, p< 0.001). Lastly, the three-
way interaction was significant (F3,42 = 8.8, p< 0.001). Because the three-way interaction was
significant, the other interactions and significant main effects should be interpreted with cau-
tion. The significant three-way interaction is best explained by a large and relatively constant
difference between groups for the Async-D conditions, yet in the Async-M conditions, the dif-
ference between NH and HI listeners was large for the 2 and 4 band numbers and vanishingly
small by 16 bands. Because modulation caused a drop in overall intensity of the masker by 3.2
dB, the Async-M thresholds probably did not reflect glimpsing for 4, 8, and 16 bands in the HI
listeners, or for 8 and 16 bands for the NH listeners. From Fig 4, we can also see that while NH
listeners tended to have less masking release in both noise conditions as the number of bands
increased, HI listeners showed relatively consistent and low masking release for all numbers of
bands. The absence of an effect of band number in the HI data may be influenced by the
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compressed range of thresholds, including a relatively small peak masking release for HI listen-
ers in the Sync-M condition. This final point can be addressed by comparing data for HI and
NH listeners at similar sensation levels.

Comparisons at equivalent sensation level. For the NHSL group, average threshold in
the baseline, Unmod-M condition was -2.2 dB SNR; that value was significantly lower than
Unmod-M threshold for the HI group (F1,15 = 11.7, p < 0.005). The NHSL and HI masking
release data were submitted to a three-way ANOVA with two levels of presentation type
(dichotic and monaural), two levels of number of bands (4 and 8), and two levels of listener
group (NHSL and HI). This analysis showed significant main effects of condition (F1,15 =
19.4, p = 0.001), number of bands (F1,15 = 35.5, p< 0.001), and listener group (F1,15 = 4.63,
p< 0.05). There were also significant interactions between condition and band number
(F1,15 = 5.0, p < 0.05) and between band number and group (F1,15 = 15.3, p = 0.001). There
was no significant interaction between group and condition (p = 0.97), nor was there a signif-
icant three-way interaction (p = 0.21). The interaction between condition and band number
appears to be explained by a greater rate of reduction in masking release from 4 to 8 bands in
the monaural condition relative to the dichotic condition. The interaction between band
number and group is apparent in the steeper decline in masking release from 4 to 8 bands for
the NHSL group than the HI group.

Masking release data from each condition, including the controls and Sync-M conditions,
were submitted to one-way ANOVAs comparing the NHSL and HI groups. The only significant
difference between groups was in the 4-band Async-M condition (F1,15 = 16.8, p = 0.001).
Inspection of each panel of Fig 4 shows that as the number of bands increases, masking release
in the Async-M condition approaches floor at some point. Even when matched for sensation
level, performance at floor occurs at a lower number of bands (4) in the HI group than in the
NHSL group, where floor performance is not reached until 8 bands.

Comparisons of dichotic advantage. The differences in masking release between Async-
D and Async-M conditions–referred to as dichotic advantage–are presented in Fig 5 for NH
(black bars) and HI (shaded bars) listeners. The dichotic advantage was between 7.1 and 15.3
dB for the NH group, and between 2.9 and 4.2 dB for the HI group. A two-way ANOVA with
two levels of group and four levels of number of bands resulted in a main effect of group
(F1,14 = 23.5, p < 0.001), a main effect of number of bands (F3,42 = 12.4, p < 0.001), and a sig-
nificant interaction (F3,42 = 8.8, p< 0.001). Simple main effects indicate that NH listeners
had greater dichotic advantage than those with hearing loss for 4 bands (p < 0.05), 8 bands
(p < 0.001) and 16 bands (p< 0.001), but not for 2 bands (p = 0.096). This is due to the fact
that the dichotic advantage increased with number of bands for the NH group, but did not
increase as much (if at all) for the HI group. Again, it is possible that the magnitudes of dif-
ferences across conditions in the HI listeners are limited due to their smaller maximum
masking release in the synchronous modulation condition. This was possible to assess from
the NHSL group data, in which masking release in the Sync-M condition was more compara-
ble between the listener groups. Dichotic advantage was analyzed for the NHSL and HI
groups by submitting data to a two-way ANOVA with factors of group and number of bands.
Although there was a significant main effect of number of bands (F1, 15 = 5.0, p < 0.05), there
was no significant effect of group or interaction between group and number of bands. The
lack of an interaction is particularly interesting in light of the fact that HI listeners performed
more poorly than the NHSL group in the 4-band, Async-M condition. This reveals that
although HI listeners had more difficulty glimpsing speech in the presence of neighboring
noise bands, the degree of benefit they received from dichotic listening was comparable to
the NH listeners tested at a comparable sensation levels.
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Evaluation of spectro-temporal integration
Control measures taken in the study were useful in assessing the possibility that a listener was
attending just to a subset of bands–either the even or the odd bands–in the Async conditions,
thereby not actually integrating across frequency and time. Performance in the Async-D condi-
tions was uniformly better than either Async-D-ODD or Async-D-EVEN control conditions
for both groups. The difference in SRTs between the Async-D condition and the better of the
two control conditions ranged from 5.9 to 10.2 dB for NH subjects and from 3.5 to 6.3 dB for
HI subjects, depending on the number of bands. This result supports the interpretation that
speech perception in the Async-D condition was not based on cues present in either subset of
bands presented to a single ear, but rather relied on cues distributed across ears.

Recall that in the Async-D-EVEN and Async-D-ODD conditions, the noise-only ear
received bands of noise that were modulated out-of-phase relative to the masker modulation in
the ear presented with the speech signal. We compared the Control-D and Control-M mea-
sures at 8 bands to assess the effect of including asynchronously modulated masker bands con-
tralateral to the speech-plus-noise stimulus. Masking release in the monaural control
conditions was 3.5 dB greater than in the dichotic control conditions for NH listeners; this

Fig 5. The effect of hearing loss on dichotic benefit.Dichotic benefit (i.e., the difference between Async-D and Async-M
conditions) for hearing-impaired (HI) and normal hearing controls (NH and NHSL). Error bars indicate one standard deviation.
Whereas the dichotic advantage increased significantly for NH listeners as band number increased, HI and NHSL listeners received
similar benefit at all band numbers (NHSL group was only tested at 4 and 8 bands). Significant differences between groups are
indicated by an asterisk (p < 0.05) or two asterisks (p < 0.001).

doi:10.1371/journal.pone.0154920.g005
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difference was 4.0 dB for HI listeners. From these results, it appears that having a modulated
masker in non-overlapping frequency regions in one ear can mask speech in the other ear. The
across-ear masking indicated by the comparison between the monaural and dichotic control
conditions may help explain why listeners do not obtain as much release from masking in the
Async-D conditions as they do in the Sync condition. That is, although the effects of masking
spread have been reduced in the Async-D condition, there appears to be some other factor lim-
iting performance in the dichotic condition. One possibility is that a contralateral masker
affects perceptual weighting based upon masker modulation phase and listening in the dips
[41]. Because the masker modulation phase in the contralateral ear was antiphasic with respect
to the modulation in the speech ear, it is possible that the contralateral masker resulted in “mis-
cuing” that blunted the benefit of improved SNR associated with masker dips in the speech ear.

Discussion

Factors contributing to reduced masking release in HI listeners
Effect of audibility. Overall, HI listeners in the present study had less masking release

than the NH group. Data from the NHSL group provided some indication that much of the dif-
ference between HI and NH listeners could be attributed to audibility. Previous studies have
shown that HI listeners benefit less from masker amplitude modulation than NH listeners
when stimuli are presented at equal levels [17, 42–45], especially for single syllable stimuli [46].
Although some of these results can be explained by reduced audibility in the masker dips for
low-level speech cues, it has been suggested that other contributors are poor temporal resolu-
tion [10, 46] or poor frequency resolution [14, 17]. In the equivalent-intensity configuration,
overall levels were fixed at 85 dB SPL; however, speech signals could fall well below that in
some conditions, and low-level speech cues can be very important for identification [47]. For
example, the target speech is approximately 60 dB SPL at -25 dB SNR, the approximate best
SRT obtained in NH listeners; while a 60-dB-SPL target would be detectable in quiet for all HI
listeners tested, some of the low-level cues would likely be inaudible, limiting those listeners’
ability to glimpse speech in the modulated maskers.

Another factor to consider when comparing masking release between listening groups is the
threshold difference in the reference condition. Generally, NH listeners achieve larger masking
release when the baseline SNR is more negative [48], which is related to the performance inten-
sity function of speech perception in noise [7]. The performance-intensity function indicates
how much change in speech recognition is associated with a change in level–at medium levels,
small changes in level will lead to large performance differences, whereas at low and high levels,
small changes in level do not affect performance as much. Whereas numerous studies have
shown that HI listeners are less able to benefit from the introduction of masker fluctuation
compared to NH listeners [10, 17, 42], Bernstein and Grant [7] note that these particular stud-
ies were undermined by a confound between group differences in the baseline SNR. In the
present study, baseline SNRs were not found to be significantly different between NH and HI
groups, so this issue was less of a concern. The lack of baseline SRT differences between the
NH and HI listeners is somewhat surprising because most previous studies have found elevated
masked SRTs in listeners with sensorineural hearing loss [7, 49, 50]. For elevated presentation
levels such as ours, however, NH listeners have been shown to be more closely aligned with HI
listeners in masked-speech performance [47]. This possibility is supported by the data from the
NHSL group which did differ significantly from the HI group in baseline SRT (-2.2 dB SNR and
0.3 dB SNR, respectively). However, the two groups did not consistently differ in their benefit
from masker modulation, so this is a clear divergence from previous reports. Nevertheless, we
considered two additional factors that may have contributed to the lack of a baseline SRT
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difference between HI and NH groups. First, steeply sloping hearing loss has a greater detri-
mental effect on consonant recognition than gradually sloping or flat losses [51, 52]. The HI lis-
teners in the present study had relatively flat audiograms, which would be associated with
relatively modest effects of hearing loss on masked SRTs. Second, the use of pink noise in the
present study could have affected performance. Whereas speech-spectrum noise falls off at
approximately 8 dB/octave [53], pink noise falls off at 3 dB/octave. Because pink noise is rela-
tively less effective at masking low- than high-frequency speech features, this masker could
increase listeners’ reliance on low-frequency cues. For the HI listeners in the present study, the
hearing loss was relatively mild at low frequencies, which could have played a role in their good
performance relative to NH listeners. This possibility is undermined, however, by the finding
that flat mild/moderate hearing loss reduces performance for word recognition in pink noise
[50].

Effect of frequency selectivity. Performance by all listeners was better for the asynchro-
nous modulation conditions when stimuli were presented dichotically rather than monaurally.
On average, this dichotic advantage was 7–15 dB for the NH listeners, which was even larger
than previously seen (roughly 5–8 dB benefit in [24]). One methodological difference between
studies that might account for this difference is presentation level. The current procedure pre-
sented stimuli at an overall level of 85 dB SPL (before modulation or separation of bands),
whereas the previous experiment fixed the target level at 55 dB SPL and varied the masker level
to estimate threshold. Therefore it should not be as surprising, considering that masking release
has been shown previously to be smaller at lower intensities for both the synchronously- [10]
and asynchronously-modulated maskers (e.g., Experiment 2 in [24]). Consequently, there was
no difference between HI and NHSL groups in dichotic advantage. At similar sensation levels,
HI listeners were able to integrate across spectro-temporal glimpses as well as normal-hearing
controls when negative effects of peripheral spread of masking were removed. The lone differ-
ence between HI and NHSL groups was in the 4-band, monaural Async condition. Whereas
each group performed equally poorly in the 8-band, monaural Async condition (i.e., no better
than the 3.2 dB level difference accounted for by the modulation), the HI listeners also per-
formed poorly in the 4-band case. This result was another clear indication that for these spec-
trally wide glimpsing regions, audibility alone could not account for the extent of the poor
performance by the HI group. Indeed, the poor performance of the HI listeners in the 4-band
monaural Async condition was probably due to reduced frequency selectivity. This interpreta-
tion is consistent with the finding that performance improved when the stimuli were presented
dichotically.

Possible clinical applications of dichotic listening
The results of this study have important implications for hearing aid design. In quiet settings,
most aided HI listeners with mild-to-moderate sensorineural hearing loss have minor difficulty
following a conversation. However, the same listeners often complain that it is difficult to fol-
low speech in noisy environments. Traditional hearing aids with advanced noise-reduction
processing [54] have been largely ineffective in improving speech understanding in noise. One
of the obvious factors contributing to this phenomenon is that amplification has the negative
effect of adding gain to all incoming sounds, including the unwanted noise. Therefore, supple-
mentary strategies, like dichotic presentation, could be utilized to limit the influence unwanted
noise has on speech perception.

There have been previous attempts to use dichotic presentation to improve speech identifi-
cation in hearing-aid or cochlear implants users [25–28, 55], and the current study provides
additional support for this approach. However, there could be unintended consequences of
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removing crucial binaural spatial cues, such as interaural time or level differences [29], so fur-
ther study in spatially diverse settings is still needed. Along with the support of amplification,
dichotic presentation should be considered as an appropriate strategy for improving speech-in-
noise performance.

Conclusions
Previous studies using monaural Async maskers [2, 24] showed a decrease in the ability to ben-
efit from masker modulation with increasing number of bands. One possible reason for this
was increased spread of masking effects as the band number increased. Ozmeral et al. [24]
aimed to reduce the possible deleterious effects of spread of masking by presenting neighboring
spectral bands to separate ears [25]. The result was 5-to-8-dB better SRTs across all band con-
ditions in the Async-D condition relative to the Async-M condition. The current study repli-
cated NH listener data reported by Ozmeral et al. [24], and added the HI group to determine
whether listeners with sensorineural hearing loss could also benefit from dichotic listening in
the presence of an Async masker. Because HI listeners tend to have poorer-than-normal fre-
quency selectivity [13–17], it was hypothesized that masking release would be greatly reduced
or absent in a monaural asynchronous masker, but that dichotic presentation could facilitate
masking release.

At equal presentation levels, listeners with sensorineural hearing loss had less masking
release than age-matched normal-hearing listeners for speech presented in synchronously- and
asynchronously-modulated noise. Testing at similar sensation levels between groups, however,
indicated that masking release was closely associated with overall audibility. Importantly, the
dichotic listening benefit was equivalent between HI and NHSL groups. These results are con-
sistent with an interpretation that the reduced masking release shown by the HI listeners in
monaural asynchronously-modulated noise is due to a combination of reduced audibility and
poor frequency selectivity, and that amplification along with dichotic stimulation may provide
the best outcomes for speech in spectro-temporally complex noise.
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