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Abstract: Background: Traumatic cartilage injuries predispose articulating joints to focal cartilage de-
fects and, eventually, posttraumatic osteoarthritis. Current clinical-standard imaging modalities such
as morphologic MRI fail to reliably detect cartilage trauma and to monitor associated posttraumatic
degenerative changes with oftentimes severe prognostic implications. Quantitative MRI techniques
such as T2 mapping are promising in detecting and monitoring such changes yet lack sufficient
validation in controlled basic research contexts. Material and Methods: 35 macroscopically intact
cartilage samples obtained from total joint replacements were exposed to standardized injurious
impaction with low (0.49 J, n = 14) or high (0.98 J, n = 14) energy levels and imaged before and imme-
diately, 24 h, and 72 h after impaction by T2 mapping. Contrast, homogeneity, energy, and variance
were quantified as features of texture on each T2 map. Unimpacted controls (n = 7) and histologic
assessment served as reference. Results: As a function of impaction energy and time, absolute T2
values, contrast, and variance were significantly increased, while homogeneity and energy were
significantly decreased. Conclusion: T2 mapping and texture feature analysis are sensitive diagnostic
means to detect and monitor traumatic impaction injuries of cartilage and associated posttraumatic
degenerative changes and may be used to assess cartilage after trauma to identify “cartilage at risk”.
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1. Introduction

Associated with knee symptoms and dysfunction, focal cartilage lesions are common
in the general population. Hjelle et al. reported (osteo)chondral lesions (of any type) in
61% of their patients undergoing knee arthroscopy [1]. These findings were confirmed by
other studies, too [2–4]. The tissue’s limited intrinsic healing capacity and the progressive
nature of cartilage lesions warrant additional diagnostic and therapeutic efforts to prevent
osteoarthritis (OA) and its great socioeconomic and personal disease burden.

While the aetiology of focal cartilage lesions is multifactorial, focal cartilage lesions
are often the result of trauma [5,6]: Meniscus and anterior cruciate ligament (ACL) injuries
bring about instability and predispose the joint to cartilage lesions [5]. Similar disposi-
tions are incurred by patellar dislocations. The prevalence rates of cartilage lesions in the
patellofemoral joint are 71%, 82%, and 97% in acute, recurrent, and chronic dislocators,
respectively [6]. Other aetiologic factors are fractures, soft-tissue injuries, and repetitive mi-
crotraumatizations that result in surface incongruity, altered joint kinematics, and chronic
degenerative changes, thereby predisposing to cartilage lesions, too. Consequently, post-
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traumatic OA (PTOA) accounts for nearly 12% of all cases of symptomatic OA in the
United States [7].

Due to its high soft tissue contrast and spatial resolution, non-invasiveness, and lack of
radiation, Magnetic Resonance Imaging (MRI) is clearly the most powerful diagnostic tool
of contemporary clinical medicine and the superordinate standard imaging modality for
suspected joint and cartilage disorders [8–10]. However, numerous studies have indicated
the limitations of clinical-standard morphologic MRI techniques in the detection of cartilage
lesions with variable sensitivities of 45% to 74% [11,12]. With the positive predictive value
equally variable, morphologic MRI techniques are (i) not able to reliably indicate the
presence (or absence) of cartilage lesions and (ii) particularly limited in detecting early,
potentially reversible cartilage lesions. Consequently, quantitative MRI techniques such as
T2 and T1ρ mapping have received ever-increasing scientific and clinical attention over
the last decades [13,14]. These techniques quantify biophysical tissue properties on the
compositional and ultrastructural level beyond mere morphology. Widely available on
clinical MRI scanners and conveniently acquired with an additional scan time of 5 min,
the addition of a T2 mapping sequence to a routine imaging protocol improved sensitivity
in the detection of (early) cartilage lesions [15]. T2 mapping is a robust, clinically and
scientifically well-validated, and commonly used technique to assess cartilage status [13,14].
Moreover, T2 mapping is closely associated with relevant structural and compositional
tissue features such as collagen content, collagen network organization and integrity, and
water content [16]. Consequently, a solid body of evidence has been collected that indicates
the potential of T2 mapping in evaluating posttraumatic cartilage changes [17–23].

Instead of merely quantifying T2 values of the superficial and deep cartilage zones
in a pixel-wise manner, recent approaches have relied on more comprehensive post hoc
approaches for image analysis such as texture feature analyses. During cartilage degener-
ation, collagen network integrity and proteoglycan content are lost [24]. The increasing
degrees of tissue disruption and disorganization translate to altered spatial distributions
of T2 and may be quantified as markers of heterogeneity based on textural features. In
degenerated cartilage, T2 values tend to be elevated with greater local heterogeneity [17,25]
as has been demonstrated for cartilage lesions [26], symptomatic OA and patients at risk of
developing OA [25,27,28], and after ACL injury [29].

Despite this wealth of clinical knowledge, a basic understanding of the posttraumatic
degenerative changes in cartilage and their imaging correlates is lacking. The present
study’s objective was to contribute to this understanding by bringing together intact human
articular cartilage, standardized injurious impaction loading with variable impaction
energies, and T2 mapping and post hoc texture feature analysis. To this end, (histologically
referenced) intact cartilage tissue was subject to impaction loading using a drop-tower
device as an established model for inducing posttraumatic degenerative changes [30–32],
and imaged longitudinally to study these changes as a function of time and impaction
energy, i.e., trauma severity. Our hypotheses were that (i) variable impaction energies
induce variable progressive posttraumatic degenerative changes in cartilage and that
(ii) these changes are reflected by the T2 maps and associated descriptive statistics and
texture features.

2. Materials and Methods
2.1. Cartilage Sample Preparations

Following informed consent and Institutional Ethical Review Board approval (Ethical
Committee, RWTH Aachen University, Germany, AZ EK 157/13), we obtained human ar-
ticular cartilage-bone samples from 24 patients undergoing total knee replacement surgery
at our institution (10 male, 14 female; mean age 63.4 years [range: 53–89 years]) [33–39].
Primary OA of the knee as determined radiographically and clinically was defined as the
inclusion criterion, while all forms of secondary OA as well as previous trauma and/or
surgery, and other bone and joint diseases were defined as exclusion criteria. Immediately
after intraoperative excision, cartilage-bone material was collected in sterile Dulbecco’s
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modified Eagle’s medium (DMEM) containing 100 U/mL penicillin, 100 µg/mL gen-
tamycin, and 1.25 U/mL amphotericin B (all from Gibco-BRL, Gaithersburg, MD, USA).
Subsequent preparations were carried out as before [32,37,38]. To maintain topoanatomic
consistency, only cartilage-bone material from the lateral femoral condyle was included.
Samples were cut to standard size (length × width: 15 × 15 [mm]) and any cancellous
bone was removed while preserving the subchondral lamella and keeping the surface as
plain as possible. Samples were then graded according to the Outerbridge classification
that assesses the tissue’s macroscopic appearance [40]. Only Outerbridge-grade 0 samples,
i.e., normal cartilage without softening or swelling, were included. For reference purposes,
three notches were created using a rongeur, i.e., two notches at opposing sample sides to
define the mid-sagittal imaging plane and a third notch to define an orthogonal plane. The
intersection of these planes was defined as the sample centre point (Figure 1a). Additionally,
macroscopically similar cartilage tissue immediately adjacent to the actual cartilage sample
was prepared along the mid-sagittal plane to assess baseline histologic characteristics of
the cartilage-bone material.
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transparent sample box (containing the cartilage samples, (e2)) for reproducible positioning of 
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Figure 1. Details of cartilage sample preparation and subsequent injurious impaction loading. (a) Top
view of a representative osteochondral sample. Notches at the 3 and 9 o’clock positions indicate the
mid-sagittal plane (black line), while the sample centre point is defined as the intersection of this mid-
sagittal plane and its perpendicular along the notch at the 12 o’clock position (grey dot). (b) Weights
of 1000 g (left) and 500 g (right) equipped with hook and 5 mm-tip to induce standardized injurious
impaction. (c) Metallic sample plate with flat recess to fix cartilage samples during impaction by
preventing lateral displacement. Seeming distortions are secondary to the milling process and
room lights. (d) Cylindrical drop-tower device with metallic sample plate and indications of height.
Impaction energy levels were regulated by adjustment of weight and height. Details of the assembled
measurement framework at variable magnifications (blue boxes) within the scanner’s bore. The
framework included support beams mounted on the MRI table (e1) and a transparent sample box
(containing the cartilage samples, (e2)) for reproducible positioning of sample and coil (not shown).

Before the study, minimum sample size had been projected using a dedicated on-
line tool (https://www.statstodo.com, accessed 3 February 2018). Based on comparable
studies [25,27] and assuming a statistical power of 0.9, a type-I error probability of 0.05, a
maximum inter-group difference of 0.6, and an intra-group standard deviation of 0.5, we
determined a minimum sample size of 28 (Cohen’s effect size model f2). Finally, 35 samples
were thus prepared and transferred to 12-well plates filled with DMEM and additives
as above.

2.2. Cartilage Sample Impaction

Following their preparation, cartilage samples were allocated to three groups, i.e.,
unimpacted controls (CONT, n = 7), low impact (LIMP, 0.49 J, n = 14), and high impact
(HIMP, 0.98 J, n = 14). A custom-made drop tower device was used to standardize impaction
energy levels as before [32] (Figure 1b–d). Briefly, its specifications (height 33 cm; diameter
4 cm) allowed dropping standard cylindric iron weights (500 g or 1000 g, equipped with
a 5-mm-diameter tip) from defined heights. In this study, these weights were dropped

https://www.statstodo.com
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from a height of 100 mm, thereby exposing the cartilage samples to two impaction energy
levels of 0.49 J and 0.98 J (Table 1) [32,41]. Velocity of impact (v) was determined by drop
height (h) (Equation (1)) and energy I by mass (m) and height (h) (Equation (2)), where g is
gravity-induced acceleration.

V = (2gh)1/2 (1)

E = mgh (2)

Table 1. Details as a function of impaction characteristics.

Group Mass (g) Height (mm) Velocity (m/s) Energy (J)

Low Impact (LIMP) 500 100 1.4 0.49
High Impact (HIMP) 1000 100 1.4 0.98

These two different impaction energy levels created “mild” (LIMP) and “severe”
(HIMP) structural and compositional damage in cartilage [32,41]. To ensure localized
impaction at the sample centre point without lateral displacement, a custom-made metallic
sample plate with a dedicated recess (depth: 2 mm, width × height: 16 mm) confined and
fixed the cartilage samples on all sides (Figure 1c). After impaction, the weight’s tip was
left to rest on the samples for 5 s to ensure constant compression conditions [42].

2.3. MRI Measurements

Pre- and post-impaction MRI measurements were performed on a clinical 3.0 T MRI
scanner (Achieva, Philips, Best, The Netherlands) within 6 h after sample preparation.
Serial MRI measurements were performed just before (t0) and immediately after impaction
(t1) as well as 24 h (t2) and 72 h (t3) after impaction (Figure 2).
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For reproducible positioning of cartilage samples in the MRI scanner, a validated MRI-
compatible device [39,43] was used. The device’s lower frame contained the transparent
sample box with the cartilage samples and was mounted on the patient table by means of
dedicated support beams (Figure 1e). Thus, imaging was performed close to the scanner’s
iso-centre with the sample surfaces and mid-sagittal planes parallel to the main magnetic
field B0. A modified single-channel receive-only prostate coil (BPX-40 disposable endorectal
coil, Medrad/Bayer, Germany) without the inflatable balloon tip was used for imaging
and circumferentially enclosed the sample box. Radiofrequency pulses were applied via
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the scanner’s in-built body coil. Two cartilage samples were imaged at a time using
morphologic and quantitative MRI (Table 2). Briefly, following scout views, Proton Density-
weighted sequences were acquired in the sagittal, coronal, and axial orientations. These
sequences were used to guide the T2 mapping sequence along the mid-sagittal plane as
indicated by the notches at opposite sample sides. Notably, off-the-shelve fish oil capsules
(1000 mg) were attached to the sample box for identification purposes. Total imaging time
per MRI series was 11 min 40 sec and total imaging time per sample pair was 46 min 40 s.
Measurements were carried out at room temperature, which was monitored during one
representative MRI series (20.3 ± 0.5 ◦C). After the respective MRI series, the cartilage
samples were retrieved, placed in DMEM and additives, and cultured under standard
conditions (5% CO2; 37 ◦C; humid air) in a standard incubation unit. Culture medium was
changed after each MRI series.

Table 2. Acquisition parameters of MR sequences.

Parameters T2 Map PD-Weighted

Sequence type multi-spin echo turbo-spin echo
Orientation mid-sag 1 ax, cor, sag 2

Repetition time [ms] 1500 1500–1589
Echo time [ms] n × 8.38 (n = 1–12) 11

Turbo spin echo factor [n] 12 6
Field of view [mm] 52 × 52 62 × 62

Acquisition matrix [pixels] 176 × 176 144 × 142
Reconstruction matrix [pixels] 224 × 224 256 × 256

Pixel size [mm/pixel] 0.23 × 0.23 0.24 × 0.24
Flip angle [◦] 90 90

Number of signal averages [n] 2 2
Slices [n] 1 8–24

Slice thickness [mm] 2.0 1.0
Slice gap [mm] - 0.5

Duration [min sec] 4 min 29 s 7 min 11 s 3

1 mid-sag—mid-sagittal, 2 ax—axial, cor—coronal, sag—sagittal, 3 total duration of all three sequences.

2.4. MRI Data Analysis

The T2 maps were generated in a pixel-wise manner using customized mono-exponential
fitting routines implemented in MATLAB (MatlabR2020a, Natick, MA, USA) as before [35,39].
For fitting, only echo times 2–7 (i.e., echo times < 60 ms with the exception of the first
echo to avoid artefacts secondary to stimulated echoes) were included because of the
insufficiently low signal-to-noise ratios beyond 60 ms. Cartilage samples were segmented
manually by delineating the sample outlines on a moderately T2-weighted morphologic
image (TE = 41.9 ms). To prevent partial volume effects and subsequent T2 quantification
errors, segmentation outlines were delineated conservatively, i.e., only pixels that certainly
constituted cartilage tissue were included. Besides the entire sample’s cross-section, addi-
tional regions-of-interest (ROIs) were defined by automatically dividing the samples into
the superficial and deep cartilage layers. Based on another customized MATLAB routine
and the segmentation outlines, sample height was determined along the sample’s entire
width to automatically create two equally thick layers. M.S.H. (2 years of experience in mus-
culoskeletal imaging) performed the manual segmentations that were quality checked by
S.N. (9 years of experience in musculoskeletal imaging). For each ROI, summary statistics,
i.e., means ± standard deviations, and texture variables, i.e., variance, contrast, homo-
geneity, and energy, were calculated using customized MATLAB routines based on earlier
approaches [44,45]. Information on the spatial arrangement of T2 values were derived
using gray-level co-occurrence matrices (GLCMs) for each texture feature. GLCMs serve
to tabulate the frequency with which pixel value combinations are present and may be
used to determine numerous texture features. Separate GLCMs were determined for each
texture variable with an offset of a single pixel based on vertical, horizontal, and angular
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orientations, i.e., 0◦, 45◦, 90◦, and 135◦ [45]. Of note, orientation-dependent inputs were
averaged [25]. Metrics of contrast, i.e., contrast and homogeneity, metrics of orderliness,
i.e., energy, and statistical metrics, i.e., variance, were calculated [17]:

1. Contrast assesses the extent of local variation. Cartilage areas with high contrast
values display strong contrasts, i.e., pronounced differences between the highest and
lowest T2 values.

2. Homogeneity serves as a measure of uniformity by indicating similarities between
pixels and their neighbours. Cartilage areas with mostly similar T2 values have high
homogeneity values.

3. Energy as computed based on the GLCM provides a measure of uniformity and
orderliness. Cartilage areas with high energy values display similar T2 values and
small T2 value differences in neighbouring pixels.

4. Variance is a measure of local variation around the mean. High variance values
indicate high heterogeneity and large differences in T2 values, i.e., variation from
their mean.

2.5. Histologic Reference Analysis

Following the last MRI series at t3, the cartilage samples and the adjacent cartilage
tissue underwent standard histological work-up [32,46]. Samples and adjacent tissue
were simultaneously decalcified and fixed in Ossa fixona (Diagonal, Muenster, Germany),
sectioned along the mid-sagittal plane (or parallel to it), embedded in paraffin, cut to 5-µm
sections, and stained with haematoxylin/eosin and Safranin O. Histologic evaluation,
including documentation, was performed on a standard light microscope (Leica DM/LM-P,
Wetzlar, Germany).

Baseline cartilage status of the adjacent cartilage tissue was assessed semi-quantitatively
according to the Mankin classification of cartilage degeneration [47]. Two investigators,
i.e., M.S.H. and S.N. with 3 and 11 years of experience in musculoskeletal histopathology,
individually assessed each tissue specimen. The Mankin classification assesses tissue
structure (score, 0–6), cellularity (score, 0–3), proteoglycan staining intensity (score, 0–4),
and tidemark integrity (score, 0–1). Based on each tissue feature’s individual score, the
Mankin sum score (MSS) gives the cumulative score of degeneration. Ranging from
0–14, lower or higher MSSs indicate less or more severe signs of histologic degeneration,
respectively. In case of differing scores, respective histologic sections were discussed until
consensus was reached. Of note, only grossly intact cartilage samples with MSS of 0–4
were included.

Following exposure to impaction or control conditions, cartilage samples were as-
sessed semi-quantitatively based on the Mankin classification. Posttraumatic cartilage
changes such as alterations in tissue structure, i.e., clefts and other signs of surface disinte-
gration, as well as composition, i.e., Safranin O de-staining, were noted.

2.6. Statistical Analysis

Statistical analysis was performed by MSH and SN using GraphPad Prism Software
(Version 8.0.2, San Diego, CA, USA). Not assuming normal distributions, absolute T2
values and texture features were compared as a function of time (i.e., between t0, t1, t2,
and t3) using Friedman’s test followed by Dunn’s post hoc test. Accordingly, relative
changes for each measure (∆x) at tx were determined in reference to t0 and calculated using
(Equation (3)):

∆x = ((T2tx/T2t0) − 1) × 100 [%] (3)

The different impaction energy levels and control conditions at tx were comparatively
evaluated using the Kruskal–Wallis test. Group-wise, one-way ANOVA followed by
Tukey’s post hoc tests (wherever appropriate) were used to compare relative changes ∆x as
well as histological changes of cartilage structure and proteoglycan content. Results are
displayed as mean ± standard deviation. Due to this study’s exploratory character and
the large number of comparisons involved, the level of significance was set to p ≤ 0.01 to
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reduce the number of statistically significant, yet clinically and scientifically (most likely)
insignificant findings.

3. Results

All 35 samples underwent full MRI and histologic reference evaluation.

3.1. Macroscopic Reference Evaluation

Macroscopic evaluation revealed no fracturing of the subchondral bone lamella in
any sample. However, considerable dents corresponding to the metallic tip’s geometry
were observed at the impaction site following HIMP exposure (11/14 samples) (Figure 3a),
while no such marks were observed after LIMP exposure or in controls.
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Figure 3. Representative macroscopic and histologic findings after injurious impaction of cartilage
samples. (a) Representative cartilage sample positioned in metallic sample plate before (a1) and
after (a2) impaction at high energy (HIMP). Visual inspection revealed clearly visible dent at the area
of impaction. (b) Histologically grossly intact adjacent cartilage tissue with slight hypercellularity
(Mankin sum score 2), but otherwise normal, indicates gross cartilage integrity at baseline. (c) Carti-
lage sample after exposure to low-energy impaction (LIMP) with a single cleft at the tissue surface,
yet without any other histologic signs of posttraumatic cartilage degeneration. (d) Cartilage sample
after HIMP exposure with distinct surface clefts marking the area of impaction and adjacent surface
irregularities. Haematoxylin/eosin staining. Scale bars indicate 1 mm.

3.2. Histologic Reference Evaluation

Histologic assessment revealed that adjacent cartilage tissue was grossly intact as
indicated by mean MSSs of 1.8 ± 0.8 (range, 0–3). Baseline cartilage status was dominated
by slight signs of histologic degeneration such as surface fibrillation, focal hypercellularity
or slight Safranin-O de-staining, translating to MSSs of 1 or 2 in most tissue specimens.

Cartilage samples harvested after impaction and/or standard incubation revealed
impaction energy level-associated tissue damage. Even though not significant, surface
disintegration was higher with higher impaction energy levels (Table 3). Similarly, non-
significant differences were observed for Safranin O de-staining that tended to be more
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severe after HIMP than LIMP exposure. Qualitatively, Figure 3b–d gives representative
histologic findings.

Table 3. Histologic changes in cartilage samples 72 h after impaction (LIMP, HIMP) or incubation
under control conditions. Based on the Mankin classification [47], surface integrity (score 0–6) and
proteoglycan staining intensity (score 0–4) scores are indicated as absolute changes relative to baseline.
Group-wise differences were assessed using one-way ANOVA tests. CONT—controls, LIMP—low
impaction energy, HIMP—high impaction energy.

Histologic Cartilage Change CONT LIMP HIMP p-Value

Surface Integrity 0.14 ± 0.34 0.43 ± 0.82 1.14 ± 1.4 0.100
Proteoglycan Staining Intensity 0.14 ± 1.25 0.64 ± 1.17 0.93 ± 1.03 0.163

3.3. MRI Data—Descriptive Statistics

For T2, global and zonal changes were found as a function of time and impaction
energy level (Table 4).

Table 4. Mean absolute T2 values as a function of region-of-interest, time point, and impaction energy level. T2 values are
given as means ± standard deviation [ms] for the entire cartilage sample as well as the respective superficial and deep tissue
layers. Longitudinal (time-related) differences in T2 values were assessed by the Friedman test and respective p-values
are organized in columns and indicated by (§). Cross-sectional (group-related) differences in T2 values at individual time
points were assessed using the Kruskal–Wallis test and respective p-values are organized in lines and indicated by (‡). Post
hoc test details are given in Supplementary Table S1. CONT—controls, LIMP—low-energy impaction, HIMP—high-energy
impaction. Significant differences are indicated in bold type.

Region-of-Interest Group
Time

p-Value (§)
t0 t1 t2 t3

Entire Cartilage Sample

CONT 33.3 ± 5.1 34.4 ± 6.1 35.5 ± 6.2 35.1 ± 7.4 0.093

LIMP 32.0 ± 2.4 33.8 ± 3.6 38.7 ± 4.5 40.3 ± 5.2 <0.001

HIMP 35.5 ± 5.1 40.8 ± 5.9 45.4 ± 8.3 55.9 ± 8.3 <0.001

p-value (‡) 0.234 0.016 0.019 0.002

Superficial Layer

CONT 37.0 ± 6.4 39.1 ± 7.6 39.5 ± 7.2 39.0 ± 8.8 0.180

LIMP 38.2 ± 4.3 42.4 ± 5.2 46.3 ± 4.4 47.5 ± 6.1 <0.001

HIMP 42.9 ± 5.8 48.8 ± 6.3 54.5 ± 9.7 67.2 ± 19.7 <0.001

p-value (‡) 0.026 0.008 0.001 0.001

Deep Layer

CONT 29.4 ± 5.1 29.4 ± 5.1 31.4 ± 6.2 31.1 ± 6.6 0.18

LIMP 26.1 ± 2.8 28.1 ± 3.8 32.8 ± 7.7 33.9 ± 6.9 <0.001

HIMP 27.7 ± 6.0 32.6 ± 7.1 36.2 ± 9.2 44.4 ± 11.4 <0.001

p-value (‡) 0.247 0.008 0.557 0.011

In controls, T2 values remained largely constant even though, by trend, a slight
and non-significant progressive increase was noted for all ROIs, from 33.3 ± 5.1 ms (t0) to
35.1 ± 7.4 ms (t3) (p = 0.093, entire cartilage sample), from 37.0 ± 6.4 ms (t0) to 39.0 ± 8.8 ms
(t3) (p = 0.180, superficial layer), and from 29.4 ± 5.1 ms (t0) to 31.1 ± 6.6 ms (t3) (p = 0.180,
deep layer). After LIMP exposure, T2 values were significantly increased in all ROIs,
from 32.0 ± 2.4 ms (t0) to 40.3 ± 5.2 ms (t3) (p < 0.001, entire cartilage sample), from
38.2 ± 4.3 ms (t0) to 47.5 ± 6.1 ms (t3) (p < 0.001, superficial layer), and from 26.1 ± 2.8 ms
(t0) to 33.9 ± 6.9 ms (t3) (p < 0.001, deep layer). Post hoc analysis revealed these differ-
ences to be significant between t0 and t2 and between t0 and t3 (Supplementary Table S1).
Similarly, after HIMP exposure, T2 values were significantly increased in all ROIs, too,
from 35.5 ± 5.1 ms (t0) to 55.9 ± 8.3 ms (t3) (p < 0.001, entire cartilage sample), from
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42.9 ± 5.8 ms (t0) to 67.2 ± 19.7 ms (t3) (p < 0.001, superficial layer), and from 27.7 ± 6.0 ms
(t0) to 44.4 ± 11.4 ms (t3) (p < 0.001, deep layer). Significant post hoc differences were
found between t0 and t1 (except for deep layer), t0 and t2, and t0 and t3 (Supplementary
Table S1).

At individual time points, group-wise, i.e., impaction energy-related, differences in
T2 were significant primarily in the superficial layers at t1, t2, and t3 (Table 4). Post hoc
analysis revealed the differences to be significant when comparing controls and HIMP-
exposed samples, indicating significantly higher T2 values after HIMP exposure than in
controls (Supplementary Table S2). Relative changes of T2 values confirmed these findings
(Table 5). When considering the entire cartilage sample, the magnitude of relative changes
gradually increased as a function of time, i.e., ∆1 < ∆3, and impaction energy level, i.e.,
CONT < LIMP < HIMP. Statistical analysis revealed these changes to be significant for ∆1
and ∆3 only, while ∆2 tended towards significance in all ROIs. Post hoc analysis indicated
that the differences were significant only for the CONT vs. HIMP comparison, while CONT
vs. LIMP or LIMP vs. HIMP were not significant (Supplementary Table S3).

Table 5. Relative changes of T2 values as a function of region-of-interest, time point, and impaction
energy level. Relative changes (∆) were calculated as ∆x = ((T2tx/T2t0) − 1) × 100 [%] for the time
points t1, t2, and t3. For each time point, ∆ values were compared in a group-wise manner based on
one-way ANOVA tests. Significant differences are indicated in bold type. For an explanation of the
abbreviations please refer to Table 4.

Region of Interest Group ∆1 ∆2 ∆3

Entire Cartilage Sample

CONT 3.0 ± 3.4 6.7 ± 5.4 4.7 ± 6.5

LIMP 9.5 ± 3.5 23.7 ± 17.6 27.1 ± 16.4

HIMP 15.3 ± 8.3 28.6 ± 16.1 59.2 ± 42.1

p-value <0.001 0.012 <0.001

Superficial Layer

CONT 5.5 ± 5.1 6.8 ± 6.3 4.9 ± 8.8

LIMP 10.9 ± 11.0 22.5 ± 23.9 25.1 ± 27.2

HIMP 14.0 ± 14.2 27.6 ± 29.3 57.1 ± 61.5

p-value 0.002 0.041 0.003

Deep Layer

CONT 0.4 ± 5.9 6.7 ± 9.0 −1.2 ± 5.1

LIMP 7.8 ± 7.7 25.4 ± 27.0 29.9 ± 31.4

HIMP 18.4 ± 18.0 30.9 ± 32.3 63.6 ± 67.1

p-value 0.013 0.019 <0.001

3.4. MRI Data—Texture Feature Analysis

Radiomic texture features were significantly different only after HIMP exposure, and
not in controls or after LIMP exposure (Table 6). Metrics of contrast displayed distinct
changes. Contrast values were undulating in controls, while after LIMP exposure, samples’
contrast values tended to increase from 0.25 ± 0.17 (t0) to 0.28 ± 0.11 (t3) (p = 0.270). After
HIMP exposure, however, contrast values were significantly increased from 0.24 ± 0.09
(t0) to 0.40 ± 0.17 (t3) (p < 0.001). Opposite observations were made for homogeneity that
remained relatively constant in controls (p = 0.615) and tended to decrease in LIMP-exposed
samples (p = 0.166) but decreased significantly from 0.88 ± 0.05 (t0) to 0.82 ± 0.06 (t3)
(p < 0.001) in HIMP-exposed samples. Energy as a metric of orderliness was characterized
by distinct changes, too. While energy was undulating in controls (p = 0.510), it decreased
considerably from 0.43 ± 0.20 (t0) to 0.30 ± 0.07 (t3) (p = 0.016) and from 0.35 ± 0.13 (t0) to
0.24 ± 0.16 (t3) (p = 0.006) after LIMP and HIMP exposure, respectively, thereby tending
towards (LIMP) or reaching statistical significance (HIMP). Variance as a statistical metric
was undulating, too, in controls, while it underwent moderate, yet non-significant increases
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from 111.0 ± 94.9 (t0) to 143.2 ± 69.4 (t3) (p = 0.015) following LIMP exposure and strong
and significant increases from 118.3 ± 79.9 (t0) to 311.4 ± 264.8 (t3) (p = 0.005) following
HIMP exposure. Group-wise comparisons at individual time points revealed no significant
differences at t0, indicating largely similar baseline texture feature and sample homogeneity
prior to exposure. For contrast, homogeneity, and energy, significant group-wise differences
were found at t2 and t3, while for variance, significant differences were only observed at t3.

Table 6. Absolute values of radiomic texture features as a function of impaction energy level and time point. Values are
given as means ± standard deviation for the entire cartilage samples. Please see Table 4 for details on table organization,
statistical analysis, and abbreviations. P-values of time-related differences in T2 values (Friedman test) are organized in
columns (§) and p-values of group-related differences in T2 values (Kruskal–Wallis test) are organized in lines (‡). Significant
differences are indicated in bold type.

Texture Feature Class Texture Feature Groups
Time p-Value (§)

t0 t1 t2 t3

Metrics of Contrast

Contrast

CONT 0.18 ± 0.07 0.19 ± 0.06 0.18 ± 0.04 0.17 ± 0.06 0.615

LIMP 0.25 ± 0.17 0.27 ± 0.14 0.26 ± 0.08 0.28 ± 0.11 0.270

HIMP 0.24 ± 0.09 0.30 ± 0.09 0.30 ± 0.09 0.40 ± 0.17 <0.001

p-value (‡) 0.312 0.06 0.003 0.001

Homogeneity

CONT 0.91 ± 0.03 0.91 ± 0.02 0.91 ± 0.02 0.91 ± 0.03 0.615

LIMP 0.89 ± 0.05 0.87 ± 0.05 0.87 ± 0.03 0.87 ± 0.04 0.166

HIMP 0.88 ± 0.05 0.86 ± 0.04 0.86 ± 0.03 0.82 ± 0.06 0.001

p>-value (‡) 0.256 0.074 0.003 0.001

Metric of Orderliness Energy

CONT 0.49 ± 0.19 0.46 ± 0.17 0.46 ± 0.11 0.48 ± 0.15 0.510

LIMP 0.43 ± 0.20 0.36 ± 0.16 0.32 ± 0.07 0.30 ± 0.07 0.016

HIMP 0.35 ± 0.13 0.30 ± 0.10 0.28 ± 0.10 0.24 ± 0.16 0.006

p-value (‡) 0.225 0.078 0.004 0.002

Statistical Metric Variance

CONT 69.5 ± 28.7 77.4 ± 33.0 70.5 ± 27.1 67.1 ± 29.4 0.392

LIMP 111.0 ± 94.9 142.1 ± 92.6 128.2 ± 58.6 143.2 ± 69.4 0.015

HIMP 118.3 ± 79.9 157.3 ± 101.6 189.7 ± 124.6 311.4 ± 264.8 0.005

p-value (‡) 0.277 0.118 0.014 0.010

3.5. MRI Data—Image Evaluation

Impaction-induced quantitative changes as outlined above were reflected by cor-
responding qualitative changes in the T2 maps (Figure 4). Controls remained largely
unchanged and maintained the inherent depth-wise stratification of T2 values with lower
values in deeper and higher values in the more superficial cartilage zones. After LIMP
exposure, the typical depth-wise stratification was progressively lost and gradually re-
placed by a band-like hyperintense signal zone at the sample centre. The hyperintense
zone was not confined to the area of impaction, extended throughout the entire sample
width, and was oriented parallel to the subchondral lamella. After HIMP exposure, the
depth-wise stratification was lost immediately and superseded by a more diffuse and
widespread area of hyperintense signal that gradually increased in size and hyperintensity
to eventually involve the large parts of the sample’s cross-sectional area. Once settled, this
area remained largely constant in the mid-to-long term. Supplementary Figure S1 gives
more representative cartilage samples and their post-impaction changes.
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Figure 4. Color-coded and spatially resolved T2 parameter maps of representative cartilage samples
and their post-impaction changes. Control samples without impaction (a). Cartilage samples
displayed distinct changes after low-energy impaction (b) and more pronounced and widespread
changes after high-energy impaction (c). Time points are marked by t0, t1, t2, and t3 that indicate the
pre- (t0) and post-impaction measurements (t1) as well as those after 24 h (t2) and 72 h (t3). Scale bar
on the right indicates color-coded T2 values [ms].

4. Discussion

The most important finding of this study is that advanced MRI acquisition and
postprocessing techniques, i.e., quantitative T2 mapping and texture feature analysis, may
be used to (i) differentiate the severity of supraphysiological impact injuries of cartilage
and (ii) monitor post-traumatic degenerative changes.

Prior to its initiation, this study had been motivated by the lack of basic research
available on the association of T2 mapping and traumatic cartilage injury. Even though
a solid body of clinical evidence is available to support the potential of T2 mapping in
evaluating posttraumatic cartilage changes [17], the changes in T2 related to traumatic
injury are variable and inconsistent. In young adults with recurrent patellar dislocations
during childhood, significant decreases in T2 were found in the superficial patellar cartilage
zone of injured as compared to non-injured joints, which may be an early sign of cartilage
pathology [18]. After ACL reconstruction, inconsistent T2 changes relative to uninjured
controls were found. At the one-year follow-up, T2 was not significantly elevated in one
study [19], while others found significant T2 elevations at the medial femoral cartilage
after two [20] and three years [21]. In contrast, increases in T2 were associated with
morphologic cartilage lesions [22] as well as morphologically intact cartilage that is going
to develop morphologic cartilage lesions in the years to come [23]. This, of course, indicates
that compositional changes -as assessed by T2 mapping- precede the development of
morphologic cartilage lesions and underscores the potential of T2 mapping to identify
cartilage regions at risk of incipient degeneration.

This study clearly demonstrates that injurious cartilage impaction is associated
with increasing T2 values as a function of impaction energy level and time. Based
on the sensitivity profile of T2 versus structural and compositional cartilage proper-
ties, these increases reflect numerous single-impact-associated posttraumatic changes
in cartilage [32,41,42,48–51]. The literature data indicate that these changes include surface
damage, loss of proteoglycans and collagen network integrity, as well as chondrocyte death.
These changes closely resemble degenerative changes in OA, are therefore often referred
to as traumatic OA-like changes [42], and provide the degenerative correlates of altered
T2 values. For the sake of comparability, impaction energy levels were chosen in line with
earlier studies and, mechanistically, the induction of cartilage damage by dropping weights
from defined heights has been thoroughly validated before [32,41,48]. Nonetheless, in this
study, histologic reference indicated impaction-energy-associated surface disintegration
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and incipient-to-moderate proteoglycan depletion, thereby confirming the mode of action
within the framework of this study.

On the tissue level, the impaction-induced increases in T2 may be secondary to
numerous posttraumatic changes that are excellently reviewed in [52]. For once, proteogly-
cans (and -in parts- collagen) are lost secondary to the collagen network damage. Lower
proteoglycan and collagen contents are associated with higher T2 values [53]. For another,
collagen network disintegration is induced directly by mechanical disruption and indirectly
by subsequent enzymatic degradation. These processes contribute to increased tissue water
content and tissue swelling, which are associated with higher T2 values, too [33], as well
as increased collagen fibre disorientation and anisotropy. Secondary to impaction, the
percentage of fibres oriented at magic angle, i.e., at 55◦ to the main magnetic field, may be
elevated, thereby increasing T2 values, too [54]. Yet, even though these mechanisms are
plausible, it remains unclear which exact compositional or (ultra)structural mechanism is
primarily behind the prominent increases in T2.

Beyond mean T2 values, this study focused on radiomic texture features, too, as
refined imaging biomarkers of cartilage trauma. Again, changes were clear and significant
after HIMP exposure, while they were moderate and only tended towards significance after
LIMP exposure. Across the spectrum of texture features assessed, variance and metrics of
contrast and orderliness were significantly increased (i.e., contrast, variance) and decreased
(i.e., homogeneity, energy) as a function of impaction energy. Additionally, these features
were different between the various time points, indicating lower textural uniformity and
growing structural disorder. These changes may be considered a sign of cartilage damage,
too, as described before [25,26,44].

Notably, changes in T2, i.e., absolute values and texture features, were subject to
gradual and drastic changes over time. These aspects may be explained by the concur-
rence of posttraumatic changes in cartilage that are induced either immediately through
the impaction itself or delayed through cell death and the induction of matrix-degrading
enzymes. These processes reduce biosynthetic capacity or bring about progressive degra-
dation that may explain the gradual alterations in T2 characteristics. Most likely, these
processes are at the root of the hyperintense bands that traversed the cartilage sample in the
transitional zone parallel to the subchondral lamella. Observed after both low- and high-
energy exposure, similar histologic changes have been reported before [32,41]. Following
impaction of bovine cartilage, Jeffrey et al. found horizontal fissures in the transitional
zone that they hypothesized to be due to deflection of the extracellular matrix with partial
delamination of the upper and lower tissue portions. Other studies also demonstrated
sub-surface intra-tissue damage and chondrocyte death prior to surface disintegration [55].
The band’s progression in terms of size and signal characteristics was clearly associated
with impaction energy level and may thus reflect the ongoing structural and compositional
changes of traumatized cartilage.

Notably, zonal changes of the superficial and deep tissue layers were roughly similar
in terms of relative changes in T2. Considering the direct impaction of the cartilage surface,
intuitively, one would expect larger changes of superficial than deeper zones. Yet, the vis-
coelastic nature of cartilage, its unique compressive properties and tight attachment to the
underlying subchondral bone provide efficient mechanisms for absorption of physiologic
and supraphysiologic loads throughout the entire tissue depth [56]. Once the subchondral
bone is removed, these mechanisms of load distribution and dissipation are disrupted and
the protective effect is lost [41].

This study has numerous limitations. First, the experimental in vitro design necessi-
tated excision and preparation of cartilage and its prolonged incubation, thereby limiting
the clinical translatability of our findings. Prolonged incubation in media may artificially
increase tissue hydration, thereby increasing T2 values. As this was observed for otherwise
unaffected control samples, these gradual increases in T2 provide the background against
which the impaction-induced changes must be considered. Additionally, scanning was
performed at room temperature, again affecting T2 values. As the MRI measurements
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were performed in a standardized manner, this bias may be considered systematic. Addi-
tional studies using in situ human whole-knee joint configurations and more physiologic
impaction methods are thus required to confirm our findings. As an additional caveat,
however, resultant intra-tissue changes secondary to impaction are largely dependent on
the experimental framework conditions. Standardized impaction of cartilage samples
induces more severe changes than similar impaction of intact joints [57]. Second, human
cartilage samples were obtained from knee joints undergoing joint replacement. Despite
our best efforts to ascertain tissue quality by macroscopic evaluation and baseline histol-
ogy, the pre-existent degeneration of the tissue brought about by chronic mechanical and
inflammatory disease processes is clearly uncontrolled and may have altered the tissue’s
susceptibility to impaction loading. Even though the longitudinal study design allows for
consistent intra-sample referencing and reduces this type of bias, tissue variability clearly
affects tissue susceptibility and outcomes of impaction. Future studies should therefore use
‘truly’ healthy cartilage through alternative tissue sources such as amputations or organ-
donor networks to realize improved tissue quality control. Third, despite selecting cartilage
from the lateral femoral condyles for reasons of topoanatomic consistency, human cartilage
thickness is largely different between individuals [58] and may affect load distribution and
dissipation in the tissue. Fourth, the cartilage samples surfaces were oriented parallel to
the main magnetic field B0 and, consequently, the majority of collagen fibres of the deep
and transitional zones were oriented at 90◦ to B0, thereby affecting T2 quantification. T2
values may increase due to the magic angle effect as collagen fibre orientation changes
relative to B0 after injurious impaction, particularly in the deep tissue layer [54] Although
measurement conditions were standardized (using a dedicated device) and inter-sample
variability in position and configuration thus decreased, this aspect needs to be considered,
too, prior to any clinical translation. Fifth, this study only focused on T2 mapping, while
other imaging markers, e.g., T1ρ, T1, T2 *, sodium, gagCEST (glycosaminoglycan Chemical
Exchange Saturation Transfer), or contrast-enhanced techniques such as dGEMRIC (de-
layed gadolinium-enhanced MRI of cartilage) are of potential value in assessing cartilage
structure and composition [14,34,38,59–64]. Of these, T1ρ mapping is of additional and
complementary value to T2 mapping because of distinct biophysical properties [65]. Yet,
the exact sensitivity profile of T1ρ remains to be determined with proteoglycan, collagen,
and water content as well as collagen fibre orientation potentially contributing to T1ρ
relaxation characteristics. As of today, T1ρ seems to indicate the cartilage tissue’ macro-
molecular configuration [53,66–69]. In posttraumatic contexts, the sensitivity of T1ρ to
changes in the tissue’s solid and fluid constituents and its mechanical condition [38,70–73]
may be of value in future pre-clinical and clinical studies. Sixth, this study did not include
dedicated compositional reference measures and, consequently, no advanced quantification
of proteoglycan or collagen content that would have allowed spatially resolved associations
of T2 maps and compositional measures. Prior to any clinical translation, these associations
ought to be clarified in posttraumatic contexts and beyond.

5. Conclusions

This study demonstrates that advanced MRI acquisition and postprocessing tech-
niques, i.e., quantitative T2 mapping and texture feature analysis, are sensitive diagnostic
means to detect and monitor traumatic impaction injuries of cartilage and associated post-
traumatic degenerative changes. If corroborated by additional in situ and in vivo studies,
the close association of changes in T2 and texture features, impaction energy level, and
time render this technique diagnostically promising to assess cartilage tissue after trauma
and to detect cartilage at risk.
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