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Brain functioning relies on various segregated/specialized neural regions functioning
as an integrated-interconnected network (i.e., metastability). Various psychiatric and
neurologic disorders are associated with aberrant functioning of these brain networks.
In this study, we present a novel framework integrating the strength and temporal
variability of metastability in brain networks. We demonstrate that this approach
provides novel mechanistic insights which enables better imaging-based predictions.
Using whole-brain resting-state fMRI and a graph-theoretic framework, we integrated
strength and temporal-variability of complex-network properties derived from effective
connectivity networks, obtained from 87 U.S. Army soldiers consisting of healthy
combat controls (n = 28), posttraumatic stress disorder (PTSD; n = 17), and PTSD
with comorbid mild-traumatic brain injury (mTBI; n = 42). We identified prefrontal
dysregulation of key subcortical and visual regions in PTSD/mTBI, with all network
properties exhibiting lower variability over time, indicative of poorer flexibility. Larger
impairment in the prefrontal-subcortical pathway but not prefrontal-visual pathway
differentiated comorbid PTSD/mTBI from the PTSD group. Network properties of
the prefrontal-subcortical pathway also had significant association (R2 = 0.56) with
symptom severity and neurocognitive performance; and were also found to possess
high predictive ability (81.4% accuracy in classifying the disorders, explaining 66–72%
variance in symptoms), identified through machine learning. Our framework explained
13% more variance in behaviors compared to the conventional framework. These
novel insights and better predictions were made possible by our novel framework
using static and time-varying network properties in our three-group scenario, advancing
the mechanistic understanding of PTSD and comorbid mTBI. Our contribution has
wide-ranging applications for network-level characterization of healthy brains as well
as mental disorders.

Keywords: functional MRI, network dynamics, complex network modeling, effective connectivity, dynamic
connectivity, posttraumatic stress disorder, mild traumatic brain injury, machine learning
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INTRODUCTION

The dynamic abilities of the human brain are attributed to
its highly interconnected neural architecture. Functional MRI
(fMRI) connectivity modeling is popularly employed to study
interrelationships between brain regions at the systems-level.
However, fMRI connectivity is limited in that it can characterize
only pairwise relationships (i.e., bivariate). To characterize
connection ensembles (Rubinov and Sporns, 2010), and not
just connection pairs, strategies beyond traditional connectivity
modeling, such as complex-network modeling (Rubinov and
Sporns, 2010) using graph-theoretic techniques, are useful. This
approach makes use of individual connectivity weights as well as
the pattern in which these connections coexist, to make various
inferences on the network structure.

Functional Segregation
A graph comprises of a set of nodes (brain regions) that are
interconnected by edges (connectivity weights), and network
measures quantify different characteristics of the topology
of such graphs. Rubinov and Sporns (2010) illustrate the
applicability and interpretation of several complex-network
measures in brain imaging. Among them, functional segregation,
necessary for optimal specialized processing, informs about
dense-connectedness within separate subnetworks. It quantifies
whether the regions connected to a given node are connected
amongst themselves, thus forming subnetworks wherein
majority of the nodes are connected to every other node.
For example, during altered consciousness, segregation is
reduced, especially in the thalamus (Crone et al., 2013). In
the current study, we employed transitivity (global whole-
brain-level measure), clustering coefficient and local efficiency
(both local node-level measures) to quantify segregation
(Rubinov and Sporns, 2010).

Functional Integration
In contrast, functional integration captures the ease of interaction
between segregated regions (Rubinov and Sporns, 2010). For
example, there is elevated segregation in prefrontal and cerebellar
subnetworks in attention-deficit hyperactivity disorder (ADHD),
but lower integration between these subnetworks (Lin et al.,
2014), indicative of characteristic attentional reaction-time
deficits observed in this population. In the current study, we
employed global efficiency (global measure), shortest path length,
and edge betweenness (both local measures at connection-
level) to quantify integration (Rubinov and Sporns, 2010).
Although traditional connectivity identifies standalone aberrant
connections in clinical groups, these measures of integration
identify those connections that are not only important by
themselves, but are also important for the rest of the
connections in the network.

Graph Measures and Military Population
It has been extensively demonstrated that segregation and
integration are disrupted in psychiatric disorders [for example,
see (Yu et al., 2013; Rocca et al., 2014)]. Most report a
narrow, but balanced relationship between them in healthy
populations (called metastability) (Hellyer et al., 2015), which is

impaired in neurologic and psychiatric disorders (Yu et al., 2013;
Rocca et al., 2014). Using resting-state fMRI and our novel
framework, we investigated network-level aberrations in soldiers
with posttraumatic stress disorder (PTSD) and post-concussion
syndrome (PCS) associated with documented mild traumatic
brain injury(s) (mTBI). PCS is an outcome of mTBI, in which
the individual presents persistent post-concussive symptoms
3 months’ post-injury.

In military populations, there is considerable comorbidity
between mTBI and PTSD (Hoge et al., 2008, 2009), often
attributed to life-threatening events such as exposure to blast
from improvised explosive devices (IEDs), which result in mTBI
as well as psychological trauma. With the prevailing clinical
approaches focusing on patient reporting, and with substantial
overlapping symptoms between PTSD and PCS (Eierud
et al., 2014), a better comprehension of the neurobiological-
mechanistic basis for PTSD and PCS is imperative for improved
diagnosis and treatment outcomes, and for making return-
to-duty decisions. Prior fMRI works on comorbid PTSD and
mTBI are limited (Spielberg et al., 2015), although its prevalence
is considerably high in general society as well as military
populations (Veterans, 2015). In the current study, we explored
our novel framework involving functional segregation and
integration in three groups: soldiers with elevated posttraumatic
stress symptoms (PTSD group), PCS + PTSD (comorbid group
sustaining both PTSD and PCS), and healthy combat controls.
For the sake of disambiguation, we call complex-network
modeling as “network-level,” while connectivity modeling is
termed “connectivity-level” and activation analysis as “region-
level.” Although several studies have identified region-level
and connectivity-level aberrations in specific key prefrontal
and subcortical regions in mTBI and PTSD (Simmons and
Matthews, 2012), a thorough understanding of the aberrations
of directional relationships and associated changes in network
structure have not emerged from them. We address this
limitation in this study.

Effective Connectivity
Graph-theoretic analysis begins from network graphs
constructed using pairwise connections, which can be
obtained through connectivity modeling. Although functional
connectivity (FC) has been the predominant choice so far,
we sought to investigate directional networks with causal
relationships instead of co-activation (a non-directional entity).
It has not been adequately explored, even though it is an equally
important mechanism for network-level interactions. Causal
connectivity has been discovered even in fMRI timescales
(Roebroeck et al., 2005; Abler et al., 2006; David et al., 2008;
Deshpande et al., 2011; Deshpande and Hu, 2012; Ryali et al.,
2016; Rangaprakash et al., 2018a), indicating that identifying
causal networks in addition to co-activation networks is
important for a more extensive characterization. Further, PTSD
and PCS are typically considered as prefrontal dysregulation
disorders (Simmons and Matthews, 2012), meaning that
prefrontal causal connectivity is compromised. This provided
the impetus for us to further investigate directional connectivity.
To our surprise, there have been hardly any fMRI studies
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investigating effective connectivity (EC) in either PTSD or PCS
or the comorbid condition.

Granger Causality
Granger causality (GC), an exploratory technique, was employed
to quantify EC (Deshpande et al., 2010b). It is the most
prevalent technique for deriving causal relationships in natural
systems (Kirchgässner et al., 2012). Both recent simulations
(Ryali et al., 2011; Wen et al., 2013) and experimental
results, including optogenetics and electrophysiology (David
et al., 2008; Katwal et al., 2013; Ryali et al., 2016; Wang
et al., 2016), demonstrate that GC is reliable for drawing
inferences regarding directional relationships between brain
regions when used after deconvolving the hemodynamic
response function (HRF) from fMRI data (as done in the
current study). Several recent fMRI works have also employed
this technique (Deshpande et al., 2013; Sathian et al., 2013;
Grant et al., 2014; Lacey et al., 2014; Wheelock et al., 2014;
Feng et al., 2015; Grant et al., 2015; Hutcheson et al., 2015;
Bellucci et al., 2016).

Dynamic Connectivity
Most studies investigating fMRI connectivity assume
connectivity as stationary over time, although static connectivity
does not capture dynamic variations of connectivity. While
an fMRI scan endures for several minutes, mental processes
occur within a few milliseconds to a few seconds’ time,
implying that connectivity varies over the timescales of fMRI
scans, and that those variations contain biologically relevant
information (Hutchison et al., 2013), which are different from
that contained in static connectivity (Jia et al., 2014). Recent
works have found connectivity dynamics to be a unique and
important marker of brain functioning (Hansen et al., 2015;
Jin et al., 2017). Therefore, the current study utilized both
static EC (SEC) and dynamic EC (DEC). Brain networks were
constructed from strength (SEC) and temporal variability (DEC)
of directional connectivity, using which we obtained strength
and variability of segregation/integration measures, respectively.
Such a characterization of dynamic network properties is
one of the important novel contributions of this work. While
dynamic connectivity has prevailed in neuroimaging for
some time (Hutchison et al., 2013), for the first time we
introduce dynamic modeling of segregation and integration in a
novel framework.

Lower variability of connectivity over time is associated
with both psychiatric and neurologic conditions (Garrett et al.,
2013; Jia et al., 2014; Miller et al., 2016; Rashid et al., 2016;
Rangaprakash et al., 2017a, 2018a), often corresponding to a lack
of cognitive flexibility. Compromised behavioral performance
is linked with reduced temporal variance of connectivity in
both clinical and non-clinical populations (Sakoğlu et al., 2010;
Jia et al., 2014; Rangaprakash et al., 2017a, 2018a). Such
reduction is linked to impaired ability in dynamically adjusting
to changing conditions (thoughts, behaviors, etc.). A healthy
biological system is flexible in response to continual momentary
changes within the internal and external milieu of the organism.

In those terms, temporally “frozen” connectivity and/or complex-
network properties point to compromised brain health. Such a
characterization has been done in recent connectivity studies
(Jia et al., 2014; Rangaprakash et al., 2017a). Higher variability
of connectivity is also considered a marker of greater mental
flexibility (Zhang et al., 2016).

Hypotheses
In this work, we extend these concepts to the reduced temporal
variability (or rigidity) in network properties instead of individual
connection strengths. We hypothesized that PTSD and mTBI are
characterized by altered strength and lower temporal variability
of segregation and integration in directional brain networks.
We associated the connections exhibiting suppressed network
properties with deflation, given that reduced engagement of
certain prefrontal-subcortical and prefrontal-cortical pairwise
connectivities may be considered as an outcome of impaired
regulation from prefrontal regions (Gross, 2014). Similarly,
we associated the connections exhibiting elevated network
properties with inflation, or pathologically enhanced network-
level engagement, given that pairwise hyper-connectivity is seen
as an outcome of neurological disruption (Hillary et al., 2015),
and has been noticed in PTSD (Hayes et al., 2012; Simmons
and Matthews, 2012; Cisler et al., 2014). Within this framework,
we sought to identify such networks properties which were
(i) affected by PTSD but not mTBI (we call this hypothesis-1,
see Figure 1A), and (ii) affected by PTSD as well as comorbid
PTSD and mTBI (we call this hypothesis-2; see Figure 1B).
Such dichotomy would enable us to identify both common
(hypothesis-1) and distinguishing (hypothesis-2) network features
between PTSD and mTBI, given the high comorbidity and
overlapping symptomatology between them (Spielberg et al.,
2015). Notably, we tested the hypothesis on whole-brain data,
in a data-driven manner without imposition of any priors,
using resting-state fMRI, which is not task dependent. With
the network properties that fit our hypothesis, we assessed their
association with relevant behaviors (neurocognitive functioning,
and symptom severity in PTSD and PCS).

Machine Learning
Statistical group separation is the analysis framework for our
hypothesis. However, statistical separation does not automatically
attribute them with predictive diagnostic ability (Deshpande
et al., 2010a) at the individual-subject level. Machine-learning
classifiers have been successfully utilized on fMRI data for
such diagnostic prediction in disorders like major depression
(Deshpande et al., 2009), PTSD (Liu et al., 2015), Parkinson’s
(Marquand et al., 2013), dementia (Chen et al., 2011), ADHD
(Deshpande et al., 2015), prenatal-cocaine-exposure syndrome
(Deshpande et al., 2010a), autism (Deshpande et al., 2013; Libero
et al., 2015), and many others. However, to the best of our
knowledge, there have been no works utilizing complex-network
properties in PTSD/mTBI classification. Given the unique high-
level information contained in network properties, we expected
network measures to possess predictive ability. Neuropsychiatric
conditions such as PCS and PTSD are currently diagnosed
through clinical observation and self-report, hence classification
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FIGURE 1 | Illustration of our hypothesis showing decreasing temporal variability (implying rigidity) of segregation/integration, and either increasing or decreasing
segregation/integration (implying inflation or deflation, respectively) as we move from Control to PTSD to PCS + PTSD. Font and circle sizes are symbolic of the
increasing/decreasing trend, with smaller circles/text representing deflation and rigidity, and larger circles/text representing inflation and flexibility. (A) Hypothesis-1:
some network properties would be disrupted only in PTSD (significant for Control vs. PTSD and Control vs PCS + PTSD comparisons, but not PTSD vs.
PCS + PTSD comparison). (B) Hypothesis-2: some network properties would be significantly different between all three groups. Note that inflation and deflation
generally correspond to elevation or suppression of network properties, respectively, and not just connection strengths of individual paths. However, in the special
case when local network properties of the paths are considered, inflation and deflation are referred to the network properties, as well as connection strengths of the
paths under consideration.

using neuroimaging-based network signatures can be useful in
obtaining more accurate diagnoses in these highly comorbid
conditions. Hence, we employed a machine learning technique
to identify highly predictive features by recursively eliminating
unimportant complex-network features in a data-driven way. In
addition, we sought to find an overlap between connections with

network properties satisfying our primary hypotheses (Figure 1),
and those possessing high predictive ability. As our secondary
hypothesis, we hypothesized that such network properties would
predict the diagnostic membership of a new subject better than
available non-imaging measures (neurocognitive, behavioral and
self-report measures), thus underscoring their relevance to the
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underlying neuropathology of mTBI and PTSD. We place special
emphasis on network properties having all the desirable qualities
assessed in this work: high statistical separation, behavioral
relevance and high predictive ability. Our study illustrates the
utility of our methodological framework using the PTSD/mTBI
cohort as an example.

MATERIALS AND METHODS

A schematic of the entire processing pipeline is available at the
end of the methods section (Figure 4).

Participants
Active-duty soldiers (aged between 18 and 50 years) were
recruited from Fort Benning, GA, United States and Fort
Rucker, AL, United States to participate voluntarily in the study.
The study was conducted in accordance with the Declaration
of Helsinki, and the procedures were approved by Auburn
University’s Institutional Review Board (IRB) as well as the
Headquarters United States Army Medical Research and Materiel
Command, IRB (HQ USAMRDC IRB). Written informed
consent was obtained from all participants.

Eighty-seven male, active duty U.S. Army soldiers were
enrolled in the study, which included 17 with PTSD, 42 with
comorbid PCS and PTSD (PCS + PTSD), and 28 combat
controls (all groups were matched in age, education and race),
all having combat experience in Iraq (Operation Iraqi Freedom,
OIF) and/or Afghanistan (Operation Enduring Freedom, OEF).
Participants were grouped based on symptom severity in PTSD
using the “PTSD Checklist-5” (PCL5) score, post-concussive
symptoms using the “Neurobehavioral Symptom Inventory”
(NSI) score, clinician referral and medical history. (i) Participants
with post-concussive symptoms, clinician referral, history of
medically documented mTBI, and scores ≥ 38 on the PCL5
and≥ 26 on the NSI were grouped as the comorbid PCS+ PTSD
group. (ii) Participants with no history of mTBI in the last 5 years,
a score ≥ 38 on PCL5, and < 26 on NSI and clinician referral
were grouped as PTSD. (iii) Participants with score < 38 on PCL5
and < 26 on NSI, no mTBI within the last 5 years, no DSM-
IV-TR or DSM-V diagnosis of a psychiatric disorder (based on
medical records), and no history of moderate-to-severe TBI were
grouped as combat controls. All participants were assessed by a
licensed medical practitioner, and reported being deployed to a
combat environment. Those with psychotic, mood or substance
dependency disorders were excluded.

Measures
A battery of psychological health measures were administered to
the participants prior to their MRI scan. The battery consisted
of the Brief Traumatic Brain Injury Screen [BTBIS; (Schwab
et al., 2007)], PCL-5 (Blevins et al., 2015), NSI (Cicerone and
Kalmar, 1995), Life Events Checklist (LEC; (Gray et al., 2004)),
Combat Exposure Scale [CES; (Guyker et al., 2013)], Childhood
Environment [CE; (King et al., 2003)], Zung Depression Scale
[ZDS; (Zung et al., 1965)], Zung Anxiety Scale [ZAS; (Zung,
1971)], Alcohol Use Dependency Identification Test [AUDIT;

(Saunders et al., 1993)], and the Epworth Sleepiness Scale [ESS;
(Johns, 1991)]. In Supplementary Section “Psychological Health
Measures,” (SI-2.1) we present, in more detail, the measures that
were most relevant for this study [PCL5, NSI, and CNS vital signs
(CNS-VS]). Neurocognitive composite index (NCI) was derived
from CNS-VS domain scores (Gualtieri and Johnson, 2006) as an
aggregate measure of neurocognitive functioning.

Procedures
For procedures done prior to the fMRI scans during
the scheduled appointment, see Supplementary Section
“Procedures” (SI-2.2).

fMRI
Participants were scanned in a 3T MAGNETOM Verio scanner
(Siemens Healthcare, Erlangen, Germany) using T2∗ weighted
multiband echo-planar imaging (EPI) sequence in resting state
(participants would keep their eyes open and fixated on a white
cross displayed on a dark background on the screen using an
Avotec projection system, and not think of anything specific),
with TR = 600 ms, TE = 30 ms, FA = 55◦, slice gap = 1 mm,
multiband factor = 2, anterior to posterior phase encoding
direction, voxel size = 3 mm× 3 mm× 4 mm, and 1000 volumes.
Brain coverage was confined to the cerebral cortex, subcortical
structures, midbrain and pons (cerebellum was excluded).
Two identical but separate scans were performed for every
participant and processed independently [more information in
the Supplementary Section “Procedures” (SI-2.2)].

fMRI Data Pre-processing
Standard resting-state fMRI data pre-processing steps were done
including realignment, normalization to MNI space, detrending
and regressing out nuisance covariates such as six head-motion
parameters, white matter signal and cerebrospinal fluid signal,
and band-pass filtering (0.01–0.1 Hz). The largest permitted
head motion was half the voxel-size (1.5 mm); no significant
group differences were observed in participant head-motion
(p > 0.05) (also see Table 1). Pre-processing was performed using
Data Processing Assistant for Resting-State fMRI (DPARSF v1.7)
(Chao-Gan and Yu-Feng, 2010), which is based on Statistical
Parametric Mapping (SPM8) (Friston et al., 2007) and Resting-
State fMRI Data Analysis Toolkit (Song et al., 2011).

Deconvolution was then carried out on voxel-level time
series, because confounds arising from spatial and inter-
subject variability of the hemodynamic response function (HRF)
(Handwerker et al., 2004; Rangaprakash et al., 2017c) could lead
to a scenario wherein two fMRI time series show high effective
connectivity but the underlying neural signals are not highly
connected, and vice versa (refer to Figure 2 for an illustration)
(Rangaprakash et al., 2018b,c). Such phenomena have been
specifically found in the case of PTSD and mTBI with functional
connectivity (Rangaprakash et al., 2017c). Additionally, causal
connections could potentially switch directions in case the
underlying HRFs possess different times-to-peak. In this respect,
it has been demonstrated that deconvolution results in improved
estimation of effective connectivity (David et al., 2008; Ryali et al.,
2012, 2016). The viewpoint of cellular neuroscience on BOLD
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TABLE 1 | Mean, median and standard deviation of demographics, head motion,
psychological measures (PCL5, NSI, and CES), and CNS-VS neurocognitive
measures for each of the groups.

Variable Controls PTSD PCS + PTSD

DEMOGRAPHICS AND HEAD MOTION

Age, years Mean 32.6 32.2 33.7

Median 31 32 33

SD 6.7 7.6 6.8

Education, years Mean 15.1 14.5 14.1

Median 16 14 14

SD 1.9 2.2 1.9

Race White 18 (66.7%) 11 (64.7%) 26 (66.7%)

Black 2 (7.4%) 3 (17.6%) 9 (22.0%)

Hispanic 3 (11.1%) 3 (17.6%) 2 (4.9%)

Asian 2 (7.4%) 0 1 (2.4%)

Other 0 0 1 (2.4%)

Head motion (mean
frame-wise displacement)

Mean 0.098 0.121 0.111

Median 0.072 0.076 0.069

SD 0.082 0.106 0.104

Medication 2 (7.4%) 4 (23.5%) 13 (31.7%)∗

Lifetime mTBIs Mean (Range) 0.3 (2) 1.1 (6) 2.5 (15)∗

PSYCHOLOGICAL MEASURES

Traumatic stressa Mean 23.5 56.6 70.9

Median 21.5 48.5 70.5

SD 4.2 17.8 15.2

Post-concussive
symptomsa

Mean 6.6 25.9 43.4

Median 5 17.5 41.5

SD 4.8 19.2 16.1

Combat exposurea Mean 7.2 16.7 28.6

Median 2.5 15 29

SD 9.8 11.2 8.6

NEUROCOGNITIVE MEASURES

Neurocognitive
composite indext,z

Mean 101.2 94.3 81.7

Median 100.7 94.6 82.2

SD 12.9 12.5 20.7

Reaction time Mean 97.4 95.3 84

Median 101 92 91

SD 23 11.9 32.8

Complex attentiont Mean 94.2 78.1 70

Median 99.5 92 80

SD 23.3 30.9 31.3

Cognitive flexibilityt,z Mean 103.6 97.1 80.5

Median 103 93 86

SD 16.3 15.2 26.7

Processing speedt Mean 104.8 100.1 89.9

Median 104 98 92

SD 20.9 11 20.1

Executive functioningt,z Mean 106 101 84.1

Median 104.5 104 90

SD 13.3 13.2 24.8

Verbal memory Mean 99.6 92.1 83.6

Median 106.5 103 83

SD 12.5 9.5 13.9

adenotes p < 0.05, all three groups; tdenotes p < 0.05, Controls vs. PCS + PTSD,
zdenotes p < 0.05, PTSD vs. PCS + PTSD. Traumatic Stress = PCL5; Post-
concussive Symptoms = NSI; Combat Exposure = CES.

fMRI presented in a recent paper (Hall et al., 2016) discussed
several caveats in the interpretation of fMRI results, wherein
careful consideration is warranted based on the underlying
cellular mechanisms. Neurovascular dynamics or HRF variability
is one such primary issue, about which they comment as follows:
“advances in cellular neuroscience demonstrating differences in this
neurovascular relationship in different brain regions, conditions
or pathologies are often not accounted for when interpreting
BOLD.” They advise employing computational modeling (e.g.,
deconvolution) to mitigate the issue. We employed a popular
blind deconvolution algorithm (Wu et al., 2013). Many recent
papers have employed it [see for example (Amico et al.,
2014; Lamichhane et al., 2014; Boly et al., 2015; Rangaprakash
et al., 2017a,b)]. The deconvolution is blind since both the
HRF and underlying latent neural time series are estimated
only from the recorded fMRI data. Resting-state fMRI data is
modeled as event-related using point processes with randomly
occurring events; then, voxel-specific HRFs are estimated using
Wiener deconvolution. This technique is date-driven; hence, we
do not encounter overfitting issues that often plague model-
based approaches.

Since whole-brain fMRI data has high dimensionality, 125
functionally homogeneous brain regions spread out across the
cerebral cortex and encompassing it completely, determined
using spectral clustering [known as the Craddock-200 atlas
(Craddock et al., 2012)], were taken and mean deconvolved time
series were obtained from them. All further analyses (carried out
on the Matlab R© platform) utilized these 125 time series from
every participant.

Effective Connectivity Analysis
A precursor to obtaining network-level characterization is to first
get the connectivity network itself, which is, computing SEC and
DEC matrices from pre-processed fMRI data. Whole-brain SEC
and DEC were computed using GC (Deshpande et al., 2010b),
which is an exploratory technique used to quantitatively measure
directional relationships between brain regions. While SEC uses
a multivariate autoregressive (MVAR) model, DEC employs a
dynamic MVAR model evaluated in a Kalman filter framework
using variable parameter regression (Wheelock et al., 2014).

The concept of Granger causality (GC) is that, if future values
of time series “Y2” can, in a mathematical sense, be predicted
by the past values of time series “Y1,” then a causal influence
is inferred from time series Y1 to time series Y2 (Granger,
1969). GC’s MVAR model predicts one time series from the other
quantitatively, as described briefly next. Given k different time
series Z(t) = [z1(t), z2(t), . . . zk(t)], wherein k corresponds to 125
ROIs of this work, the MVAR model of order p is given by:

Z (t) = M (0) Z (t)+M (1) Z (t − 1)+M (2) Z (t − 2)

+ · · · +M
(
p
)

Z
(
t − p

)
+ E (t) (1)

Here, E(t) is the model error, while M(0) . . . M(p) are model
coefficients. Like in earlier studies (Deshpande et al., 2010b), this
formulation included a zero-lag term with coefficient M(0) which
would eliminate the contribution of zero-lag cross-correlation
between the time series. Since M(0) represents co-variance
between time series and not used in GC computation, the effect
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FIGURE 2 | Using two time series from experimental fMRI data, we illustrate the importance of performing hemodynamic deconvolution for effective connectivity
modeling. The latent neural signals are convolved with the hemodynamic response function (HRF) to provide the BOLD fMRI time series. Within-subject spatial HRF
variability across the brain could often result in a scenario wherein (A) the latent neural signals have true low directional connectivity [quantified using Granger
causality (GC) from blue to pink signal] while the BOLD fMRI time series show high GC wherein the pink time series seems to follow after the blue time series, and
(B) the latent neural variables have true high directional connectivity while the BOLD fMRI time series show low GC. In the former case, while the neural signals nearly
overlap, the delay in the HRFs causes an observable delay in the BOLD time series, resulting in high GC from the blue to the pink BOLD time series. In the latter
case, the delay noticeable in the neural signals (pink signal leads blue) is negated by the delay in the HRFs (blue signal leads pink), resulting in nearly overlapping
BOLD time series and a low GC value.

of zero-lag cross-correlation gets ignored in GC. Given that
diagonal elements of M(0) are set to zero, we only model the
instantaneous cross-correlation, and not the auto-correlation
between the time series.

The coefficients were estimated using multivariate least-
squares estimation. It computes the set of optimal coefficients
with model error being minimized in a least-squares sense.
The model order p can either be chosen by utilizing a
mathematical principle such as the Bayesian Information
Criterion (BIC) (Roebroeck et al., 2005) or based upon the
needs of the application being considered. In neuroimaging,
causal relationships corresponding to neural delays less than
or equal to the TR are of interest (Deshpande et al., 2013),
hence we used a first order model. Given that fMRI’s temporal
resolution is relatively low, a first-order model has been
shown to capture the most relevant directional information
(Deshpande and Hu, 2012).

The degree to which the past Z(t-p) is able to predict the
present Z(t) is given by the coefficient matrix M(p). The sum of
all such coefficients would then correspond to the degree to which
the past values put together can predict the present. As in prior
works (Kaminski et al., 2001), GC was formally derived, based on
the model coefficients, as:

GCij =

p∑
n=1

mij (n) (2)

Wherein mij are the elements of matrix M and GCij refers to
the SEC value from ROI i to ROI j. Notably, a single coefficient
matrix was computed for the entire duration of the experiment,
that is, coefficients are not varying with time. A deeper theoretical
rendering of GC can be found here (Deshpande et al., 2010b).

GC-based methods have been experimentally validated for fMRI
EC analysis (David et al., 2008; Katwal et al., 2013), and they have
been extensively utilized for fMRI EC modeling in recent times
[see for example (Deshpande et al., 2011, 2015)].

Next, DEC was computed by employing time-varying
dynamic Granger causality (DGC), evaluated using a Kalman
filter framework. Dynamic multivariate vector autoregressive
(dMVAR) model was employed for estimating DGC (Grant
et al., 2014; Wheelock et al., 2014). DEC is the underlying time-
varying physiological process, while DGC is the mathematical
measure that quantifies it. This technique has also been used in
several recent studies (Deshpande et al., 2013; Wheelock et al.,
2014; Hutcheson et al., 2015). Unlike GC formulation, dMVAR
model coefficients M’(p,t) are a function of time, hence the
model is “dynamic.”

Z (t) = M′ (0, t) Z (t)+M′ (1, t) Z (t − 1)

+ · · · +M′
(
p, t
)

Z
(
t − p

)
+ E (t) (3)

A Kalman filter framework which uses variable parameter
regression (Büchel and Friston, 1998) was used to estimate
dynamic model coefficients, which involved imposing a
forgetting factor (which was chosen as 1 in our case). DGC was
thus computed as:

DGCij (t) =
p∑

n=1

mij (n, t) (4)

Where mij are the elements of matrix M and DGCij(t) is the
value of DEC from ROI i to ROI j at a given time point t.
Like in GC, zero-lag cross-correlation effects were compensated
here also. Further, a forgetting factor of 1 was used to make
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FIGURE 3 | Illustration of static and dynamic effective connectivity (SEC and DEC) from a neuroimaging standpoint using two experimental fMRI time series. In (A),
the two time series seem highly correlated and nearly overlapping. However, the variations in the pink time series do not appear to happen after (or before) the
variations in blue time series (top-left figure). This poor causal relationship results in a low SEC value (= 0.07). Correspondingly, DEC values hover around the
zero-value (bottom-left figure) since a causal relationship does not seem to emerge for most part of time, except for a brief span (marked by the arrow) when there is
a visible causal relationship. In (B), the pink time series seems to constantly follow after the blue time series (top-right figure), indicating that the pink signal’s
associated brain region activates (and deactivates) immediately after the blue signal’s region activates (and deactivates), thus a causal relationship and a high SEC
value (= 0.95). DEC provides additional insight (bottom-right figure), wherein steady causality is maintained almost for the entire duration except for a brief span
(marked by the arrow), wherein DEC dips because of observable lack of causality in the time series’ of those sections.

the system well-conditioned so that the coefficients may be
estimated accurately.

A 125 × 125 whole-brain SEC matrix was obtained for
every participant by computing GC between all combinations
of connections between the 125 ROIs. With DEC, the dynamic
MVAR model coefficients are a function of time, hence,
with our fMRI data having 1000 time points, we obtained
a 125 × 125 × 1000 DEC matrix per participant. SEC and
DEC matrices were used for further complex-network analysis.
To illustrate the concepts of SEC and DEC in the context of
neuroimaging, we show a simple illustration using a pair of fMRI
time series from our experimental data (see Figure 3).

Complex-Network Analysis
We first describe the network measures of segregation and
integration, and then explain how they were used in the
context of this work. As noted earlier, given the complexity
of our hypothesis, we dealt with weighted directed networks
in this work. Functional segregation was quantified using
transitivity (global measure, one value for whole brain
per participant), clustering coefficient and local efficiency
(both local measures, one value per node/region per
participant). Functional integration was quantified using
global efficiency (global measure), shortest path length
and edge betweenness (both local measures, one value per
connection per participant). We obtained source codes for
these measures from the Brain Connectivity Toolbox (April

2014 release) (Rubinov and Sporns, 2010), and implemented
the entire pipeline in the Matlab R© platform through custom
codes. A detailed account of these measures can be found
in Rubinov and Sporns (2010). For the benefit of readers,
we have explained each of these measures in detail using
a simplified example network in Supplementary Section
“Complex-Network Analysis” (SI-2.3).

Briefly, transitivity is a global measure of overall efficiency of
local processing in the brain. Clustering coefficient (CC) gives a
transitivity-type characterization for every node. Local efficiency
(EffLoc) is closely related to CC, wherein nodes with powerful
neighbors that are involved in several shortest paths have higher
EffLoc, indicating that the node is important in the sub-network
for specialized processing. While CC and EffLoc usually give
similar (but not same) results, their interpretations are different.
In this work, along with transitivity as the global measure, we
employed both CC and EffLoc as local measures, which are the
two popularly used local measures of segregation. We took an
overlap (intersection) of the final significant group differences for
the two measures, so that the affected nodes had differences in
both the measures, thus providing more conservative results with
a broader interpretation.

Global efficiency (EffGlob) is a global measure indicating
the aggregate ease of communication in the entire network.
Shortest path length (SPL) is a measure of how easy it is to
reach one node from the other, and is analogous to meta-
connectivity. Edge betweenness (EB) measures the number of
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all shortest paths in the entire network that contain the given
connection. Like SPL, EB is an important network measure
because it characterizes the importance of a connectivity path
not only through its pairwise connectivity value but also
through the significance of the connectivity path for other
connectivity paths present in the network. If a connectivity path
matters a lot for other paths, i.e., for communication between
various other nodes, then the given path would have high
integration ability (i.e., SPL and EB). Such a characterization
can be obtained only through complex-network modeling since
traditional pairwise connectivity informs us only about the
strength of interaction between just two brain regions. In
this work, we employed EffGlob as the global measure and
both SPL and EB as local measures of integration. As with
segregation, we took an overlap (intersection) of the final
significant group differences in the two local measures, so that the
affected paths had differences in both measures, thus providing
more conservative, but potentially more reliable, results with
wider interpretation.

Next, we describe how these six network measures were used
in the context of this work. SEC and DEC connectivities were
used separately to construct static and time-varying networks
with brain regions as nodes and connectivity strengths between
them as the weighted directed edges of the network graphs.
Absolute value of connectivity was used to construct the network
graphs. With SEC, a single network was constructed for the entire
duration of time in the data, giving a “connectivity strength”
network, which was used to obtain each one of the six complex-
network measures for every run of every participant. With DEC,
we considered each time point of the DEC time series as a
snapshot of the network at that time instant, and then constructed
a graph using the nodes and edge values from that snapshot.
We computed network measures for that snapshot, and repeated
the procedure independently for the rest of DEC time series to
obtain a time series of values for each network measure. Then, for
each network measure, we computed the variance of the network
measure time series to obtain a single value for the entire duration
of the data. This gave us a network with paths whose weights
corresponded to the temporal variability of complex-network
measures. This was obtained for every measure and for every run
of every participant, similar to SEC.

Statistically significant differences in these strength and
variability networks were obtained, in accordance with our
hypothesis (p < 0.05, FDR corrected). We corrected for
31250 comparisons: 125 comparisons of segregation (125 ROIs),
15500 comparisons of integration (125 × 125 − 125),
each for both static connectivity and variance of dynamic
connectivity networks. Differences were controlled for age,
race, education, and head-motion [using mean frame-wise
displacement, as defined by Power et al. (2012)]. That is, we found
significant group differences with both SEC and DEC derived
complex-network measures separately for these three pairwise
comparisons (thus giving a total of six comparisons per network
measure): Control vs PTSD, Control vs. PCS + PTSD, PTSD vs.
PCS+ PTSD. We then identified the common network measures
among four of these comparisons (hypothesis-1) which excluded
PTSD vs PCS + PTSD comparison, and we also identified

common network measures among all the six comparisons
(intersection, hypothesis-2), all of which also fit our hypothesis,
that is, conformed to the increasing/decreasing trend as we
moved from Control to PTSD to PCS+ PTSD.

It is notable that we have taken a conservative approach
in this work. We opted to look for common differences in
pairwise statistical comparisons, rather than performing a single
three-way statistical comparison, which is less conservative.
We obtained common differences in static as well as dynamic
network measures, and we also constrained the differences
to conform to a trend as per our hypothesis. Additionally,
we computed two local measures in segregation as well as
integration, and considered only common differences in them,
which added another level of constraints on our findings.
In addition to these, we notably discarded any paths which
had significant network-level differences in local measures of
integration (i.e., SPL and EB), but not significant pairwise
effective connectivity differences themselves. That is, we included
only those paths which had significantly different SEC and
variance of DEC in accordance with the trend set out in
our hypothesis (p < 0.05, FDR corrected, controlled for
age, race, education and head-motion), in addition to having
significantly different local measures of integration (i.e., SPL
and EB). This was done to ensure that, irrespective of network-
level disturbance, the significant connections that emerged
in this work would have also cleared whole-brain multiple-
comparisons-corrected statistical threshold with traditional static
and dynamic effective connectivity like in most other studies.
This reassured that our results conformed to multiple layers
of validation, verification and statistical standards, and that
evidence of network disruption were obtained via multiple
analysis approaches, in addition to providing novel insights
through network characterization.

Behavioral Relevance of Network
Properties
In an effort to assess the behavioral relevance of complex-network
measures, we first obtained the association of the strength and
variability of complex-network measures (only those which fit
our hypothesis) with symptom severity in PCS (NSI score) and
PTSD (PCL5 score), as well as neurocognitive functioning (NCI
score and subtests). Neurocognitive functioning (e.g., executive
functioning, cognitive flexibility) is often impaired in psychiatric
disorders such as PTSD and PCS (Simmons and Matthews, 2012),
hence identifying such network properties associated with it
would be important. We report significant associations between
complex-network properties and behavioral/clinical measures.

In order to obtain additional insight into how network
properties of the ensemble of identified connections mapped
on to the ensemble of behaviors, we performed partial least
squares regression (PLSR) analysis (Krishnan et al., 2011), which
we employed to predict neurocognitive functioning (NCI and
subtests) and symptom severity (PCL5, NSI) from strength and
variability of network measures obtained from our prior analysis.
We present the percentage variance in behaviors explained by the
complex-network measures.
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Machine Learning Classification Analysis
For predicting the diagnostic membership of a novel subject
based on a novel measurement using the measure, success
in hypothesis testing is neither necessary nor sufficient.
A mechanism to quantify the predictive ability of the features
is not available with the hypothesis testing framework, requiring
us to acknowledge what a technique like hypothesis testing can
do, and cannot do. Statistically significant network properties
necessarily need not have high predictive ability, and vice
versa. Hence, those network properties that are both statistically
significant (in accordance with our hypothesis) and are top-
classifiers (high predictive ability) carry superior importance and
relevance. Therefore, we used machine learning techniques to
identify such network properties (features) which can accurately
classify individuals between controls, PTSD, and PCS + PTSD.
A Recursive Cluster Elimination based Support Vector Machine
(RCE-SVM) classifier (Deshpande et al., 2010a) was used to
classify the participants based on whole-brain network properties
(both strength and variability). Notably, findings from prior
complex-network analysis were not used to bias the machine
learning analysis as whole-brain data was used. A detailed
account of this technique can be found in Rangaprakash et al.
(2017a), and we have explained it thoroughly in Supplementary
Section “Machine Learning Classification Analysis” (SI-2.4) to
benefit the reader.

Briefly, RCE-SVM iteratively eliminates features to minimize
prediction error. The training data is clustered, and upon SVM
classification the clusters are scored using testing data. Low-
scoring clusters are eliminated (RCE step) and the procedure is
repeated until only the top-predictive features remain. In this
work, we made the following parameter choices. The training
set consisted of 80% of the participants, while the testing set
consisted of the remaining 20%. We began the algorithm with
forty clusters in the first RCE step. Based on performance,
the bottom 20% of the clusters were eliminated in every
subsequent RCE step. Two clusters containing the top-predictive
features remained in the final RCE step. With a hundred
random iterations, sixfold cross validation was performed in
every iteration, resulting in a total of 600 iterations over the
complete execution.

To be conservative, we obtained the worst-case classification
accuracy by evaluating the lowest accuracy value gathered from
test data among all 600 iterations (sixfolds × 100 repetitions).
Statistical significance of the accuracies was computed through
estimating p-values using a binomial null distribution B(η,ρ),
with ρ being the probability of accurate classification and η being
the number of participants like in previous studies (Pereira et al.,
2009). Only accuracies with p < 0.05 (Bonferroni corrected) were
taken as statistically significant.

We repeated this procedure and performed classification
independently with 32 available non-imaging measures as
input features instead of network measures. The 32 measures
were: (i) psychological health measures: Perceived Stress Scale,
Epworth Sleepiness Scale, Pittsburgh Sleep Quality Index, Zung
Depression Scale, and Zung Anxiety Scale; (ii) behavioral
measures: all CNS-VS measures including the NCI score;

(iii) exposure/injury descriptives: CES, lifetime concussions, and
Life Events Checklist. Worst-case accuracies and top-classifying
features were obtained, with them being compared with the
results obtained by using complex-network measures.

Machine Learning Regression
(Dimensional) Analysis
Network properties having statistical significance in accordance
with our hypothesis, having behavioral relevance as well as having
high predictive ability were attributed distinctive importance in
this study. Using such features, we finally performed support
vector regression (SVR) to predict PTSD and PCS symptom
severity, in order to assess those features dimensionally. Similar
to the classification analysis, we performed sixfold cross-validated
linear SVR over one million iterations. Specifically, in each
iteration, the regression model was developed using 5/6th of the
randomly chosen participants. The model used features described
above as inputs and learned the underlying function which maps
onto the PCL5 and NSI scores. Subsequently, the model was
used to predict PCL5 and NSI scores in the remaining 1/6th
participants. Our machine learning classification and regression
analyses involved no hyperparameter optimization. We report
correlation (R2) between predicted and measured symptom
severity scores.

Figure 4 summarizes the processing pipeline of all
the methods.

RESULTS

Demographics
The demographics (for the three groups) are presented in Table 1.
There were no significant group differences in age, p = 0.70,
or education, p = 0.15. The results indicated a difference in
the frequency of reported psychotropic use between the groups,
τb = 0.24, p = 0.01, with the highest percentage of medicated
participants being in the comorbid group. The number of
reported lifetime mTBIs also had significant group differences
specifically between control group and the PCS + PTSD group
[F(2,171) = 5.81, p = 0.004], but not the control versus PTSD
groups or PTSD versus PCS+ PTSD groups, p > 0.05.

Psychological
Health and Neurocognitive Function
The results revealed significant differences between the three
groups in posttraumatic symptoms (PCL5), [F(2,81) = 101.65,
p < 0.001], post-concussive symptoms (NSI), [F(2,78) = 49.79,
p < 0.001], and CES, F(2,79) = 40.69, p < 0.001. All p-values
remained significant after corrections for multiple comparisons.
As observed in Table 1, the PCS + PTSD group had the highest
scores out of the three groups on these respective measures.

The results indicated that, after corrections for multiple
comparisons, the control group displayed significantly higher
scores than the PCS + PTSD group on all neurocognitive
measures, p < 0.05, except for reaction time and verbal memory,
p > 0.05. The PCS + PTSD group also had significantly lower
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FIGURE 4 | Schematic of the complete processing pipeline executed in this study. Results corresponding to different analyses are summarized, which can be
viewed in more detail by referring to the corresponding figures.

scores in executive functioning, cognitive flexibility, and the NCI
compared to the PTSD group, p < 0.05. The findings suggest
that both the PTSD and PCS + PTSD groups display lower
scores than controls, but also, the comorbid group had greater
impairments than the PTSD group (see Table 1).

Complex-Network Analysis Using
Effective Connectivity
We used SEC and DEC connectivity matrices to compute six
complex-network measures (two global and four local measures).
With global measures (Figure 5), we found significantly lower
strength and variability of both segregation and integration
in PTSD and PCS + PTSD compared to controls. Our
finding indicates that both specialized processing and efficient
communication are compromised in the disorders at the whole
brain level. However, no significant differences were found
between PTSD and PCS + PTSD groups, indicating that PTSD
might contribute to global aberrations whereas the effect of mTBI
might be more localized.

Local Measures
Further granularity was obtained with local measures. Altered
segregation was mainly observed in prefrontal and occipital
regions (Figure 6A). None of the occipital regions were
statistically different between the PTSD and PCS+ PTSD groups,

FIGURE 5 | Group differences (p-values) for the two global measures
(transitivity and global efficiency) obtained from both SEC and DEC matrices.
We observe that whole-brain differences were driven by PTSD, while mTBI
likely did not cause whole-brain-level changes.

while the majority of the remaining identified regions were
significantly different. While these results were obtained using
a strict statistical threshold, we noticed that when a liberal
threshold was used (not shown here), more prefrontal nodes
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FIGURE 6 | Brain regions with altered functional segregation and/or integration across groups. (A) Regions-of-interest (ROIs) associated with significantly disrupted
functional segregation. (B) ROIs associated with significantly disrupted functional integration. The ROIs were defined by the Craddock-200 atlas (Craddock et al.,
2012). MFG, middle frontal gyrus; TPJ, temporo-parietal junction.

were affected compared to parietal/occipital nodes, which were
all characterized by lower segregation. This might explain why
we observed lower transitivity (global segregation) in PTSD and
PCS+ PTSD compared to controls.

Generally, the terms “inflation” and “deflation” (Figure 1)
correspond to elevation (increased value) or suppression
(decreased value) of static network properties, respectively, and
not just connection strengths of individual paths. Similarly,
“rigidity” corresponds to lower temporal variability of dynamic
network properties. However, in the special case when local
network properties of paths (i.e., integration) were considered,
these terms referred to network properties as well as connection
strengths of the paths under consideration.

Next, aberrant local measures of integration were found along
two distinct pathways (see Figure 6B for the affected ROIs),
which we present as two subnetworks for clarity: (i) fronto-visual
subnetwork (Figure 7A), and (ii) parietal-inflation subnetwork
(Figure 7B). The fronto-visual subnetwork showed prefrontal
deflation of secondary visual areas and lingual gyrus, i.e., lower
strength/variance of network properties (SPL and EB) of
paths connecting certain prefrontal regions to certain visual
regions. This subnetwork was, however, not significantly different
between the PTSD and PCS + PTSD groups, indicating that it
might not be affected by an mTBI (since one difference between
these groups is a history of significant prior mTBI(s) in the
PCS+ PTSD group). Notably, all paths here also exhibited lower
SEC/vDEC connectivity values in addition to lower strength and
variability of integration.

The parietal-inflation subnetwork (see Figure 7B)
showed that the visual areas affected in the fronto-visual
subnetwork were driving two key parietal regions [precuneus,

temporo-parietal-junction (TPJ)]. Additionally, we observed
fronto-subcortical disinhibition resulting in rigid inflation
(increased strength but lower variance of network properties
SPL and EB) of key subcortical areas (amygdala, hippocampus)
and anterior insula, which subsequently resulted in the
inflation of the same key parietal regions (precuneus, TPJ).
Interestingly, this fronto-subcortical-parietal subnetwork was
significantly different between all three groups, indicating
that both PTSD and mTBI affect this subnetwork, while the
occipital part was not significantly different between PTSD
and PCS + PTSD (see Figure 7C). This is a potentially
important finding.

Schematic of the entire network (Figure 8) shows that
the left middle frontal gyrus (MFG), which largely overlaps
with the dorsolateral prefrontal cortex (DLPFC), is the likely
source of the network-level disruption, whose deflation
(suppressed network properties) results in inflation (elevated
network properties) of downstream subcortical and visual
pathways, culminating in parietal inflation. Figures 6–8
were visualized using BrainNet Viewer (Xia et al., 2013). In
Supplementary Information, we provide observations from
additional supplemental analysis performed by us (i) using
a different brain parcellation instead of Craddock-200 [see
Supplementary Section “Observations Using a Different Brain
Parcellation Instead of Craddock-200” (SI-3.1)], (ii) using
eigenvariate time series data instead of mean time series [see
Supplementary Section “Observations Using Eigenvariate
Time Series Data Instead of Mean Time Series” (SI-3.2)], and
(iii) using ROI-level deconvolved data instead of voxel-level
deconvolved data [see Supplementary Section “Observations
Using ROI-Level Deconvolved Data Instead of Voxel-level
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FIGURE 7 | Functional segregation/integration (metastability) results. (A) The network of integration was broken down into two sub-networks. (A) Shows the first of
the two sub-networks, the fronto-visual sub-network that exhibited lower strength of integration and lower temporal variation of integration, which was significant for
control vs. PTSD and control vs. PCS + PTSD comparisons (but not PTSD vs. PCS + PTSD comparison). The yellow node had altered segregation between all
three groups, while the red nodes were different except for the PTSD vs. PCS + PTSD comparison. This sub-network likely represents reduced prefrontal inhibition
of visual memory processing and retrieval. (B) Second of the two sub-networks, the parietal inflation sub-network that exhibited altered strength of integration and
lower temporal variation of integration. Yellow paths were significantly different for all group-wise comparisons. Green paths were altered except for the PTSD vs.
PCS + PTSD comparison. This sub-network showed parietal-inflation caused by subcortical and visual network disruptions, which were in-turn driven by the left
middle frontal gyrus (MFG). (C) The entire network of disruption found in the work, showing nodes/paths in gray which were on a rigid deflated regime (lower
strength and temporal variability of segregation/integration; as well as lower strength and variability of effective connectivity, marking hypo-connected inflexible
connectivity), and nodes/paths in brown, which were on a rigid inflation regime (higher strength of segregation/integration and lower variation of
segregation/integration over time; as well as higher strength and lower variability of effective connectivity, marking hyper-connected inflexible connectivity).
Noticeably, all prefrontal nodes and prefrontal-originating paths exhibited a deflated regime, while the rest (those not associated with prefrontal regions) exhibit an
inflated regime. Such a lucid dichotomy is interesting. It is clearly observable that deflation originates in the prefrontal cortex, which subsequently results in the
inflation of parietal regions through two routes, subcortical and visual. MFG, middle frontal gyrus; TPJ, temporo-parietal junction.

Deconvolved Data” (SI-3.3)]. Our results remained consistent
across different choices.

Behavioral Relevance of Network
Properties
Strength and temporal variability of functional integration values
of four paths, which were significantly different between all

three groups (the yellow connections in Figure 8), as well as
the strength and temporal variability of functional segregation
of MFG and Insula (Figure 6A) showed significant associations
(p < 0.05 Bonferroni corrected) with neurocognitive functioning
(NCI) and severity of both PTSD symptoms (PCL5-score) and
post-concussive symptoms (NSI-score), thus highlighting their
relevance to the underlying pathophysiology (see Table 2).
Notably the associations followed the expected trend: increase
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FIGURE 8 | Schematic of the entire network: Yellow nodes/paths were significantly different for all three group-wise comparisons. Green paths (and red nodes) were
significantly different except for the PTSD vs. PCS + PTSD comparison. Thick lines correspond to connections between major sub-networks while thin lines
correspond to connections within sub-networks. The prefrontal sub-network consisted of MFG and medial frontal, the parietal sub-network consisted of TPJ and
precuneus, the visual sub-network consisted of lingual and primary visual areas while the emotion-memory sub-network consisted of sub-cortical regions such as
amygdala and hippocampus and cortical regions such as the insula. Disrupted left-MFG causes deflation of emotion-memory regions and visual memory-related
regions, culminating in parietal-inflation causing heightened symptoms often observed in PTSD and PCS.

in symptom severity and decrease in behavioral performance
corresponded to higher strength of integration in inflated
paths and lower in deflated paths, and lower variability (i.e.,
rigidity) in integration in all paths (similarly with segregation).
However, those connections which were not different between
PTSD and PCS + PTSD (green paths in Figure 8), as well
as other nodes in Figure 6A and global complex-network
measures had no significant associations with symptoms and
neurocognitive performance.

Since multitude of network paths and nodes had relevant
associations with multiple measures of symptoms and
neurocognitive performance (which we will now refer to as
neurobehavioral indices), it would be interesting to measure
how much variance in the neurobehavioral indices could
be explained by those set of network measures. This was
accomplished using PLSR (Krishnan et al., 2011), which finds
the combined ability of the strength and variability of functional
integration of the four connections and functional segregation
of two nodes to predict neurobehavior. We found that the
strength of network measures could explain 48.95% variance
in the neurobehavioral indices, while the temporal variability
of network measures could explain 57.17% variance. When
both were combined, they could explain 61.74% variance in
the neurobehavioral indices. A significantly large association
between these network measures and neurobehavior (R2 = 0.56,
R = 0.75, p = 3.5 × 10−32) was observed in the latent space
(see Figure 9A for linear fit). The latent space consists of
categorical variables that represent all network measures and

all neurobehavioral indices included into the model, so that
their relationship in the latent space could be considered the
effective association of all the included network measures with
all the neurobehaviors. As such, the latent space variables
contain more “information” in them than the individual
variables themselves, consequently explaining more variance
than individual measures. For this reason, our finding of higher
R2-value must not be surprising (Vul et al., 2009), and this is
fundamental to the multivariate nature of PLS, as elaborated by
Krishnan et al. (2011). Our finding reiterates that the strength
and variability of functional integration of the four paths and
that of segregation of the two nodes identified in this work are
behaviorally relevant.

One a side note, head motion [mean frame-wise displacement
(Power et al., 2012)] was not significantly correlated with
behavioral measures in latent space (R = 0.049, p = 0.52), complex
network measures in latent space (R = 0.056, p = 0.46), PCL5
(R = 0.047, p = 0.54) or NSI (R = 0.015, p = 0.84) symptom severity
scores. This enhanced our confidence in the results.

Machine Learning Classification Results
Top predictors are those that, among all network measures,
possess the highest ability in predicting the diagnostic
membership of a novel subject. To identify the top-predictors,
we performed RCE-SVM classification (Deshpande et al.,
2010a). Classification was done with two different paradigms:
(i) classification using the 32 non-imaging measures (NIMs),
and (ii) classification using strength and temporal variability
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TABLE 2 | Association of strength and variability of complex-network measures with the NCI score and symptom severity in PTSD (PCL5 score) and PCS (NSI score).

Complex network measure Path (Integration) or node (Segregation) Symptom severity score Behavioral measure

Neurocognitive

PCL5 score NSI score Composite

(PTSD) (PCS) Index (NCI)

Static functional integration measures

Shortest path length L_MFG→ L_Insula −0.6902 −0.6756 0.6589

L_Insula→ L_Amygdala 0.6822 0.6759 −0.6298

L_Amyg→ R_Hippocampus 0.6535 0.6930 −0.6389

R_Hippocampus→ L_Precuneus 0.6990 0.6580 −0.3545

Edge betweenness L_MFG→ L_Insula −0.6704 −0.6853 0.5871

L_Insula→ L_Amygdala 0.7370 0.6868 −0.5303

L_Amyg→ R_Hippocampus 0.7080 0.6372 −0.3956

R_Hippocampus→ L_Precuneus 0.7156 0.6669 −0.4193

Variance of dynamic functional integration

Shortest path length L_MFG→ L_Insula −0.7532 −0.7327 0.6704

L_Insula→ L_Amygdala −0.7579 −0.7382 0.6748

L_Amyg→ R_Hippocampus −0.7541 −0.7358 0.6709

R_Hippocampus→ L_Precuneus −0.8520 −0.7737 0.4579

Edge betweenness L_MFG→ L_Insula −0.7330 −0.7287 0.6672

L_Insula→ L_Amygdala −0.7358 −0.7260 0.6586

L_Amyg→ R_Hippocampus −0.7326 −0.7264 0.6590

R_Hippocampus→ L_Precuneus −0.8513 −0.7776 0.4619

Static functional segregation measures

Clustering Coefficient L_MFG −0.6859 −0.6685 0.6245

Local Efficiency L_MFG −0.7013 −0.6990 0.6826

L_Insula 0.6527 0.6550 −0.6290

Dynamic functional segregation measures

Clustering Coefficient L_MFG −0.7478 −0.7271 0.6538

L_Insula −0.7412 −0.7204 0.6533

Local Efficiency L_MFG −0.7524 −0.7324 0.6692

Table presents the correlation values (R-value), which were significant with p < 0.05 Bonferroni corrected.

of network measures taken from the entire brain (all data,
nothing left out). Results showed that classification using
network measures provided significantly better accuracy
(approximately 10% more, p < 0.05 Bonferroni-corrected) than
classification using NIMs (Figure 9B). This result indicates that
network measures have superior predictive ability in identifying
individuals with PCS and PTSD as compared to NIMs.

Table 3 shows the worst-case accuracies and top predictive
features (for average accuracy, please see Supplementary Section
“Supplemental Machine Learning Classification Results” (SI-3.4)
and Supplementary Figure S3). Also of considerable interest
are the top-predictors that resulted in highest classification
accuracy. For classification using network measures, strength,
and temporal variability of functional integration of the following
four paths were the top predictive features: L_MFG→ L_Insula,
L_Insula→ L_Amygdala, L_Amygdala→ R_Hippocampus and
R_Hippocampus → L_Precuneus). Coincidentally these four
paths also showed statistically significant differences in static
as well as time-varying network properties (the yellow paths
in Figure 8, which were significantly different between all
three groups). Also, coincidentally, these were the same four

paths whose network measures had significant associations with
neurocognitive functioning and symptom severity. To expand
upon this, our findings revealed that, in addition to behavioral
relevance and statistical separation, these paths also possessed the
highest predictive ability, all obtained in a data-driven fashion
from whole-brain complex-network data.

Machine Learning Regression Results
Finally, using these network properties (the yellow paths in
Figure 8), we performed SVR to predict PCL5 (and NSI)
scores. Over one million iterations, we found that predicted
and measured PCL5 scores were significantly correlated
(R2 = 0.72 ± 0.05, R = 0.85 ± 0.03, P = 3 × 10−7

± 10−6), as
also were predicted and measured NSI scores (R2 = 0.66 ± 0.04,
R = 0.81± 0.03, P = 7× 10−7

± 10−6). With such high predictive
ability (i.e., 66–72% variance explained in symptom severity),
these network properties assume considerable importance in
the context of PTSD and PCS + PTSD pathology. Figure 4
summarizes the processing pipeline of our entire work, along
with corresponding results.

Frontiers in Neuroscience | www.frontiersin.org 15 August 2019 | Volume 13 | Article 803

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-00803 August 23, 2019 Time: 12:0 # 16

Rangaprakash et al. Dynamics of Metastability in Brain Networks

FIGURE 9 | Association and prediction results. (A) Partial least squares regression maps independent (all included network measures combined) and dependent (all
neurobehaviors combined) variables into a latent space to find an aggregate relationship between them. The regression displayed in the figure is performed in the
latent space, which contains categorical variables representing all included network measures of the four integration paths (MFG→ Insula, Insula→ Amygdala,
Amygdala→ Hippocampus, Hippocampus→ Precuneus) and two functional segregation nodes (MFG, Insula) (both of which fit our hypothesis), and the
neurobehaviors in latent space. Their association in the latent space could be considered as the net association of all these network measures with all the
neurobehaviors. (A) Shows the linear fit in latent space (R2 = 0.56, R = 0.75, p = 3.5 × 10−32). (B) Machine learning classification result, which was obtained
through recursive cluster elimination based support vector machine (RCE-SVM) classifier, to classify between control, PTSD and PCS + PTSD groups. (B) Shows
worst-case classification accuracies obtained using recursively reducing number of discriminative features (poorer features are successively eliminated). Classification
was independently performed with both complex-network measures obtained from the entire brain and non-imaging measures (NIMs). We observed that network
measures outperformed NIMs, with approximately 10% superior performance in the final RCE step using top-predictive features of network measures.

DISCUSSION

In the current study, we successfully employed a novel complex-
network modeling framework to understand network-level
impairments in PTSD with and without mTBI. With the evidence
that the healthy brain is characterized by a balance between
functional segregation and integration, we sought to identify
aberrations in segregation and integration in these disorders.
We hypothesized that PTSD and mTBI are characterized by
altered strength and lower temporal variability of segregation
and integration in directional brain networks. Specifically, we
sought to identify networks that were affected by PTSD but not
mTBI (hypothesis-1), as well as those affected by both PTSD

TABLE 3 | Machine learning classification was performed using recursive cluster
elimination based support vector machine (RCE-SVM), to classify between
controls, PTSD and PCS + PTSD groups.

Worst-case

accuracy Top-predictive features

Non-imaging measures 70.79% Epworth sleepiness scale and Zung
depression scale

Complex network
measures

81.37% Strength and variability of functional
integration of the four yellow paths
in Figure 8

p-value for row-wise
comparison

7.81 × 10−28

Table presents the obtained worst-case classification accuracies along with top-
predictive features.

and mTBI (PTSD and PCS + PTSD group) (hypothesis-2).
We found evidence to support both hypotheses. This is the
first fMRI study utilizing EC network modeling in either PTSD
or PCS or the comorbid condition; the first study aiming to
classify PTSD from comorbid PTSD/mTBI based on resting-state
network properties using machine learning techniques; and the
first study to examine network properties using both static and
time-varying methods.

With global measures, we found that segregation and
integration were significantly different for control vs PTSD and
control vs PCS + PTSD comparisons only. This implies that the
clinical groups had aberrations at the whole-brain level compared
to controls, which is expected. However, the PTSD and comorbid
groups do not exhibit any differences at the whole-brain level,
suggesting that mTBI might result in more localized aberrations
not detectable by network modeling at the whole-brain level.
To further investigate discrete group differences, we used local
measures of segregation and integration.

In accordance with our hypothesis (Figure 1), group
differences in local segregation measures showed a clear
dichotomy between prefrontal and occipital regions (Figure 6A);
with all identified prefrontal nodes having lower segregation
and all identified occipital and subcortical nodes having higher
segregation. This indicates disruptive reduction in specialized
local processing in the prefrontal cortex, especially in the MFG
and medial prefrontal regions. This disruption had a negative
relationship with the occipital and subcortical nodes, which
showed disruptive increase in local processing. In addition,
none of the occipital nodes were significantly different between
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PTSD and PCS + PTSD, implying that those regions might not
differentiate between PTSD and PCS+ PTSD.

With local integration measures, we found a clear dichotomy
along two distinct pathways. The fronto-visual-parietal pathway
(Figure 7A) was not significantly different between PTSD and
PCS+ PTSD groups, indicating that mTBI likely does not have a
significant impact on this part of the network. Neither these paths
(either connectivities or integration measures) nor the associated
occipital nodes (segregation) exhibited any significant association
with symptom severity (PCL5 and NSI) or neurocognitive
functioning, hence we inferred that this part of the network
does not play a significant role in symptom expression, but it
might act as a supportive backend for other neural processes
causing the symptoms. The other pathway (fronto-subcortical-
parietal, Figure 7A) was significantly different between all
the three groups, and network properties of the paths and
associated nodes also showed significant associations with
symptom severity and neurocognitive functioning. Thus, we
inferred that disruption of this part of the network contributes to
symptom expression, and is likely implicated in mTBI pathology.
This dichotomy provides novel insights into our understanding
of both common and distinguishing network characteristics in
PTSD and mTBI, which has largely plagued the field, given
the high comorbidity and overlapping symptomatology between
them (Simmons and Matthews, 2012).

Another clear dichotomy arises in the strength of network
properties across groups. All prefrontal nodes and the paths
associated with them showed lower segregation/integration in
PTSD and PCS + PTSD compared to controls, suggesting a
strong effect of disruptive deflation prevalent in the prefrontal
cortex. All the subcortical, parietal and occipital nodes showed
higher segregation, and all paths associated with them not
involving prefrontal regions showed higher integration in
PTSD and PCS + PTSD compared to controls, a clear
indication of disruptive inflation in these regions. Notably, these
trends were also replicated in the raw effective connectivity
values. We argue that this is definitive evidence for impaired
prefrontal top-down regulation causing reduced control over
limbic structures and other regions responsible for symptom-
expression. Such unambiguous dichotomy clearly delineates the
distinct functionality between the prefrontal cortex and the rest
of the brain, and highlights its relevance to PTSD and mTBI.

Such dichotomy was not observed in the temporal variability
of network properties, in that all nodes/paths showed lower
variance, indicating some degree of pathological “frozen” state
(in accordance with our hypothesis). In other words, paths with
lower strength of network properties (deflation) tended to remain
in that state over the duration of the scan, potentially suggesting
impaired ability to increase the connectivity and the values of
complex-network measures. Similarly, paths with higher strength
of network properties (inflation) tended to remain inflated, also
indicating impaired ability to decrease the connectivity and the
values of complex-network measures. In total, we identified
15 nodes (segregation) and 16 paths (integration) which were
significantly different with the control vs. PTSD and control
vs PCS + PTSD comparisons, while only four nodes and five
paths were significantly different between all the three groups.
It is noteworthy that all the other nodes, with the exception of

the amygdala and parietal regions, involved in the connections
with affected functional integration also had altered segregation,
implying segregation-integration imbalance in these regions.
This observation corroborates with prior works, which have
found evidence for a fine balance between segregation and
integration (or metastability) in healthy individuals (Hellyer
et al., 2015), which is disrupted in neurologic and psychiatric
disorders (Yu et al., 2013; Rocca et al., 2014).

The networks were obtained with resting-state fMRI data;
hence, they represent the differences in baseline state between
the groups. Based on the prior knowledge regarding the neural
mechanisms underlying cognitive emotion regulation (Gross,
2014), we propose that our network (Figure 8) corresponds to
an aberrant emotion regulation system, with impaired prefrontal
control leading to an insufficient control over emotionally
intensive traumatic memories, which might underpin trauma re-
experiencing, flashbacks, hyperarousal and other symptoms in
soldiers with PTSD and PCS+ PTSD.

Functions of the individual nodes/regions that were
identified as having aberrations in the complex-network
properties provides interesting insights into the neuropathology
underpinning PTSD and mTBI. The MFG has been implicated in
cognitive control (Emmert et al., 2016), which includes emotion
regulation. It plays a pivotal role in the initiation of voluntary
regulation of emotion (Gross, 2014). All of the network-level
aberrations in our results could be traced back to the MFG
(by tracing the directional connections), leading us to the
conclusion that the MFG is the origin of network disruption
in these disorders. Several earlier works have speculated about
the MFG to be the likely origin of network disruption in PTSD
(White et al., 2014; Kennis et al., 2015), including a recent
meta-analysis (Simmons and Matthews, 2012). However, direct
evidence for such a hypothesis has not been found so far. We
provide novel evidence that supports this explanation. In fact, a
recent meta-analysis presented evidence from numerous findings
that repetitive transcranial magnetic stimulation (rTMS) applied
to the MFG may be effective as a treatment for PTSD (Berlim
and Van Den Eynde, 2014). Corroborating this, we discovered
the network of disturbance caused by the impairment of MFG,
wherein MFG is the source of disruptions. Taken together, the
MFG likely plays a key role in the initiation of cognitive control
necessary for emotion regulation, which when compromised,
likely contributes to the maintenance of symptoms associated
with PTSD and PCS+ PTSD.

We noticed prefrontal top-down deflation of functional
integration driven by the MFG, resulting in the inflation of
functional integration in sub-cortical structures via the insula
as well as parietal memory-related and sensory association
regions. The anterior insula plays a major role in mediating
prefrontal control over subcortical regions, and is thus found to
be involved in emotion regulation and dysregulation (Thayer and
Lane, 2000; Gross, 2014). It is structurally well connected with
the amygdala through white-matter tracts (Oishi et al., 2015),
and also plays a key role in subjective emotional experiences
(feelings), integrating emotionally relevant information through
multiple sources, and possibly representing them as one of
the many complex emotions (Thayer and Lane, 2000). We
found that prefrontal deflation of the insula causes inflated
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functional integration in the amygdala, which then results
in inflated local functional integration in the hippocampus.
Inflation of the hippocampus, a region crucial for declarative
memories, might imply elevated explicit traumatic memory
retrieval. It is well documented that both the hippocampus and
the amygdala play a vital role in mTBI and PTSD (Simmons
and Matthews, 2012; Costanzo et al., 2014). Since traumatic
memories are unique in the intensity of associated negative
emotions, emotion and memory share deep interconnection in
PTSD (Vasterling et al., 2009).

The precuneus plays an important role in the generation of
the experience of visual memories, whereas the TPJ is necessary
for higher-level audio-visual verbalization and information
processing (Gross, 2014). The path from the MFG leading to
these regions was characterized by reduced strength and variance
of functional integration. Thus, the memory-related and sensory
association network comprising the precuneus and TPJ may
translate to subcortical inflation and lack of prefrontal control,
contributing to the perseveration of traumatic memories as
observed in soldiers with PTSD.

There was a robust finding of disruption in the occipital
regions in our results. While the majority of the nodes and paths
were associated with the occipital region, none of them were
significantly different between PTSD and PCS + PTSD groups,
and none of them had behavioral relevance (through associations
with symptom severity and neurocognitive performance). Hence,
we inferred that this part of the network does not play a
significant role in symptom generation, but might act as a
supportive backend for the other fronto-subcortical-parietal
processes, which do appear to contribute to the symptoms (owing
to their association with symptom severity). This inference is
justifiable, given that the visual imagery aspect of traumatic
memories dominates the experience of vivid imagery associated
with traumatic memory perseveration in PTSD (Hayes et al.,
2012). It is known that the secondary visual regions, including
the lingual gyrus, largely enables visual imagery (Thompson
et al., 2009). In addition, the degree of activation in visual areas
during imagery is directly proportional to the visual intensity
of the object being imagined (Carpenter et al., 1999). Hence,
it is likely that this measure is not sensitive to discriminate
between PTSD and PCS + PTSD groups. This could provide
substantiation for our inference that the occipital part of
the network might be a backend process providing “imagery
support.” Thus, it appears more likely that symptom severity
can be attributed to the disruptions originating in the MFG,
as illustrated by significant associations with neurocognitive
performance and symptom scores.

There has been little success in addressing diagnostic
limitations associated with homogeneity of symptoms and high
comorbidity between PTSD and mTBI in military personnel
(Costanzo et al., 2014). It is acknowledged that the additional
burden of an mTBI in comorbid PCS+ PTSD results in increased
symptom severity (Vasterling et al., 2009). In the current study,
we provide a mechanistic basis that might distinguish the
underlying neurologic disruptions contributing to symptoms
reported by PTSD cases from those reported by comorbid
PTSD/mTBI cases. It is unclear as to whether the differences

FIGURE 10 | Flowchart illustrating an integrated model of connectivity and
network-level aberrations in PTSD and mTBI. Paths with thin gray lines
correspond to lower strength of network properties and connectivity (SEC)
and lower temporal variability of network properties (i.e., rigidity) and
connectivity (vDEC) in the clinical groups compared to healthy controls,
indicative of breakdown in prefrontal top-down modulation. Paths with thick
brown lines correspond to higher strength and lower temporal variability (i.e.,
rigidity) of network properties and connectivity, indicative of inflation in
subcortical limbic and parietal memory-related regions. Yellow paths were
significantly different between all the three groups, while the green paths were
significantly different only for the control vs. PTSD and control vs.
PCS + PTSD comparisons.

between the PTSD and PCS + PTSD groups are driven by
higher symptom severity of the PCS + PTSD group or by
impairments in white-matter integrity caused by an mTBI.
A recent study found diffused white-matter tracts between the
hippocampus and striatum to be the cause of corresponding
functional connectivity differences between PTSD and comorbid
PTSD/mTBI conditions (Rangaprakash et al., 2017a), yet it is
unclear whether they can be extended to our findings. The
network pathways that seem to differentiate, based on the
strength of associations with neurocognitive measures, between
the PTSD and comorbid PTSD/mTBI cases (PCS + PTSD) were
the MFG, insula, amygdala, hippocampus, and precuneus.

Our results are significant given that regions identified here
have been implicated (albeit inconsistently) in earlier studies
(Hayes et al., 2012; Simmons and Matthews, 2012; Eierud et al.,
2014) to be involved in both PTSD and mTBI; however, a precise
understanding of the underlying mechanisms, network structure,
and their subsequent causal relationships has not emerged from
them. With the help of a novel framework involving complex-
network modeling with static and dynamic EC networks, we
identified the nodes and network paths associated with the
disorders, and detailed their directional relationships. We also
highlighted the commonalities and differences in the PTSD and
PCS + PTSD networks. Our characterization corroborates with
behavioral manifestations of PTSD and PCS + PTSD, thus
substantiating the utility and fidelity of our approach. Figure 10
summarizes our network-level findings with a flowchart.

Additionally, functional integration of four specific paths
had significant associations with neurocognitive performance
and symptom severity (MFG → insula, insula → amygdala,
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amygdala→ hippocampus, hippocampus→ precuneus), as also
did functional segregation of two nodes (MFG and insula),
highlighting their relevance to the underlying neurobehavior
and symptomatology. These paths and nodes were the same as
those which were identified as significantly different between all
the three groups (Figure 8). In the PLS regression model, the
aforementioned network measures explained approximately 62%
variance in neurobehavioral measures.

Finally, we employed supervised machine learning
classification to identify top predictors that could diagnose
a novel subject. Literature is highly limited on the application of
machine learning to the classification of either PTSD or mTBI
[see notable recent works (Liu et al., 2015; Vergara et al., 2016)].
Additionally, there have been no studies to have employed
machine learning to classify comorbid PTSD and mTBI.
A notable contribution of our work is that we performed machine
learning classification, and found that accuracies obtained using
network measures were significantly higher (∼10% more)
than non-imaging measures. Interestingly, we found that the
network measures of the same four aforementioned paths (MFG
→ insula, insula → amygdala, amygdala → hippocampus,
hippocampus→ precuneus) resulted in the highest classification
accuracy. They were identified to be the top features of diagnostic
prediction, in addition to being identified as statistically
significant in accordance with our hypothesis, as also being
behaviorally relevant through associations with neurocognitive
and symptom scores. Each of these attributes were determined
in a data-driven fashion from network properties of the entire
brain, without imposing any priors or biases. In addition, SVR
analysis showed that PCL5 and NSI scores predicted using these
network properties could explain 72% and 66% variance in
measured symptom severity, respectively. These observations
demonstrate that these network-level markers have potential as
high-quality biomarkers of the neurobehavioral characteristics
of PTSD and PCS. Our network-level features satisfy three
out of four conditions posited by Woo and Wager (2015) as
necessary to be a good biomarker (diagnosticity, deployability,
and interpretability). With regard to the fourth condition
(generalizability), based on suggestions by Woo and Wager
(2015), we issue an open call for researchers to share clinical data
with us for validating our classifier using their data.

Our work presents some notable methodological contri-
butions. While modeling of dynamic connectivity has been
prevalent for a while (Hutchison et al., 2013), the modeling
of dynamic properties of complex-network measures is in its
nascent stages. Graph theoretic measures provide additional
characterization of the connectomic brain, which is not available
through pairwise connectivity modeling (Rubinov and Sporns,
2010), hence the development and advancement of dynamic
complex-network modeling (similar to dynamic connectivity
modeling) is important and necessary for brain imaging. A few
studies have probed on this topic. Zalesky et al.’s (2014)
work was one of the first major studies on dynamics of
graph metrics, wherein they introduced the modeling of time-
varying graph measures. Liao et al. (2015) later explored the
structural substrates of time-varying graph metrics, whereas
Chiang et al. (2016) presented a technique for studying

temporal stationarity of graph metrics. Chen et al. (2016)
took forward these developments to study the dynamics of
the salience network’s spatiotemporal organization, while Betzel
et al. (2016) studied the correspondence between dynamics
of connectivity and dynamics of modularity. These studies
have demonstrated the use of time-varying graph metrics in
different ways; however, as Preti et al. (2016) have pointed
out in their review, prior studies have focused on only two
metrics, efficiency and modularity. None of these studies
integrates information from both static and time-varying graph
metrics, nor have they probed into the dynamics of graph
metrics obtained from directional connectivity. Our study is
an advancement over these prior works, in that we present
a technique to compute time-varying global, nodal as well
as connection-level metrics of segregation and integration
from effective connectivity networks, additionally presenting
a novel framework for integrating the variability in dynamic
network information with static network information to study
three different cohorts (two psychiatric populations and a
control group). In our opinion, this is a notable advancement
in the field. Our contribution is broad and robust to
accommodate the specific requirements of different varieties of
brain imaging studies.

This study integrates several dimensions within a single
framework, as follows: (i) Connectivity modeling as well as
complex network modeling, (ii) segregation (node-level) as
well as integration (connection-level), (iii) static as well as
dynamic connectivity, (iv) EC modeling, especially dynamic EC
being a recent advancement, (v) PTSD as well as comorbid
PCS + PTSD, and (vi) statistical analysis as well as machine-
learning based predictive analysis. It is notable that this is the
first fMRI study to utilize either effective connectivity or dynamic
connectivity or static/dynamic complex-network modeling based
on effective connectivity in either PTSD or PCS or the comorbid
condition; and one among a few studies to have utilized machine
learning in either of these disorders. Additionally, since our
findings were based on an overlap/intersection of results with
the PTSD and the PCS + PTSD groups, the observations
and conclusions are also relevant to the characterization of
PTSD alone. We intend to convey that our novel framework
is relevant to the study of any cognitive domain, psychiatric
or neurologic condition. We urge researchers to employ this
framework for enhancing the understanding other disorders and
cognitive domains.

Finally, we present several caveats and limitations of our
work, demanding careful interpretation of the findings, as
also providing suggestions for future works: (1) Participants
sustaining an added burden of PCS in addition to PTSD
displayed higher symptom severity in comparison to those
with PTSD alone. Though there is limited imaging literature
on comorbid PTSD and PCS, we speculate that: (i) PTSD-
related brain aberrations that were already prevalent before
developing PCS would be aggravated by the added burden of
a prior mTBI, or, (ii) alleviated functional neural aberrations
corresponding to elevated symptom severity would be a
consequence of the participants sustaining an mTBI with
subsequently or concomitantly being exposed to a traumatic

Frontiers in Neuroscience | www.frontiersin.org 19 August 2019 | Volume 13 | Article 803

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-00803 August 23, 2019 Time: 12:0 # 20

Rangaprakash et al. Dynamics of Metastability in Brain Networks

experience, in comparison to participants who were exposed to
psychological trauma alone. Untangling the underlying cause-
effect relationships in comorbid PTSD and PCS could be an
aim of future experimental designs, in order to confirm either
of the two scenarios. (2) Though we compare and discus
the common and distinguishing neural phenotypes of PTSD
and mTBI, it must be noted that our study population did
not consist of a pure mTBI/PCS group; rather it consisted of
a group with elevated PTSD symptoms (pure PTSD group)
and a comorbid group diagnosed with both mTBI/PCS and
PTSD, using which the common and distinguishing neural
phenotypes of PTSD and mTBI/PCS were derived through our
novel framework (Figure 1). (3) Military participants with CES
were part of our study cohort. This is an invaluable strength
of our work since it provides a more representative control
group. Recent works have found differences between healthy
civilians and healthy combat personnel with resting-state fMRI
connectivity (Kennis et al., 2015), “potentially due to military
training, deployment, and/or trauma exposure.” Hence, future
studies could verify if our findings are equally applicable to
civilian or non-combat-related PTSD and PCS. (4) With only
male soldiers being considered in this study, our findings are
not directly generalizable to female soldiers. (5) During RCE-
SVM classification, our entire dataset was split into training
(80%) and testing/validation (20%) data sets, resulting in about
seventeen participants (20% of 87 participants) in the testing set.
This is not a relatively large number for an fMRI connectivity
study. (6) Given the heterogeneous patterns in PTSD and mTBI,
the number of subjects used in this study is relatively small,
which raises concerns about the reproducibility of our results.
Our findings must thus be interpreted with certain degree of
caution. Additionally, we invite researchers to replicate our
study design in larger sample sizes to assess reproducibility of
our findings. To determine clinical utility of the findings for
diagnosis, the findings must be replicated on a larger sample that
is representative of the target population in terms of ethnicity,
gender, etc. (7) Given the uncontrolled nature of resting state
(Hurlburt et al., 2015), it is not possible to determine whether
resting-state connectivity differences between groups are driven
by differences in the “type of mind wandering” exhibited by
controls versus those with disorder, rather than an inherent
“baseline” difference. It is possible that the scanning session
had captured the brain while being engaged in the symptomatic
state itself rather than, or perhaps in addition to, capturing the
underlying physiological weaknesses that putatively caused the
symptoms. This issue could be specific to only some clinical
populations like ours, where symptoms often manifest during
periods of idle thought. It is not possible to completely untangle
this problem with the data we have. However, future studies
could employ methods such as “descriptive experience sampling”
(Hurlburt et al., 2015) in order to characterize the “type of mind
wandering” in PTSD versus controls so as to ascertain whether
such differences might underlie alterations in resting state
connectivity. (8) With our fMRI data being cross-sectional, there
is scope for longitudinal studies to develop similar hypotheses
over the advancement, recovery and rehabilitation phases of
the clinical groups. In addition, it would be an appropriate

test for validating the four pivotal network paths underlying
information integration (L_MFG → L_Insula, L_Insula →
L_Amygdala, L_Amyg→ R_Hippocampus, R_Hippocampus→
L_Precuneus) as candidate imaging biomarkers for PTSD, and
comorbid PCS and PTSD.
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