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Timely and accurate RNA synthesis depends on accessory proteins that instruct RNA
polymerase (RNAP) where and when to start and stop transcription. Among thousands
of transcription factors, NusG/Spt5 stand out as the only universally conserved
family of regulators. These proteins interact with RNAP to promote uninterrupted
RNA synthesis and with diverse cellular partners to couple transcription to RNA
processing, modification or translation, or to trigger premature termination of aberrant
transcription. NusG homologs are present in all cells that utilize bacterial-type RNAP,
from endosymbionts to plants, underscoring their ancient and essential function. Yet,
in stark contrast to other core RNAP components, NusG family is actively evolving:
horizontal gene transfer and sub-functionalization drive emergence of NusG paralogs,
such as bacterial LoaP, RfaH, and UpxY. These specialized regulators activate a few (or
just one) operons required for expression of antibiotics, capsules, secretion systems,
toxins, and other niche-specific macromolecules. Despite their common origin and
binding site on the RNAP, NusG homologs differ in their target selection, interacting
partners and effects on RNA synthesis. Even among housekeeping NusGs from diverse
bacteria, some factors promote pause-free transcription while others slow the RNAP
down. Here, we discuss structure, function, and evolution of NusG proteins, focusing on
unique mechanisms that determine their effects on gene expression and enable bacterial
adaptation to diverse ecological niches.
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INTRODUCTION

In every living cell, multi-subunit RNA polymerases (RNAPs) carry out the first step of gene
expression, transcription of a DNA template into an RNA copy. Reflecting their common
evolutionary origin in the last universal common ancestor (LUCA) and the basic mechanism of
RNA synthesis, RNAPs share an overall architecture and structural elements that play key roles in
the assembly of transcription complexes, substrate selection and catalysis, interactions with nucleic
acids, etc. (Lane and Darst, 2010a,b). However, extant RNAPs differ greatly in subunit composition
and sequence: core RNAPs are composed of 5–7 subunits in bacteria vs. 12+ subunits in archaea
and eukaryotes, and even RNAPs from mesophilic bacteria Escherichia coli and Bacillus subtilis
are only 50% identical. Differences in cellular transcriptional machinery are thought to reflect
unique regulatory constraints imposed by diverse habitats. In support of this notion, even basal
general transcription factors that assist RNAP during each step of the transcription cycle are not
conserved between kingdoms. The sole exception to this trend is a transcription elongation factor
NusG (Werner, 2012).
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Bacterial Nus (N-utilization substance) proteins have
been identified genetically based on their requirement for
the coliphage λ development (Casjens and Hendrix, 2015).
In E. coli and Salmonella, potentially harmful xenogenes
are silenced by premature transcription termination by
a hexameric RNA helicase Rho (Peters et al., 2012; Bossi
et al., 2019). To escape silencing, bacteriophages have evolved
antitermination mechanisms targeting Rho or RNAP (Santangelo
and Artsimovitch, 2011). The immediate early gene N of phage λ

is required for the expression of delayed-early genes. N nucleates
the assembly of a large transcription antitermination complex
(TAC) composed of RNAP and NusABEG proteins (Mason
and Greenblatt, 1991; Krupp et al., 2019) and a similar TAC
assembles during transcription of the E. coli ribosomal RNA
operons (Squires et al., 1993; Huang et al., 2020). NusA and
NusG are general transcription elongation factors, which are
associated with RNAP transcribing all genes, at least in E. coli
(Mooney et al., 2009a). NusE, a.k.a. the ribosomal protein S10,
requires a binding partner NusB to remain soluble while not
a part of the ribosome; NusB is selectively enriched on rRNA
operons (Mooney et al., 2009a), consistent with its principal role
in rRNA synthesis. Among the shared components of the TACs,
NusG is the only factor that facilitates transcription elongation
in vivo and in vitro (Burova et al., 1995; Burns et al., 1998;
Zellars and Squires, 1999); by contrast, NusA increases RNAP
pausing and intrinsic termination, whereas NusB/E have no
effect (Belogurov and Artsimovitch, 2015).

All NusG-like proteins (NusG in bacteria; Spt5 in archaea
and yeast, DSIF in mammals) bind to an evolutionary conserved
site on the largest RNAP subunit (Klein et al., 2011; Martinez-
Rucobo et al., 2011; Ehara et al., 2017; Kang et al., 2018; Vos
et al., 2018). The NusG binding site is located on the tip of the
RNAP clamp, a conserved flexible module that closes over the
DNA binding channel. The clamp closes during the formation
of a transcriptionally competent initiation complex, remains
closed throughout elongation, and opens during termination
(Belogurov and Artsimovitch, 2019); more subtle movements of
the clamp have been proposed to accompany RNAP pausing,
which serves as a prelude to termination (Kang et al., 2019).
By keeping the clamp locked, NusG proteins are thought to
promote continuous, pause-free RNA synthesis, an essential
function given that the premature release of the RNA transcript
is irreversible. The presence of a clamping factor in LUCA
thus underscores the fundamental importance of transcription
processivity, particularly on difficult templates (Werner, 2012).

The antipausing and, by inference, antitermination activity of
NusG prompted its annotation as a transcription antiterminator.
Likewise, many subsequently discovered bacterial NusG
homologs have been shown to possess antitermination activity
(Artsimovitch and Knauer, 2019). Nevertheless, this view has
been challenged since the time of E. coli NusG discovery by the
data in support of its role as a termination-promoting factor.
NusG is essential in wild-type E. coli (Downing et al., 1990)
and its depletion leads to defects in Rho-dependent termination
(Sullivan and Gottesman, 1992). NusG aids Rho in silencing
transcription of damaged and harmful RNAs genome-wide
(Peters et al., 2012) and promotes efficient termination by Rho

in vitro (Burns and Richardson, 1995). Indeed, the nusG gene
can be deleted, albeit at a significant fitness cost, in an E. coli
strain lacking the toxic rac prophage, which is silenced by Rho
(Cardinale et al., 2008). Point mutations in nusG that lead to
defects in transcription termination (Saxena and Gowrishankar,
2011) or interactions with the ribosome (Saxena et al., 2018) do
not have significant fitness phenotypes.

Functional studies of NusG-like proteins from different
bacteria support a picture in which these factors can mediate
diverse effects on RNA synthesis (Figure 1). Through contacts to
RNAP, nucleic acids, and auxiliary proteins, NusG homologs can
suppress or promote transcriptional pausing and termination and
bridge RNAP to other cellular machineries. Most unusually for a
family of alternative transcription regulators, although binding
to the same site on the transcribing RNAP, NusG-like proteins
frequently have exactly opposite effects on the expression of
some genes, most notably those encoding virulence determinants.
Furthermore, even the housekeeping NusG proteins have
seemingly opposite effects on RNA synthesis; for example, unlike
its E. coli counterpart, B. subtilis NusG promotes RNAP pausing
in vitro and in vivo (Yakhnin et al., 2016, 2020a). Below, we
describe recent advances in our understanding of molecular
mechanisms, evolution, and regulatory diversity of bacterial
NusG-like proteins.

STRUCTURE AND TARGET
CONSERVATION

NusG-like proteins have a similar structural core consisting of
a NusG N-terminal domain (NGN) and a C-terminal domain
with a 27-residue long Kyrpides-Ouzounis-Woese (KOW) motif
common among RNA-binding proteins (Kyrpides et al., 1996;
Ponting, 2002; Figure 2). Bacterial NusG alone can perform
its function, while Spt5 has an obligatory partner—a small zinc
finger protein Spt4 (called RpoE in archaea). Eukaryotic Spt5
contains several KOW domains, the first of which carries a
large insertion, an N-terminal acidic region, and an unstructured
C-terminal repeat (CTR) domain (Figure 2A); in metazoan
DSIF, additional KOWs are present at the very C terminus of

FIGURE 1 | Unique and overlapping cellular functions of housekeeping E. coli
NusG and its specialized paralogs.
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FIGURE 2 | Structural conservation of NusG-like proteins. (A) Domain organization. (B) Superposition of NGN and KOW domains. PDB IDs: E. coli (Eco)
NusG-NGN: 2K06; Eco NusG-KOW: 2KVQ; Eco RfaH-NGN: 2OUG; Eco RfaH-KOW: 2LCL; Pyrococcus furiosus (Pfu) Spt5-NGN/KOW: 3P8B; Saccharomyces
cerevisiae (Sce) Spt5-NGN: 2EXU; Sce Spt5-KOW1: 4YTK; Sce Spt5-KOW2/3: 4YTL; Homo sapiens (Hsa) DSIF-NGN: 3H7H; Hsa DSIF-KOW1: 5OIK; Hsa
DSIF-KOW2: 2E6Z; Hsa DSIF-KOW3: 2DO3; Hsa DSIF-KOW4: 5OHO; Hsa DSIF-KOW5: 2E70. Sce Spt5-KOW1/2/3 have similar structures and are shown in the
same color, as are Hsa DSIF-KOW1/2/3/4/5 domains.

the protein (Decker, 2020). Apart from the KOW1 insertion,
the NGN and KOW domains from all life have very similar
topologies (Figure 2B).

All NGN domains make very similar contacts to two
conserved RNAP elements (Klein et al., 2011; Martinez-Rucobo
et al., 2011; Ehara et al., 2017; Kang et al., 2018), the clamp helices
(CH) in the largest RNAP subunit (β’ in Bacteria) and the gate
loop in the second largest subunit (β in Bacteria).

In addition, some NGNs make sequence-specific contacts to
the non-template DNA strand in the transcription bubble of the
transcription elongation complex (TEC; see below). The NGN
binding site on the TEC is structurally analogous to binding sites
of transcription initiation factors in promoter complexes; e.g.,
bacterial σ factors recognize non-template DNA sequences and
an adjacent region on the β’ CH during promoter-dependent
initiation (Zhang et al., 2012). Consequently, NusG/Spt5 proteins
compete with the cognate initiation factors for binding to
RNAP, reducing pausing during transcription elongation and
potentially facilitating promoter escape (Sevostyanova et al.,
2008; Grohmann et al., 2011). Along with the housekeeping
NusG present in every free-living cell, many species also
contain NusG paralogs (Wang B. et al., 2020) that regulate
expression of selected genes in a sequence- or condition-
specific fashion.

While the “clamping” contacts between the NGN and
TEC are sufficient for NusG/Spt5 effects on RNA synthesis
(Mooney et al., 2009b; Hirtreiter et al., 2010), the KOW
domains determine their regulatory properties. In E. coli NusG,
interactions between the KOW domain and Rho facilitate

termination (Lawson et al., 2018), whereas the KOW-ribosome
interactions couple transcription to translation (Saxena et al.,
2018). In eukaryotic Spt5, the presence of multiple KOWs and
the CTR, which acts as a hub for recruitment of several RNA
processing enzymes and other cellular factors (Decker, 2020),
expands the range of regulatory interactions.

SILENCING ABERRANT
TRANSCRIPTION

Accurate and timely execution of the gene expression program
is essential for cell survival. By itself, RNAP is a passive
interpreter of genetic information. Auxiliary proteins instruct
RNAP to synthesize RNAs that are required for proper
cellular function and prevent it from wasting resources on
making useless or potentially harmful RNAs, such as antisense
transcripts or mRNAs encoding toxic proteins. In E. coli, the
housekeeping NusG travels with RNAP transcribing almost all
genes (Mooney et al., 2009a), save a few controlled by its
paralog RfaH (Belogurov et al., 2009), actively contributing to
the transcriptome surveillance. First, NusG cooperates with Rho
to silence transcription of aberrant RNAs; this is an essential
function of E. coli NusG (Mitra et al., 2017). Second, NusG
increases RNAP processivity by modifying properties of the TEC,
a shared function of NusG proteins from all life. Third, NusG is an
integral part of multi-component nucleoprotein complexes that
promote facile synthesis and proper assembly of the ribosomal
RNAs, and thus the ribosomes. Finally, NusG helps to protect
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translatable mRNAs from premature release by Rho by bridging
the RNAP and the ribosome.

Rho-Dependent Termination
Rho is an ATP-dependent, RecA-type hexameric helicase that
terminates transcription of a wide variety of genes in bacteria.
Initially viewed as a sequence-specific terminator that requires
a C-rich Rho utilization (rut) element for loading onto the
nascent RNA and subsequent TEC dissociation, Rho has recently
emerged as a global multi-functional regulator (Mitra et al.,
2017). In addition to its canonical role, inducing termination
at the end of some genes (Peters et al., 2012), Rho silences
transcriptional noise and expression of horizontally acquired
genes, reduces translational stress, and prevents replication-
transcription collisions. Genome-wide studies demonstrate that
E. coli Rho travels with the elongating RNAP, together with NusG
and NusA (Mooney et al., 2009a), from the onset of elongation,
and acts on numerous cellular targets that lack easily recognizable
rut sequences (Peters et al., 2012).

To silence AT-rich xenogenes and trigger the release of
antisense transcripts or low-quality mRNAs independently of
their sequence, Rho relies on help from NusG, which has been
implicated in Rho termination at suboptimal, C-less sites (Peters
et al., 2012). In a binary system lacking RNAP, NusG activates
Rho by promoting isomerization from an open-ring, RNA-
loading state, to a closed-ring, translocation-competent state,
the transition otherwise triggered by a perfect rut element in
the RNA (Lawson et al., 2018). The NusG KOW interacts with
the C-terminal translocase domain of Rho (Figure 3), inducing
conformational changes that favor the ring closure even on
RNAs devoid of C residues (Lawson et al., 2018). NusG-Rho
contacts are mediated by the same KOW region that binds to
the ribosomal protein S10 (Burmann et al., 2010), explaining
why the translating pioneering ribosome protects the mRNA
from a spurious attack by Rho. By contrast, the corresponding
Rho-binding residues are missing in RfaH (Lawson et al., 2018),
explaining why RfaH does not bind to Rho.

However, the ring closure activity of NusG may not be the
main mechanism by which NusG stimulates Rho-dependent
termination. Consistent with biochemical data (Schmidt and
Chamberlin, 1984; Epshtein et al., 2010) and genome-wide
mapping (Mooney et al., 2009a) that support persistent Rho-
RNAP interactions, a recent cryo-EM analysis of the E. coli
TEC under attack by Rho reveals seven complexes thought
to represent sequential steps in the termination pathway (Said
et al., 2020). During the initial binding to the TEC, Rho makes
numerous contacts to the RNAP subunits, NusA and NusG
NGN (Figure 4), but captures the nascent RNA transcript only
later in the pathway. Once engaged, Rho induces dramatic
conformational changes in RNAP and Nus factors, which
ultimately trap a moribund TEC in which the clamp is wide
open and the RNA 3′ end is dislodged from the RNAP active
site (Said et al., 2020), a model initially proposed by Nudler
and colleagues (Epshtein et al., 2010). In this structurally defined
pathway, NusG NGN assists Rho loading onto the RNA and
then dissociates to allow for Rho-mediated RNAP clamp opening,
whereas NusG KOW is invisible. Remarkably, the Rho ring

FIGURE 3 | Rho/NusG-KOW interface. Rho residues that contact NusG are
shown as red sticks. NusG KOW residues implicated in Rho and S10 binding
are shown as cyan sticks; PDB ID: 6DUQ.

remains opens even in the moribund TEC, implying that the
NusG-promoted Rho helicase activity is required to unwind
the RNA:DNA hybrid only after RNAP inactivation; this model
is supported by a report that the E. coli rho gene becomes
dispensable in the presence of a heterologous RNA:DNA helicase
(Leela et al., 2013). The allosteric model of termination explains
how Rho selectively binds to RNAs that are still being made
and reinforces the notion that, even in bacteria, transcriptional
regulators act in the context of multi-protein complexes, rather
than on RNAP alone.

Indeed, recent evidence suggests that Rho and NusG
cooperate with the histone-like nucleoid-structuring (H-NS)
protein, a prototypical xenogeneic silencer, to limit unwanted
gene expression. In E. coli, Rho and H-NS co-localize on
the chromosome (Chandraprakash and Seshasayee, 2014) and
mutations in rho and hns lead to synergistic growth defects
(Peters et al., 2012). In Salmonella, depletion of NusG leads
to massive upregulation of H-NS silenced loci, which include
pathogenicity islands and are devoid of rut sites; consistently,
mutations that compromise Rho-rut contacts have no effect on
NusG-mediated silencing (Bossi et al., 2019). While the molecular
mechanism of this cooperation remains to be determined, it
likely reflects RNAP stalling when running into nucleoprotein
filaments assembled by H-NS and other nucleoid-associated
proteins on the template DNA (Boudreau et al., 2018).

Inhibition of RNAP Pausing
During transcription of cellular DNA, RNAP frequently
encounters unfavorable sequences or obstacles, such as DNA-
bound proteins or DNA lesions, that slow the enzyme down
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FIGURE 4 | A cryo-EM structure of the Rho engagement complex, in which
Rho hexamer makes initial contacts with the transcribing RNAP bound to
NusA and NusG. The DNA is shown in black; the RNA—in red. PDB ID: 6Z9P.

or induce arrest. Retrograde movement of the RNAP along
the RNA and DNA chains, or backtracking, is a common
mechanism of pausing and arrest (Nudler, 2012). Backtracked
complexes are rendered inactive because the nascent RNA is
extruded through the active site, blocking nucleotide addition
(Figure 5). The arrested complexes are long-lived, blocking
progression of other RNAPs and replisomes, and must be
released or reactivated upon transcript cleavage. Cleavage
of the backtracked RNA, which is mediated by the RNAP
active site and is strongly enhanced by Gre cleavage factors
(Sosunova et al., 2003), repositions the 3’ end of the RNA in
the active site. By preventing backtracking, an activity well-
documented in the case of NusG and RfaH (Svetlov et al., 2007;
Herbert et al., 2010), NusG-like proteins facilitate processive
transcription and promote genome stability. Recent functional
and structural data suggest a molecular mechanism of enhanced
RNAP processivity, in which the NGN domain loops out the
non-template DNA, bringing the upstream and downstream
DNA duplexes closer together (Turtola and Belogurov, 2016;
Kang et al., 2018; Nedialkov et al., 2018), and establishes contacts
to the upstream DNA duplex (Krupp et al., 2019; Said et al.,
2020). Together, these interactions alter the upstream DNA
trajectory (Figure 5) and stabilize the upstream edge of the
transcription bubble, which must melt to allow backtracking,
explaining how NusG and RfaH inhibit backtracking (Svetlov
et al., 2007; Herbert et al., 2010). In addition, the NGN domain,
at least in the case of RfaH (Kang et al., 2018), disfavors subtle
conformational changes (termed swiveling) that accompany the
formation of hairpin-stabilized paused TEC (Kang et al., 2019)
and constrains the path of the non-template DNA, preventing it
from assuming non-productive conformations (Nedialkov et al.,
2018); a similar mechanism has been proposed for yeast Spt5
(Crickard et al., 2016). Together, the NGN-promoted changes

in the TEC ensure pause-free RNA synthesis, preventing arrest
and termination.

NusG-Assisted Antitermination
To enact RNA surveillance, Rho travels with the elongating
RNAP and probes the nascent RNA “translatability.” RNAs that
contain premature stop codons or are poorly translated, e.g.,
under conditions of proteotoxic stress, are released by Rho
(Richardson, 1991). Yet a very large fraction of cellular RNA is
never translated, most notably the most abundant and absolutely
essential rRNA which comprises ∼50% of the newly synthesized
RNA during the exponential growth phase (Dennis et al., 2004).
Thus, making rRNA rapidly while protecting it from Rho is key
to the survival of cells. Similarly, phage replication is critically
dependent on uninterrupted transcription of the phage genome,
but Rho is known to broadly silence xenogenes, including phages
(Mitra et al., 2017).

Protection of the phage λ early genes and E. coli rRNA operons
(rrn) from Rho is conferred by multicomponent TACs. Recently
solved cryo-EM structures of these TACs (Figure 6) revealed
common and unique details of their action (Krupp et al., 2019;
Huang et al., 2020). Both complexes assemble on boxA and boxB
elements in the nascent RNA and share a set of NusABEG factors.
Each complex also includes unique factors, N in the λN-TAC
and an inositol monophosphatase SuhB dimer + the ribosomal
protein S4 in the rrn-TAC.

The λN-TAC is resistant to pausing and termination elicited
by hairpin signals and Rho. An intrinsically unstructured λN
is the principal player which uses a range of mechanisms
to modify the TEC (Krupp et al., 2019). λN snakes inside
the RNAP, making contacts to multiple RNAP domains and
repositioning others, and rearranges Nus factor interactions. λN
stabilizes the elongation-competent state of RNAP, inhibiting
the nascent RNA hairpin formation and its stabilization by
NusA, supports the anti-backtracking and anti-swiveling action
of the NusG NGN domain. In the λN-TAC, neither NusG
domain can make contacts to Rho observed in the binary Rho-
NusG complex (Lawson et al., 2018) and Rho-TEC (Said et al.,
2020) structures. Consequently, in the λN-TAC, NusG anti-
pausing activity is augmented while its termination-promoting
activity is abolished.

Although the rrn-TAC has a different protein composition,
analogous structural changes inhibit backtracking and NusA-
stabilized hairpin pausing and sequester NusG from Rho, with
a much larger, well-folded SuhB dimer playing a central role
in restructuring of the TAC components instead of λN (Singh
et al., 2016). Notably, in addition to promoting pause- and
termination-free RNA synthesis, the rrn-TAC acts as a molecular
chaperone that actively assists the folding and maturation of the
nascent RNA (Huang et al., 2020). Similarly to the ribosome-
associated chaperones, SuhB, S4 and Nus factors assemble into
a ring around the RNA exit channel, extending the channel
outward to accommodate a longer segment of the exiting RNA.
The RNA is thus sequestered away from the upstream DNA,
blocking formation of deleterious R-loops, and is held within
a positively charged protein cage to promote folding of local
secondary structures and annealing of distant segments, which
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FIGURE 5 | Antipausing activities of E. coli NusG and RfaH. Upon encountering a pause-inducing sequence, RNAP can either backtrack or undergo conformational
changes termed swiveling; the latter are stabilized by formation of a pause hairpin in the nascent RNA. The NGN domains of both proteins bind near the upstream
edge of the transcription bubble, promoting forward and thus inhibiting backward translocation. Transient (NusG) or stable (RfaH) interactions with the non-template
DNA strand bring the upstream and downstream DNA duplexes closer together (indicated by angles between these duplexes), an effect that is more pronounced
with RfaH. RfaH also binds to the β’ and β subunits with higher affinity, restricting the clamp movements to inhibit swiveling and hairpin-stabilized pausing. NusG
lacks this activity.

is required for processing of rRNA precursors into mature forms
(Young and Steitz, 1978).

NusG plays a supporting role in both TACs: e.g., λN alone
has a short-range antitermination activity and requires the TAC
assembly to act over long distances (Rees et al., 1996). By contrast,
RfaH is a principal, self-sufficient antiterminator: RfaH acts over
very long distances yet its activity is not affected by cellular
factors, at least in vitro (Artsimovitch and Landick, 2002). Other
NusGSP may similarly act alone.

Transcription-Translation Coupling
In prokaryotic cells, the lack of a nuclear membrane provides
an opportunity for direct physical interaction of the transcribing
RNAP and the translating ribosome. The translation-coupled
synthesis of the nascent mRNA is known as transcription-
translation coupling. The coupling was directly observed by
electron microscopy in 1970 in E. coli cells (Miller et al., 1970) and
subsequently in archaeon Thermococcus kodakarensis (French
et al., 2007). RNAP and ribosomes form a one-to-one complex
with about 1 µM dissociation constant, which is already well
within a physiologically relevant range, even in the absence of the
nascent mRNA and accessory factors (Fan et al., 2017), resulting
in factor-free coupling. Alternatively, the two complexes can
be linked by bridging factors, e.g., via the NusG:S10 captured
by NMR (Burmann et al., 2010). Substitutions at the E. coli
NusG:S10 binding interface weakened NusG:S10 association
in vivo and completely abolished it in vitro (Saxena et al., 2018).

The TEC-ribosome complexes, stabilized by general
transcription factors, have been observed in vitro using
cryo-EM (Wang C. et al., 2020; Webster et al., 2020) and
analyzed inside cells using a combination of cross-linking mass
spectrometry and cryo–electron tomography (O’Reilly et al.,
2020). Evidence suggests that coupling may occur initially via
direct RNAP:ribosome contacts and then is aided by accessory
factors (Washburn et al., 2020). In the NusG/NusA coupled
complex, the RNAP β’ subunit contacts the 30S subunit protein
S3, NusA simultaneously binds to α/β subunits and S2/S5, and

FIGURE 6 | Transcription antitermination complexes (TAC). Left, rrn-TAC;
right, phage λN-TAC. RNA is in red, DNA is in black. The unique proteins that
play key roles in antitermination are shown on each complex; the shared
components are indicated in the middle. PDB ID: rrn-TAC, 6TQO; λN-TAC,
6GOV.

finally NusG binds to β/β’ and S10 (Figure 7). If the ribosome
approaches the RNAP further, the collided state, in which the
ribosome translocation and the factor-mediated coupling are
no longer possible, forms (Wang C. et al., 2020; Webster et al.,
2020). Preventing such unproductive collisions may be another
function of NusA and NusG.

Since RNAP might often transcribe without a linked ribosome
(Chen and Fredrick, 2018), the coupling events must carry
important regulatory information (McGary and Nudler, 2013).
The closely coupled ribosome prevents the formation of R-loops
and RNAP backtracking, thereby promoting genome stability
(Gowrishankar and Harinarayanan, 2004; Proshkin et al., 2010;
Stevenson-Jones et al., 2020) and inhibits factor-independent
termination by blocking the formation of nascent RNA hairpins
(Roland et al., 1988). The coupled ribosome also prevents
mRNA degradation, by blocking the access of RNaseE (Iost and
Dreyfus, 1995), or premature Rho termination, by sequestering
NusG and shielding the nascent RNA (Washburn et al., 2020).
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FIGURE 7 | Transcription-translation coupling. Left—an overall view: mRNA is in red, DNA is in black. The interface between the ribosomal 30S subunit and RNAP is
stabilized by NusA and NusG. Right—a view of the coupling interface; mRNA, DNA, the entire 50S and most of the 30S subunit have been removed for clarity. PDB
ID: 6 × 7F.

When the coupling is broken, e.g., by the ribosome pausing or
stalling, Rho releases the nascent RNA, a phenomenon known
as polarity (Richardson, 1991). Transcription attenuation is
another regulatory mechanism dependent on coupling between
the RNAP and the trailing ribosome, wherein the formation
of an RNA hairpin induces RNAP pausing and the trailing
ribosome pushes the RNAP out of the pause (Turnbough,
2019). By stabilizing the RNAP-ribosome tandem or aiding Rho,
NusG controls the fate of the nascent RNA, promoting its
translation or release.

B. subtilis (and Its NusG) Is Not at All
Like E. coli
The universal conservation of the NusG structure and its binding
site on the RNAP, as well as perceived common principles of gene
expression control in bacteria, justified using the E. coli NusG as
a paradigm. However, early and recent data suggest that, beyond
occupying the same site on RNAP, even housekeeping NusGs,
which are encoded within the conserved genomic locus, secE-
nusG-rplK-rplA in evolutionary distant bacterial phyla (Wang B.
et al., 2020), have relatively few common features. Comparison
of NusG proteins from E. coli and B. subtilis, the best studied
Gram-negative and Gram-positive model bacteria that grow very
similarly in the lab, illustrates these differences.

In wild-type E. coli, nusG and rho genes are essential; their
deletions can be obtained only in specially engineered strains
(Leela et al., 2013) and confer significant growth defects. In
contrast, neither gene is essential in B. subtilis (Ingham et al.,
1999), in which Rho has limited effects on gene regulation
(Nicolas et al., 2012), early stop codons do not induce polarity
(Johnson et al., 2020), and most transcription termination is
induced by hairpin signals (Mondal et al., 2016; Johnson et al.,
2020). In contrast to E. coli, where NusG aids Rho in termination

of rut-less RNAs (Lawson and Berger, 2019), Rho-dependent
termination in B. subtilis is strongly linked to cis-encoded C-rich
RNA elements (Johnson et al., 2020). Together, these results
suggest that NusG is not involved in gene expression control by
Rho in B. subtilis (and perhaps other related bacteria) and raise
a possibility that an alternative mechanism of transcription noise
silencing operates in these species.

Another key function of E. coli NusG is bridging the
RNAP and the ribosome (Figure 7) to mediate transcription-
translation coupling, which is thought to occur in all single-
compartment cells (see above). In addition to preventing Rho-
dependent termination, which may be irrelevant in B. subtilis,
the coupled ribosome inhibits RNAP backtracking (Proshkin
et al., 2010; Stevenson-Jones et al., 2020) and could disfavor the
formation of deleterious R-loops (Gowrishankar et al., 2013).
The pioneer round of translation may also prime the RNA for
subsequent rounds of translation. Strikingly, a recent report
demonstrates that transcription and translation are uncoupled
in B. subtilis (Johnson et al., 2020), where RNAP moves along
the template about twice as fast as the ribosome does. While in
E. coli the coupled ribosome inhibits both intrinsic and Rho-
dependent termination, termination in B. subtilis is unaffected by
translation. The loss of coupling has a profound effect on operon
structure: more than 70% of B. subtilis intrinsic terminators are
positioned just downstream of the stop codon (Johnson et al.,
2020), where they would be rendered inefficient by the trailing
ribosome in E. coli (Roland et al., 1988). These findings are
consistent with in vitro comparative analysis of B. subtilis and
E. coli RNAP, which shows that B. subtilis enzyme transcribes
faster and pauses less (Artsimovitch et al., 2000). In contrast,
their ribosomes move at similar rates and are unable to catch up
with the run-away B. subtilis RNAP (Johnson et al., 2020); even if
B. subtilis NusG binds to the RNAP and the ribosome, it cannot
bridge this gap.
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In E. coli, RNAP pauses frequently and NusG facilitates
RNA synthesis (Herbert et al., 2010). By contrast, B. subtilis
RNAP rarely pauses and NusG stimulates pausing in vitro and
in vivo (Yakhnin et al., 2020a). Unlike E. coli NusG, which is
positioned next to the non-template DNA strand in the TEC
but is not known to recognize any specific DNA elements
(Kang et al., 2018), B. subtilis NusG specifically binds to T-rich
DNA sequences and delays RNA chain elongation (Yakhnin
et al., 2016). NusG-dependent RNAP pausing is required for
regulation of several operons in B. subtilis (Yakhnin et al.,
2020b); for example, NusG-dependent pausing in the trp and rib
leader regions provides time for recruitment of an RNA-binding
protein TRAP and for riboswitching by flavin mononucleotide,
respectively. Sequence-specific pausing through non-template
DNA contacts has been first shown for RfaH (Artsimovitch
and Landick, 2002), which recognizes 12-nt ops elements in the
E. coli genome (Belogurov et al., 2009); RfaH-induced RNAP
delay is thought to facilitate the ribosome recruitment to the
nascent RNA (see below) in a handful of leader regions. The
ops sequence is a perfect match to the consensus pause sequence
that induces pausing in E. coli (Larson et al., 2014; Vvedenskaya
et al., 2014) but has additional recognition determinants for RfaH
(Zuber et al., 2018).

By contrast, in B. subtilis, NusG recognizes a simpler
consensus TTNTTT motif and stimulates pausing genome wide,
favoring forward translocation of RNAP (Yakhnin et al., 2020a).
Sequences that induce intrinsic, NusG-independent pausing of
B. subtilis enzyme are also very different from the consensus
pause elements documented in E. coli, and backtracking is not
observed (Yakhnin et al., 2020a). Although the mechanism and
regulation of pausing appear to be distinct, slowing RNAP
is expected to be essential in both B. subtilis and E. coli.
Pausing determines the overall rate of RNA chain synthesis, is
an obligatory step in termination, and facilitates recruitment
of regulatory factors (Kang et al., 2019). In both E. coli and
B. subtilis, pausing has been implicated in attenuation control
and co-transcriptional folding of riboswitches and catalytic RNAs
(Landick et al., 1985; Pan et al., 1999; Perdrizet et al., 2012;
Yakhnin et al., 2019), and contributes to coupling of transcription
and translation in E. coli (McGary and Nudler, 2013). Pausing-
defective E. coli RNAP variants do not support cell growth but
can be rescued by small-molecule ligands that slow the RNAP
down (Artsimovitch et al., 2003). In contrast to E. coli RNAP,
which readily pauses at consensus sequences without the aid
of accessory factors (Artsimovitch and Landick, 2000; Larson
et al., 2014; Vvedenskaya et al., 2014), B. subtilis RNAP relies on
NusG to slow it down (Yakhnin et al., 2016, 2020a). In this light,
NusG can be viewed as a pause-promoting accessory subunit,
a regulatory mechanism that could be widespread in bacteria
(Yakhnin et al., 2020b). Indeed, Thermus thermophilus NusG
reduces the RNA synthesis rate (Sevostyanova and Artsimovitch,
2010) and mycobacterial NusG promotes intrinsic termination
(Czyz et al., 2014).

Is there any common function of NusG proteins? The
conservation of the boxA and boxB RNA elements, all Nus
factors, ribosomal proteins, and SuhB suggests that similar rrn-
TACs may form in B. subtilis, a hypothesis supported by a

report that rrn antitermination can be achieved in a heterologous
E. coli/B. subtilis system (Arnvig et al., 2008). Observations that
B. subtilis cells lacking NusG do not show defects in rRNA
transcription argue that NusG is not required for rRNA synthesis
(Yakhnin et al., 2020a). However, given that the principal role of
the E. coli rrn-TACs appears to be in chaperoning of the nascent
RNA (Huang et al., 2020), an analogous complex, with or without
NusG, may be required to ensure the correct rRNA folding and
processing in B. subtilis.

A TUSSLE FOR RNAP

In addition to housekeeping NusG/Spt5 proteins present in
all free-living cells, many genomes encode one or more NusG
paralogs (Wang B. et al., 2020). While the primary sequences of
these proteins are very diverse, the high conservation of residues
that comprise the high-affinity RNAP binding site suggests that
all of them bind to the TEC similarly. Indeed, E. coli NusG
and RfaH, which are only 17% identical, make very similar
contacts to that RNAP β’ subunit (Kang et al., 2018). However,
in contrast to housekeeping NusG, which binds to RNAP and
modulates transcription genome wide (Mooney et al., 2009a;
Yakhnin et al., 2020a), these paralogs control expression of just
a few target genes. Akin to alternative transcription initiation
factors, these specialized NusGs (NusGSP) comprise a set of
alternative transcription elongation factors that compete for the
transcribing RNAP, an analogy further strengthened by their
recruitment to the same site on RNAP (Sevostyanova et al., 2008).

However, this analogy does not extend to functions and
mechanisms of gene-specific recruitment. Every σ factor activates
transcription of its cognate promoters by recruiting RNAP and
facilitating DNA melting; just the promoter sequences differ.
In a stark contrast, NusGSP factors activate expression of genes
that the housekeeping NusG silences (Figure 8). These genes
can be a few in number, but critical for bacterial evolution
and pathogenesis because they encode conjugation and virulence
determinants (see below).

Furthermore, while σ factors bind to specific DNA sequences
in static promoter complexes, NusG homologs are recruited to
a moving RNAP. The available data suggest that these proteins
use different recruitment mechanisms, only in some cases relying
on specific protein-DNA interactions. Housekeeping NusGs are
abundant proteins that can bind the TEC by chance, irrespective
of the transcribed sequence; indeed, specific interactions would
slow RNAP down, a regulatory feature used in B. subtilis (Yakhnin
et al., 2020a) but not in E. coli, in which NusG is sequence
blind. By contrast, the best characterized NusGSP, E. coli RfaH,
uses a very complex mechanism to ensure efficient and selective
recruitment to its targets (Zuber et al., 2018). RfaH is recruited
to the TEC at operon polarity suppressor (ops; Figure 9A)
sites (16 in E. coli MG1655 genome) which are present in
leader regions of several operons silenced by NusG and Rho
(Artsimovitch and Knauer, 2019). The ops element is a composite
regulatory signal: it induces RNAP pausing and backtracking
(Artsimovitch and Landick, 2000) and is directly recognized
by RfaH (Artsimovitch and Landick, 2002). Pausing at ops is
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FIGURE 8 | Silencing and counter-silencing of virulence genes by NusG-like proteins.

essential for RfaH recruitment (Zuber et al., 2018): it (i) provides
additional time for RfaH, which is present in few copies/cell, to
find its target; and (ii) presents the ops bases in a small hairpin,
with a conserved T residue flipped out for specific recognition
by RfaH (Kang et al., 2018; Zuber et al., 2018). This is a one-
time opportunity because, once the RNAP moves past ops, the
recruitment window is closed; thus, RfaH must bind to RNAP at
ops and stay bound until the end of RNA synthesis. To fend off
100-fold more abundant NusG (Schmidt et al., 2016), RfaH binds
RNAP much tighter (Kang et al., 2018), essentially becoming an
RNAP subunit for one round of RNA synthesis. RfaH maintains
the ability to trigger pausing at a downstream (engineered) ops
site while traveling with RNAP but reduces pausing at any other
sequence (Belogurov et al., 2009).

If RfaH binds to RNAP very tightly during elongation,
why does it need the ops signal in the first place? Unlike
NusG, in which the RNAP-binding site on the NGN domain is
exposed, this site is blocked by the KOW domain in free RfaH
(Figure 9). Also unlike NusG, in which the KOW domain is
in a β-barrel state (β-KOW; Figure 2), in this “autoinhibited”
RfaH the KOW domain is folded as an α-helical hairpin (α-
KOW; Figure 9B). To bind RNAP, RfaH must be “activated”
by domain dissociation, which happens only in the presence
of a complete ops-paused TEC (Zuber et al., 2019). The details
of this process remain elusive, but the current model suggests
that the NGN domain recognizes the ops hairpin via its exposed
DNA-binding residues, forming a transient encounter complex
and triggering the KOW dissociation (Artsimovitch and Knauer,
2019). It is possible that autoinhibition may be a common
feature of NusG homologs. While in E. coli NusG the NGN and
KOW domains move freely (Burmann et al., 2011), in NusG
from a hyperthermophilic bacterium Thermotoga maritima, the
two domains interact, masking the binding sites for RNAP,
NusE, and Rho (Drögemüller et al., 2013). Domain dissociation
enables T. maritima NusG-KOW binding to Rho and NusE, and
these contacts may be stabilized by the NGN-RNAP contacts
(Drögemüller et al., 2017).

RfaH recruitment relies on the multi-functional DNA
element and elaborate structural rearrangements of the protein
domains. Binding to a specific DNA element enables RfaH
to control several operons scattered on the chromosome.
But how is a wannabe NusGSP, which has just surfaced

following gene duplication, targeted to a specific locus in
the presence of overwhelming numbers of NusG molecules?
An “ancestral” mechanism, in which NusGSP binds to the
transcribing RNAP in cis has been proposed to explain
this conundrum (Belogurov et al., 2009). This model is
supported by bioinformatics analyses which reveal that the
residues that mediate DNA contacts in RfaH arose late in
evolution and that many NusGSP are encoded within long
xenogeneic operons, in contrast to the standalone rfaH gene
(Wang B. et al., 2020). However, observations that some
of these cis-encoded regulators act in trans (Chatzidaki-
Livanis et al., 2010) suggest that NusGSP recruitment strategies
are multifaceted.

STRUCTURAL TRANSFORMATION OF
RfaH

RfaH activation is not limited to the domain dissociation needed
to expose the RNAP-binding site: the released α-KOW undergoes
a dramatic transformation into a NusG-like β-KOW (Figure 9B)
and binds to S10 similarly to NusG KOW (Burmann et al.,
2012). The residues that make contacts with S10 are not available
in the α-KOW domain, thus the free RfaH is autoinhibited
with respect to both RNAP and ribosome binding, allowing
RfaH to achieve high target specificity (Shi et al., 2017). The
activated state persists until the TEC dissociates at a terminator
and RfaH is released; the KOW then refolds into the α-helical
hairpin and re-establishes contacts with the NGN, restoring
autoinhibition (Figure 9A).

Interconversion between the alternative RfaH-KOW states
is principally controlled by interdomain contacts: the KOW
(re)folds into a β-barrel when expressed alone, separated
from the NGN domain upon proteolytic cleavage of the
linker, or as a result of interface-destabilizing substitutions
(Burmann et al., 2012; Tomar et al., 2013; Shi et al., 2017).
Deuteron incorporation reveals that the tip of the C-terminal
α-hairpin is stably folded in the autoinhibited state, whereas
the rest of the KOW is highly flexible, and its flexibility only
decreases in the β-folded state (Galaz-Davison et al., 2020).
The mechanism underlying this dramatic fold switch has been
also pursued by computational approaches (Gc et al., 2014, 2015;
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FIGURE 9 | (A) A full cycle of RfaH; see text for details. The inset shows the ops DNA element, which forms a short hairpin on the TEC surface; ops bases that make
most interactions with RfaH in the complex are circled; the pause position is indicated by an arrow. (B) RfaH domain dissociation and refolding. PDB IDs:
autoinhibited RfaH, 5OND; activated RfaH, 6C6S.

Balasco et al., 2015; Ramírez-Sarmiento et al., 2015; Xiong and
Liu, 2015; Xun et al., 2016). Although the β-barrel is a
preferred state of the isolated RfaH-KOW, its free energy is
only slightly lower than that of the α-helical conformation.
The separation of the two alternative states is dependent on
large energy barriers resulting from the main chain hydrogen
bonds of the α-helical hairpin. An all-atom Monte Carlo
simulations study suggests a possibility that the encounter
complex between the autoinhibited RfaH and the ops-TEC is
characterized by net attractive interactions with the NGN and
net repulsive interactions with the KOW. The resulting opposing
forces on the two domains, in combination with the peculiar
mechanical rigidity profile of the autoinhibited RfaH, might
help trigger domain separation (Seifi et al., 2020). The α →

β rearrangement essentially depends on an unstructured state:
upon dissolution of the α-helical hairpin, the KOW assumes
a disordered state and then follows a step-wise assembly into
the final five-stranded β-barrel (Bernhardt and Hansmann, 2018;
Joseph et al., 2019).

Among NusG homologs, E. coli RfaH is the only known
transformer protein. However, it is possible that other KOW

domains are capable of transformation. In particular, an
amazingly broad repertoire of known cellular targets of
eukaryotic NusG homologs (Decker, 2020) could be due to
metamorphic behavior of their KOWs.

RfaH AS A TRANSLATION FACTOR

RfaH-controlled genes encode toxins, adhesins, LPS and capsule
biosynthesis enzymes, type IV secretion apparatus, etc. located
in long horizontally acquired operons (Figure 10), which are
silenced by Rho. RfaH abolishes Rho-dependent termination
(Sevostyanova et al., 2011) and the ability to bind Rho appears
to be lost early in RfaH evolution (Wang B. et al., 2020).
RfaH elicits dramatic, 50 + fold activation of gene expression
in vivo, an effect that was initially assumed to be mediated
by its direct antitermination effects on RNAP (Artsimovitch
and Landick, 2002). Surprisingly, RNAP modification by RfaH
makes only a minor contribution in the cell (Sevostyanova et al.,
2011). Instead, RfaH inhibits Rho-dependent termination by
outcompeting NusG and activating translation.
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FIGURE 10 | Examples of RfaH-controlled operons. Positions of ops sites
(cyan bars) and a rut site (red bar) are indicated.

RfaH-controlled genes lack Shine-Dalgarno elements, which
recruit the ribosome through RNA base-pairing with the
16S rRNA (Rodnina, 2018) and have many rare codons,
limiting their translation and making them easy targets for
Rho. Observations that the transformed β-KOW directly binds
S10 (Burmann et al., 2012) prompted a hypothesis that
RfaH recruits the ribosome via β-KOW/S10 contacts and
then couples transcription to translation during elongation.
In support of this model, expression of SD-less reporters is
completely dependent on RfaH, and substitutions of residues
that interact with S10 abolish expression (Burmann et al.,
2012). In addition to the ribosome recruitment, by bridging
the RNAP and the ribosome during elongation, RfaH may
prevent uncoupling at rare codons; the ribosome stalling
exposes mRNA to Rho (Elgamal et al., 2016). RfaH may
be particularly important during synthesis of excessively long
proteins such as Salmonella pathogenicity island IV giant
600 kDa adhesin (Figure 9B), which requires RfaH for
expression (Main-Hester et al., 2008). Remarkably, the ops-
RfaH module supports efficient expression of an SD-less reporter
in vivo, ∼20% relative to that driven by a perfect SD element
(Burmann et al., 2012).

Although RfaH and NusG make similar contacts to S10
(Burmann et al., 2012), their effects on translation are expected
to be different. NusG binds to the RNAP transiently (Kang
et al., 2018) and late in the operon, well after the first ORF
(Mooney et al., 2009a). In contrast, RfaH binds to RNAP
upstream of the first ORF and remains stably associated with
the EC until termination (Belogurov et al., 2009). It is possible
that RfaH recruits the ribosome to the ops-paused RNAP and
promotes ribosome scanning for a downstream initiation codon.
Future studies will reveal the details of translation activation
by RfaH, but the available data suggest that this universally
conserved transcription antiterminator may be acting primarily
as an RNAP-tethered translation initiation/elongation factor and
may employ the first protein-mediated ribosome recruitment
mechanism outside of viruses.

FIGURE 11 | The maximum-likelihood phylogenetic tree of NusG-like
proteins. Plantae is an artificial group used solely for brevity.

DIVERSITY OF THE NusG FAMILY

Specialized NusG paralogs (Figure 11) are evolving in very
different ecological niches but may have similar functions—to
promote expression of long or silenced operons. Functional data
implicate several NusGSP in transcription antitermination of very
long gene clusters, whereas for others this function is inferred
from their genomic associations. Bacillus amyloliquefaciens
LoaP inhibits termination in two operons producing antibiotics
difficidin and macrolactin (Goodson et al., 2017). Differently
from RfaH, which is rather inefficient against intrinsic
terminators (Artsimovitch and Landick, 2002; Carter et al.,
2004), LoaP promotes readthrough of the hairpin termination
signals (Goodson et al., 2017). Polyketide antibiotic TA made by
Myxococcus xanthus inhibits bacterial cell wall synthesis and is
produced by a 40 kb operon which is activated by NusGSP called
TaA (Paitan et al., 1999) by an unknown mechanism. Human
gut bacterium Bacteroides fragilis synthesizes eight capsular
polysaccharides from separate operons, which are activated by
UpxY family of NusGSP. UpxY proteins prevent premature
transcriptional termination within the 5′ leaders upstream from
the upxY gene (Chatzidaki-Livanis et al., 2009).

While functional data are available for just a few NusGSP,
recent bioinformatics analysis suggests that these proteins fall
into eight different clusters, which differ in their primary
sequence signatures as well as regulatory contexts. Some NusGSP,
such as RfaH, form one group and are encoded by single
cistrons, whereas others (e.g., loaP, taA, and upxY) are adjacent
to their target operons (Wang B. et al., 2020). ActX, which
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is closely related to RfaH (Figure 11), is encoded within
pilus biosynthesis operons on antibiotic-resistant plasmids
in E. coli and Klebsiella pneumoniae (Núñez et al., 1997),
but its regulatory function remains unknown. Analysis of
genomic contexts can be instrumental in predicting functional
associations (Moreno-Hagelsieb and Santoyo, 2015). Gene
neighbors of NusGSP (except for RfaH-like stand-alone genes)
are enriched in genes involved in cell envelope biogenesis, with
glycosyltransferases, nucleoside-diphosphate-sugar epimerases,
and exopolysaccharide biosynthesis enzymes being the most
common (Wang B. et al., 2020). However, notable differences
exist among distinct clusters; for example, some NusGSP are
adjacent to Tat protein secretion system, others are encoded
near undecaprenyl pyrophosphate synthase and H-NS genes.
A group of regulators from Shewanella are encoded within
putative exopolysaccharide operons, an arrangement resembling
B. fragilis operons controlled by UpxY proteins (Chatzidaki-
Livanis et al., 2010). Future studies will be required to determine
functional significance of these associations.

Extensive duplications, sub-functionalization, and horizontal
transfer underpin the evolution of NusG paralogs. One NusG
copy has gradually evolved into RfaH, starting from an “early”
loss of binding to Rho terminator while tightening contacts to
RNAP and culminating with the “late” acquisition of residues
that interact with the ops DNA element and confer autoinhibition
(Wang B. et al., 2020). While in most NusG homologs these
changes do not alter the core domain structure, some factors
acquired additional domains thought to promote adaptation
to their unique niches. For example, in T. maritima NusG,
an extra domain DII supports NusG recruitment to the TEC
and stabilizes the NusG:RNAP complex, a necessary adaptation
to high temperatures in the T. maritima natural habitat
(Drögemüller et al., 2017).

In addition to Spt5, NusG homologs are also encoded in
the genomes of all major land plant and algal lineages except
for some green algal species (Wang B. et al., 2020). These
bacterial regulators have recognizable chloroplast-localization
signals and are presumably retained to assist the bacterial-type
RNAPs that mediate chloroplast transcription. A NusG homolog
of Arabidopsis thaliana has been identified as a component
of the active transcriptional machinery in chloroplasts (Pfalz
et al., 2006), and a Rho ortholog has been shown to terminate
transcription by plastid-encoded RNAP (Yang et al., 2020).

NusG PARALOGS AND VIRULENCE

Extensive functional studies have established RfaH as the
paradigm for the regulation of transcription elongation,
translation initiation, and protein folding. However, RfaH
is also a key virulence factor. RfaH activates the expression
of capsule, cell wall, toxins, adhesins, and pilus biosynthesis
operons (Figure 9B), which are important for virulence and
conjugal transfer in several Gram-negative pathogens including
E. coli, K. pneumoniae, Vibrio vulnificus, Salmonella enterica,
Yersinia pseudotuberculosis, and Yersinia pestis (Kong et al.,
2011; Bachman et al., 2015; Garrett et al., 2016; Hoffman et al.,

2017). RfaH effects on gene expression are very large (50+ fold);
consequently, the loss of rfaH leads to dramatic defects in
virulence, e.g., 104 decrease in K. pneumoniae survival in the
lung (Bachman et al., 2015).

The first protein secretion process discovered in bacteria was
the hemolysin A (HlyA) type 1 secretion system (T1SS), which is
found in uropathogenic E. coli strains (Thomas et al., 2014). HlyA
is a 107 kDa protein that induces hemolysis by creating pores
in the erythrocyte membrane (Skals et al., 2009). RfaH, a.k.a.
HlyT, has been identified genetically as an activator of the hly
operon (Thomas et al., 2014). Inactivation of rfaH dramatically
decreases virulence of uropathogenic E. coli strain in a murine
model of urinary tract infection (Nagy et al., 2002). The capability
to colonize the intestinal tract by efficiently competing with the
commensal microbiota has been considered as a multifactorial
virulence property. RfaH also plays a role in the infectious
process during colonization of the intestinal tract: rfaH mutants
are susceptible to bile salts and show reduced gut colonization
capacity (Nagy et al., 2005).

Antibiotic-resistant K. pneumoniae is an urgent public health
threat and a leading cause of pneumonia in hospitalized patients
(David et al., 2019). Functional genomic profiling of four diverse
serum-resistant K. pneumoniae strains reveals that the deletion
of rfaH dramatically reduces resistance to serum complement
system in all strains (Short et al., 2020). Vibrio vulnificus
is another opportunistic human pathogen responsible for the
majority of seafood-associated deaths worldwide, and antibiotic
resistance has developed (Heng et al., 2017). Loss of rfaH also
makes V. vulnificus highly sensitive to human serum (Garrett
et al., 2016). Expression of the brp exopolysaccharide operon
mediates surface adherence of V. vulnificus, and the presence of
ops and rut sites in the leader region suggests RfaH-dependent
antitermination (Chodur and Rowe-Magnus, 2018). S. enterica
serovar Typhimurium is a primary enteric pathogen infecting
both humans and animals and a major cause of diarrheal
diseases, with antibiotic resistance on the rise (Fàbrega and Vila,
2013; Knodler and Elfenbein, 2019). Salmonella harbors five
pathogenicity islands (SPI) required for infection in vertebrate
hosts. Among them, SPI4 plays a role in the initial interaction
with the intestinal epithelium and possibly contributes to long-
term persistence (Gerlach et al., 2007). S. enterica RfaH is
required for the expression of SPI4, which encodes a T1SS and
its adhesin substrate (Main-Hester et al., 2008), as well as the
expression of secreted and surface-associated polysaccharides
(Lindberg and Hellerqvist, 1980; Bailey et al., 1997). Mutants
of S. enterica serovar Typhimurium lacking rfaH are efficient
as vaccines against salmonellosis and induce strong serum
immune responses (Nagy et al., 2006; Liu et al., 2016). Given
their association with capsular and TSS operons (Wang B.
et al., 2020), other NusG paralogs likely play important roles
during pathogenesis.

Antibiotic resistance determinants are frequently encoded on
conjugative plasmids and can be rapidly transferred between
bacteria (Wang et al., 2017). RfaH activates the F plasmid
conjugation operon (Beutin and Achtman, 1979) and RfaH
homologs are encoded on some clinical resistant plasmids (Wang
B. et al., 2020), suggesting that they may contribute to plasmid
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transfer. A recent study showed that deletions of seven genes,
including rfaH, prevented cefotaxime-induced up-regulation of
traF and decreased the conjugative transfer of the resistance
plasmid (Liu et al., 2019).

RfaH proteins from Vibrio, Yersinia, Salmonella, and Klebsiella
bind to the E. coli TEC in vitro and complement the E. coli rfaH
gene deletion (Carter et al., 2004). Small molecule inhibitors that
block recruitment of E. coli and K. pneumoniae RfaH to RNAP
(Svetlov et al., 2018) may have a potential to inhibit virulence and
the spread of antibiotic resistance.

CONCLUDING REMARKS

NusG homologs comprise the only universally conserved family
of transcription factors, which includes housekeeping regulators
and their specialized paralogs (Figure 11). Despite highly similar
core domain architectures and interactions with RNAP, NusG-
like proteins exert amazingly diverse, and frequently opposite,
effects on gene expression. Bacterial NusG homologs can inhibit
or stimulate transcription termination, accelerate RNA synthesis
by suppressing RNAP backtracking or slow transcription down
by halting RNAP at specific sequences, bridge the RNAP to the
ribosome during translation elongation or recruit the ribosome
to mRNAs that lack canonical ribosome binding sites, and likely
perform other functions that remain to be discovered.

This regulatory plasticity depends on dynamic interactions
of the NGN and KOW domains with each other, RNAP,
single and double-stranded nucleic acids, and many auxiliary
cellular proteins. While bound to the TEC through contacts
mediated by highly conserved residues within RNAP and NGN,
NusG homologs employ divergent residues in their NGN and
KOW domains to enact a range of responses demanded by
specific cellular circumstances. Some NusG paralogs augment
their regulatory prowess by undergoing an unprecedented and
reversible refolding of an entire KOW domain, during which the
protein turns inside out. The presence of NusG in all free-living
organisms, sometimes in several copies, confirms its unique place
in gene expression control, from LUCA to present life forms.
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