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Simple Summary: The freezing stress during overwintering brings great challenges to the normal
growth of Camellia sinensis. The current research on C. sinensis mainly focuses on cold resistance, but
less on freezing resistance. In the present study, the transcriptome and metabolome of C. sinensis
under freezing stress were studied. Results showed that Pyr/PYL-PP2C-SnRK2 played a critical role
in the signal transduction of freezing stress. Three metabolic pathways including phenylpropanoid
biosynthesis, flavone and flavonol biosynthesis, and flavonoid biosynthesis contributed to the freez-
ing resistance of C. sinensis. This study provides substantial insights for the breeding of C. sinensis.

Abstract: Freezing stress in winter is the biggest obstacle to the survival of C. sinensis in mid-latitude
and high-latitude areas, which has a great impact on the yield, quality, and even life of C. sinensis
every year. In this study, transcriptome and metabolome were used to clarify the freezing resistance
mechanism of 60-year-old natural overwintering C. sinensis under freezing stress. Next, 3880 DEGs
and 353 DAMs were obtained. The enrichment analysis showed that pathways of MAPK and ABA
played a key role in the signal transduction of freezing stress, and Pyr/PYL-PP2C-SnRK2 in the ABA
pathway promoted stomatal closure. Then, the water holding capacity and the freezing resistance of
C. sinensis were improved. The pathway analysis showed that DEGs and DAMs were significantly
enriched and up-regulated in the three-related pathways of phenylpropanoid biosynthesis, flavone
and flavonol biosynthesis, and flavonoid biosynthesis. In addition, the carbohydrate and fatty acid
synthesis pathways also had a significant enrichment, and the synthesis of these substances facilitated
the freezing resistance. These results are of great significance to elucidate the freezing resistance
mechanism and the freezing resistance breeding of C. sinensis.

Keywords: transcriptome; metabolome; freezing resistance; substances; pathways

1. Introduction

Camellia sinensis is a perennial evergreen flowering plant of the genus Camellia in the
Camellia family, which has the characteristics of loving a warm and humid climate [1–3]. In
addition, it can grow regularly at 10–35 ◦C but becomes nearly dead at −10 ◦C. Shandong
province is a northernmost tea growing region in China and has the highest latitude in
tea growing regions of the world except for the Mediterranean climate regions [4]. In the
1960s, Chinese “South Tea being introduced to the North” was one of the most successful
examples of introduction in the world, and Tai’an, Shandong, was one of the successful
sites for the first trial planting.

Freezing stress in winter is the biggest obstacle to the survival of C. sinensis in mid-
latitude and high-latitude areas and an important factor causing crop yield reduction and
even death [5–8]. When plants are subjected to freezing stress, photosynthesis will be
inhibited and cell structure destroyed, resulting in oxidative damage, metabolic disorder,
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cell damage, and other phenomena [9–11]. Simultaneously, plants will express a large
number of resistance genes and metabolites when subjected to freezing stress [12].

In order to clarify the mechanism of freezing resistance in plants, scientists carried
out a lot of research in molecular biology and bioinformatics [13,14]. Under freezing
stress, Fritillaria cirrhosa would accumulate high H2O2 and activate antioxidant systems
such as catalase, anthocyanins, phenols, SOD, and ascorbic acid peroxidase [15]. After
the relief of freezing stress, the photosynthesis of F. cirrhosa would return to the normal
level. Studies on Triticum aestivum leaves under freezing stress showed that T. aestivum
could improve frost resistance by the accumulation of sucrose and the coordination of
salicylic acid and carbon [16]. Transcriptional sequencing of Brassica napus under freezing
stress revealed 3905 DEGs, of which the up-regulated DEGs were mainly in hormone
signal transductions, energy metabolism, and resistance related gene families [17]. With
the development of bioinformatics, more and more research has been done to explore
the mechanism of plant responses to abiotic stresses by combining transcriptome with
metabolome [18,19]. Transcriptome and metabolome of Lycium barbarum under salt stress
were analyzed to obtain 1396 DEGs and 71 DAMs [20]. The pathway analysis showed
that the metabolism of flavonoids could improve the salt tolerance of L. barbarum. The
flavonoid and phenolic compounds produced by phenylpropanoid biosynthesis, flavone
and flavonol biosynthesis, and flavonoid biosynthesis pathways had a positive response on
abiotic stresses [21]. Therefore, it is of great significance to probe these metabolic pathways
to understand the mechanism of plant resistance. The research on transcriptome and
metabolome of C. sinensis mainly focuses on the cold treated greenhouse materials. The
results showed that there was a close relationship between cold stress and drought stress,
and ICE (inducer of CBF expression) and HSP (heat shock proteins) gene families had a
positive response under cold stress in C. sinensis [22,23].

C. sinensis is one of the most important cash crops in the world [24,25]. Although
it has the characteristics of a perennial, a large number of C. sinensis trees are frozen
to death during overwintering every year and need to be replanted in the second year,
which consumes a lot of labor and financial resources. In this study, transcriptome and
metabolome were used to examine the freezing resistance mechanism of 60-year-old
C. sinensis trees under natural freezing stress, and to clarify the gene regulation of C. sinensis
trees under the extreme temperature of −14 ◦C. Furthermore, metabolic pathways and the
metabolic state of C. sinensis trees under freezing stress were analyzed. From the gene and
metabolite level, the reason why these C. sinensis trees can spend 60 winters in Shandong
province was explored, which laid a foundation for the excavation of the freezing resistance
genes and the cultivation of the freezing resistance varieties of C. sinensis.

2. Materials and Methods
2.1. Plant Material and Sampling

The experiment was carried out in the 60-year-old overwintering C. sinensis garden
(36◦13′9′ ′ N, 117◦3′16′ ′ E) on Mount Tai (Tai ’an, Shandong province, China). The first
sampling (freezing stress) took place on 30 December 2020, with a minimum temperature
of −14 ◦C and an average temperature of −10 ◦C as the lowest temperature of the year.
On 30 March 2021, a second sample (control) was taken of the tea plants at an average
temperature of 15 ◦C. Tea trees with a good growth status were selected for the first
sampling, the tea trees were marked after sampling, and the same tea tree was selected for
the second sampling. These samples were immediately frozen in liquid nitrogen and stored
at −80 ◦C for subsequent sequencing [26]. The experiment was divided into the freezing
stress group (FS) and control check group (CK). A total of 9 samples were sampled from
each group, of which 3 samples (FS_1, FS_2, FS_3, CK_1, CK_2, CK_3) were sequenced for
transcriptome and 6 samples (FS-1, FS-2, FS-3, FS-4, FS-5, FS-6, CK-1, CK-2, CK-3, CK-4,
CK-5, CK-6) were analyzed for metabolome.
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2.2. Transcriptome Sequencing, Identification, and Analysis of Differentially Expressed
Genes (DEGs)

Using the Truseq RNA (RNAprep Pure Plant Kit, Poly-saccharides&Polyphenolics-
rich, centrifugal column, Beijing, China) sample preparation kit, the RNA sample was
prepared according to the manufacturer’s protocol [27]. RNA quality was evaluated by
agarose gel electrophoresis and OD260/230 ratio, and the cDNA library was constructed
after the samples were qualified [28]. The library was qualified by an Agilent 2100 bioana-
lyzer (Agilent Technologies, Palo Alto, CA, USA) and quantified by Qubit and qPCR [29].
Then, the constructed cDNA library was sequenced with Illumina HiSeq 2500 and trans-
formed into original Sequenced Reads using BCL2FASTQ [30,31]. The raw data were
evaluated with FASTQC, followed by filtering (removing the containing adapter and low-
quality reads) raw data with FASTP, and then again using FASTQC to perform quality
control [32,33]. Hisat2 was used to map the clean data to “shuchazao” reference genome on
10 May 2021 (http://tpia.teaplant.org/download.html, accessed on 10 May 2021) and cal-
culate mapping information [34]. The Stringtie software was used to assemble transcripts
and predict expression levels using tea transcriptome data [35]. R language was used to
analyze the correlation between tea transcripts and then draw the heat map [36].

The differentially expressed genes (DEGs) of log2fc ≥ 2 and p-value ≤ 0.05 under
freezing stress were screened by lemma, and the R package was used to make volcano plots.
DEGs were annotated and enriched by Gene Ontology (GO) (http://www.geneontology.
org, accessed on 10 May 2021) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
databases (www.kegg.jp/kegg/pathway.html, accessed on 10 May 2021), respectively, to
obtain the function and pathway results of DEGs, and the results were visualized by R
packages [37,38].

2.3. Untargeted Metabolomics Analysis

Tea leaves were ground with liquid nitrogen (100 mg), homogenized with 100 µL, and
suspended with precooled 100% methanol (−20 ◦C), and then swirled fully. Samples were
kept at −20 ◦C for 60 min and centrifuged at 4 ◦C for 14,000× g for 15 min. Then, super-
natants were transferred to a fresh microcentrifuge tube and dried in a vacuum evaporator.
After drying, the metabolites were redissolved with 80% methanol and analyzed by the
HPLC-MS/MS platform [39]. Next, the data were extracted using Compound Discover
V3.1 (CD) software, including noise filtering, retention time alignment, mass spectrometry
peak extraction, compound mapping between samples, compound identification, gap
filling, and background subtracting. Meanwhile, compounds were identified using the
mzCloud and ChemSpider database [40–42]. Finally, based on the quality control (QC)
sample, it was filtered, and data standardization and normalization were achieved by the
Constant SUM and Auto Scaling algorithm [43,44].

2.4. Metabolome Data Processing and Analysis

The standardized tea metabolomic data were analyzed by a principal component
analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA), and
visualized as scatter plots [45,46]. Differentially accumulated metabolites (DAMs) between
the FS group and CK group were determined according to t-test p value < 0.05 and VIP > 1.
Finally, the DAMs metabolic pathway was annotated and enriched based on the KEGG
pathway database, and the results were visualized using R language.

3. Results
3.1. C. sinensis Transcriptome Sequencing Results and Data Analyses

The raw data of 251 G were obtained by Illumina high-throughput sequencing, and
the clean data of 247 G were obtained by filtering, and the clean rate of each group of
data was greater than 97.71% (Table S1). Q20 were all greater than 98%, and Q30 were all
greater than 93%. The mapping ratio of clean data to reference genome was 89% to 90%,
in which both uniquely mapped reads and multiple mapped reads were around 84% and
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16%, respectively. The average transcript number of the FS group (70,616) was smaller than
the CK group (73,232). In addition, the exon total length, average transcript length, and
N50 length (without intron) of the FS group were also smaller than the CK group.

3.2. Transcriptional Characteristics of C. sinensis Response to Freezing Stress

The correlation analysis showed that the r values of transcriptome data within both FS
and CK were greater than 0.9, and the r values between groups were about 0.85 (Figure 1A).
Compared with CK, a total of 3880 DEGs were obtained under freezing stress, of which
1876 DEGs were up-regulated and 2004 DEGs were down-regulated (Figure 1B). The
GO enrichment analysis of DEGs showed that DEGs had a large amount of enrichment
in biological processes, cell components, and molecular functions (Figure 1C). In terms
of biological processes, the number of expression genes in the metabolic process and
the cellular process all exceeded 277, and the number of expression genes in the single-
organism process was 172. Gene expression was all highly enriched in cell components
including the membrane, membrane part, cell, cell part, and organelle. Gene expression
was mainly concentrated in the molecular functions including catalytic activity and binding,
and the number of gene expressions was close to 400. In addition, under freezing stress,
C. sinensis also enriched significantly in the immune system process, responses to stimulus,
antioxidant activities, and other stress reactions.
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3.3. Pathway Analysis in Response to Freezing Stress

The KEGG enrichment analysis suggested that DEGs were mainly enriched in photo-
synthesis, sugar and flavonoid metabolism, and signal transduction (Figure 2A). Further-
more, the MAPK pathway played an essential role. The analysis of the MAPK signaling
pathway under freezing stress showed that PYR/PYL-PP2C-SnRK2 had a positive response
to abscisic acid (ABA) signal transduction (Figure 2B). The physiological changes of stress
adaptation and stomatal closure were responded to by ABA signal transduction. A large
number of DEGs was assigned to the ABA signal transduction pathway, among which
PYR/PYL-PP2C-SnRK2 was very significant. In the PYR/PYL gene family, five genes were
significantly up-regulated, and CSS0047272 and CSS0017736 were the most significant up-
regulated with log(FC) value greater than four. Moreover, the PP2C gene family and SnRK2
gene family had one significantly down-regulated gene and one significantly up-regulated
gene, respectively (Figure 2C).
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freezing stress.

3.4. Metabolic Characteristics of C. sinensis Response to Freezing Stress

A total of 10543 DAMs were obtained through the non-targeted metabolomic analysis
of C. sinensis leaves under freezing stress, and 353 metabolites were assigned to 171 KEGG
functional categories (Table S2 and Figure 3C). Freezing stress and CK had significantly
different effects on the expression of metabolites, and great similarity within samples of
the same condition. To further overview the distinctions between C. sinensis leaves under
freezing stress and CK, the multivariate analysis was performed on metabolic data. A
principal component analysis (PCA) of the 10,543 DAMs showed that the two treatments
were significantly differentiated for the first component (79.3% for PC1) (Figure 3A). The
OPLS-DA of the 10,543 DAMs showed a clearer distinction between the FS and CK groups
of samples (Figure 3B). The R2X, R2Y, and Q2 of OPLS-DA model were 0.775, 1, and 0.996,
respectively, with high reliability. A total of 353 metabolites were mapped to 170 pathways
by KEGG annotation, in which DAMs were mainly enriched in diterpenoid biosynthesis,
biosynthesis of secondary metabolites, flavone and flavonol biosynthesis, and other amino
acid metabolic processes (Figure 3D).
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3.5. Correlation Analysis of Gene Expression and Metabolite Levels

The KEGG annotation of DEGs and DAMs of freezing-stressed C. sinensis leaves
showed that both sets of the data were significantly enriched in phenylpropanoid biosynthe-
sis, flavone and flavonol biosynthesis, and flavonoid biosynthesis (Table S3, Figure 4A,B).
Indeed, 32 DAMs were intensively enriched in the three connected pathways, of which
31 DAMs were up-regulated and only one down-regulated. All the DAMs in flavone and
flavonol biosynthesis and flavonoid biosynthesis pathways were up-regulated. Moreover,
48 DEGs engaged in the pathway, and most of them were up-regulated. Alcohols and
aldehydes produced in phenylpropanoid biosynthesis were the initial compounds for
lignin formation [47]. Up-regulated Epigallocatechin was the most abundant flavonoidin
in green tea and was an important potential source of antioxidants [48]. In addition, a
number of flavonoid metabolites (luteolin, luteoloside, Gallocatechin, etc.) increased and
were significantly associated with plant stress in the flavone and flavonol biosynthesis and
flavonoid biosynthesis pathways [49].



Biology 2021, 10, 996 7 of 11Biology 2021, 10, x 8 of 12 
 

 
Figure 4. Gene expression regulates substance metabolism. (A) The enrichment analysis of regulatory genes encoding 
enzymes and DAMs in phenylpropanoid biosynthesis, flavone and flavonol biosynthesis, and flavonoid biosynthesis 
pathways. The box represents metabolites, red represents up-regulated metabolites, and blue represents down-regulated 
metabolites. Between the metabolites are regulatory respective genes encoding enzymes. (B) Expression of genes involved 
in phenylpropanoid biosynthesis, flavone and flavonol biosynthesis, and flavonoid biosynthesis pathways of freezing 
stress. 

4. Discussion 
C. sinensis is a warm-loving crop, and its yield, quality, and even life will be seriously 

affected by the freezing injury. The technology of combining transcriptome and metabo-
lome has been widely used in humans, animals, and plants, and played an essential role 
in the study of abiotic stresses in plants. In this study, the freezing-resistance mechanism 
of 60-year-old C. sinensis trees under natural freezing stress was studied using transcrip-
tome and metabolome. 

In transcriptome sequencing, the transcript number of the FS samples was smaller 
than that of the CK samples, and the number of down-regulated DEGs was higher than 
the number of up-regulated DEGs. Many of these down-regulated genes were associated 
with the normal development and physiological metabolism of C. sinensis, suggesting that 
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metabolites. Between the metabolites are regulatory respective genes encoding enzymes. (B) Expression of genes involved
in phenylpropanoid biosynthesis, flavone and flavonol biosynthesis, and flavonoid biosynthesis pathways of freezing stress.

4. Discussion

C. sinensis is a warm-loving crop, and its yield, quality, and even life will be seri-
ously affected by the freezing injury. The technology of combining transcriptome and
metabolome has been widely used in humans, animals, and plants, and played an essen-
tial role in the study of abiotic stresses in plants. In this study, the freezing-resistance
mechanism of 60-year-old C. sinensis trees under natural freezing stress was studied using
transcriptome and metabolome.

In transcriptome sequencing, the transcript number of the FS samples was smaller
than that of the CK samples, and the number of down-regulated DEGs was higher than
the number of up-regulated DEGs. Many of these down-regulated genes were associated
with the normal development and physiological metabolism of C. sinensis, suggesting
that at 10 ◦C C. sinensis recovered from the dormancy state to normal vegetative growth.
The enrichment of DEGs was observed in the photosynthesis–antenna proteins pathway.
Photosystem II (PSII) was one of the most sensitive components of photosynthesis. In addi-
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tion to the reactive oxygen species (ROS) produced by freezing stress, the light-harvesting
complex also produced ROS which could damage PSII and inhibit the photosynthesis of
C. sinensis under freezing stress.

According to the GO enrichment analysis, the membrane was the most enriched
cell structure of DEGs. Moreover, the biological processes (e.g., response to stimulus)
and molecular functions (e.g., antioxidant activity and signal transducer activity) of GO
enrichment were related to abiotic stresses and inseparable from the membrane. Cell
membrane played a critical role in the response of C. sinensis to freezing stress. Through the
analysis of DEGs pathways, the MAPK pathway and ABA signal transduction processes
had a positive response to freezing stress in C. sinensis leaves. A large number of genes of
PYR/PYL-PP2C-SnRK2, the core module of ABA signal transduction, were up-regulated
to transmit the signal of freezing stress to promote C. sinensis and produce stress adapta-
tion. Pyr/PYL-PP2C-SnRK2 contributed to stomata closure to improve the water holding
capacity and freezing resistance of C. sinensis. The MAPK pathway process and ABA signal
transduction mediated the information transmission in the freezing stress of C. sinensis. In
addition, ABA can be used as a dormant hormone to promote leaf shedding [50]. C. sinensis
metabolic pathways were also enriched in many material syntheses such as carbohydrates
and flavonoids. Carbohydrates can provide energy for plants, and many flavonoids are
associated with stress tolerance. These substances can also increase the concentration of
cell fluid to improve freezing resistance [51]. C. sinensis could resist freezing stress through
complex stress processes composed of stress signal transduction, substance synthesis, and
physiological changes.

The pathway enrichment analysis of DAMs and DEGs exhibited positive responses to
freezing stress in phenylpropanoid biosynthesis, flavone and flavonol biosynthesis, and
flavonoid biosynthesis pathways. DEGs regulated three pathways to produce 31 signifi-
cantly up-regulated metabolites and to resist freezing stress in C. sinensis. Phenylalanine
and cinnamic acid in the phenylpropanoid biosynthesis pathway were precursor substances
for lignin synthesis, and the expression of regulatory genes CSS0018870 and CSS0021474
were significantly up-regulated, which were related to lignin synthesis. Lignin, the main
component of the cell wall, can promote the transport of minerals in plants and improve
the ability of water retention, and act as the first barrier for plants to resist adverse external
environments to cope with stress [52]. C. sinensis responded to freezing stress by regulating
the synthesis of substances through phenylpropanoid biosynthesis pathways. All DAMs in
the flavone and flavonol biosynthesis and flavonoid biosynthesis pathways were signifi-
cantly up-regulated. Flavonoids are one of the plant’s most biologically active secondary
metabolites and have significant antioxidant activity [53]. Luteolin 7-O-glucoside, which
mainly exists in vacuoles, can enhance the adaptive ability of plants [54]. Myricetin, a
molecule with six hydroxyl groups, has antioxidant properties [55]. In addition, the reduc-
tion of flavonoids will reduce the freezing resistance of plants [56,57]. Flavonoids played
an essential role in the freezing stress of C. sinensis.

5. Conclusions

In conclusion, PYR/PYL-PP2C-SnRK2 showed a positive response in the signal trans-
duction of freezing stress in C. sinensis. In addition, the phenylpropanoid biosynthesis,
flavone and flavonol biosynthesis, and flavonoid biosyn-thesis pathways regulated by
genes encoding enzymes might play a key role. In this experiment, large numbers of DEGs,
metabolites, and key pathways were observed from C. sinensis under freezing stress. It
is worth studying further how the freezing stress signals are conducted and how these
significantly related candidate genes and metabolites regulate the freezing resistance of
C. sinensis. The results laid a foundation for improving the freezing resistance of C. sinensis
by genetic engineering.
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Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/biology10100996/s1, Table S1. Basic information of C. sinensis transcriptome sequencing under
freezing stress; Table S2. DAMs KEGG annotation results, Table S3: The DEGs of C. sinensis under
freezing stress.
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