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Abstract: The spr2 mutation in tomato (Solanum lycopersicum), which disrupts function of FATTY
ACID DESATURASE 7 (FAD7), confers resistance to the potato aphid (Macrosiphum euphorbiae)
and modifies the plant’s C6 volatile profiles. To investigate whether C6 volatiles play a role in
resistance, HYDROPEROXIDE LYASE (HPL), which encodes a critical enzyme in C6 volatile synthesis,
was silenced in wild-type tomato plants and spr2 mutants. Silencing HPL in wild-type tomato
increased potato aphid host preference and reproduction on 5-week old plants but had no influence
on 3-week old plants. The spr2 mutation, in contrast, conferred strong aphid resistance at both
3 and 5 weeks, and silencing HPL in spr2 did not compromise this aphid resistance. Moreover,
a mutation in the FAD7 gene in Arabidopsis thaliana also conferred resistance to the green peach aphid
(Myzus persicae) in a genetic background that carries a null mutation in HPL. These results indicate
that HPL contributes to certain forms of aphid resistance in tomato, but that the effects of FAD7 on
aphids in tomato and Arabidopsis are distinct from and independent of HPL.

Keywords: aphid resistance; Arabidopsis thaliana; hydroperoxide lyase; Macrosiphum euphorbiae;
Myzus persicae; Solanum lycopersicum;ω-3 fatty acid desaturase

1. Introduction

FATTY ACID DESATURASE 7 (FAD7) is anω-3 fatty acid desaturase (FAD) that is widely similar
in sequence throughout the plant kingdom, and that desaturates 16- and 18-carbon fatty acids with two
double bonds (C16:2 and C18:2) to generate fatty acids with three double bonds (C16:3 and C18:3) [1,2].
In diverse plant species, expression levels of genes encoding FAD7 and other FADs increase in response
to some stresses and decrease in response to others, suggesting that modulation of desaturase activity
plays a role in stress adaptation [3–6]. Moreover, artificial manipulation of desaturase activity through
silencing or other genetic modifications alters plants’ susceptibility to a variety of abiotic and biotic
stresses, enhancing resistance to some stresses and compromising resistance to others [7–10]. In short,
FADs appear to influence stress resistance.

One form of stress resistance that is negatively correlated with FAD7 activity is resistance to
aphids, a group of phloem-feeding insects that include many serious agricultural pests. The suppressor
of prosystemin-mediated responses2 (spr2) mutant in tomato, which has a null mutation in FAD7,
has enhanced resistance to potato aphids (Macrosiphum euphorbiae) compared to wild-type plants [10].
Aphid resistance in spr2 comprises both antixenosis (i.e., decreased host preference) and antibiosis
(increased mortality and decreased fecundity). Moreover, population growth of the green peach aphid
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(Myzus persicae) is significantly lower on Arabidopsis thaliana mutants with null mutations in FAD7 than
on wild-type controls [10]. These results indicate that the FAD7 enzyme or its products negatively
regulate aphid resistance in more than one plant family.

One way that FAD7 could possibly influence plant defenses against aphids is by affecting the
profile of substrates available to the hydrogen peroxide lyase (HPL) pathway. HPL generates six-carbon
aldehydes and alcohols (C6 volatiles) from fatty acid hydroperoxides that are produced from C18:2 and
C18:3 by 13-lipoxygenase (13-LOX) (Figure 1) [11]. Loss of function of FAD7 results in decreased C18:3
and increased C18:2, and in tomato, this shift in precursors has been shown to result in dramatically
altered C6 volatile composition [12,13]. In particular, decreased levels of C18:3 result in significantly
lower (Z)-3-hexenal and (Z)-3-hexenol than observed in wild-type plants, and enhanced C18:2 levels
result in elevated levels of hexanal and hexanol [12,13]. Conversely, overexpression of the FAD7 gene
in tomato increases the production of C6 volatiles derived from 18:3 and decreases the production of
18:2-derived compounds [14]. The impact of altered FAD7 activity on volatile profiles generated by the
HPL pathway could potentially alter aphid host selection and/or survival and fecundity on foliage.

1 

 

Figure 1 

 

 

  
Figure 1. Biochemical pathway for synthesis of C6 volatiles in tomato. In tomato, C6 volatiles
are synthesized from the polyunsaturated fatty acids linoleic acid (C18:2) and linolenic acid (C18:3)
through the successive action of the enzymes lipoxygenase (LOX), hydroperoxide lyase (HPL), alcohol
dehydrogenase (ADH), and isomerization factor (IF). FATTY ACID DESATURASE 7 (FAD7) is an
omega-3 FAD that desaturates linoleic acid (C18:2) to generate linolenic acid (C18:3).

Several lines of evidence indicate that the HPL pathway can influence direct defenses against
insects. In in vitro tests, C6 volatiles including hexanal, (E)-2-hexenal, hexanol, (E)-2-hexenol,
and (Z)-3-hexenol have been shown to reduce aphid fecundity [15]. Moreover, artificial manipulation
of HPL gene expression can influence insect resistance. In potato, antisense suppression of a gene
encoding a 13-HPL resulted in increased aphid fecundity [16]. Similarly, a null mutation in an
HPL homolog rendered rice more susceptible to another piercing-sucking insect, the rice brown
plant hopper (Nilaparvata lugens) [17]. In Arabidopsis, however, overexpression of HPL did not
influence the host preference, fecundity, or growth of the green peach aphid, even though it
resulted in a fifty-fold increase in C6 volatile production [18]. Furthermore, silencing HPL in coyote
tobacco (Nicotiana attenuata) decreased the feeding behavior and growth of a tobacco hornworm
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(Manduca sexta) [19], and overexpression of an HPL gene from tea (Camellia sinensis) in tomato decreased
resistance to another chewing insect, Prodenia litura [20]. These studies indicate that the HPL pathway
influences insect resistance, but that its effects vary in different species combinations, and that further
work is needed to understand the role of HPL in specific plant-insect interactions.

The goals of this study were to determine whether the HPL pathway contributes to direct plant
defenses against aphids in wild-type tomato, and whether it is required for the enhanced aphid
resistance observed in spr2 plants, which have impaired FAD7 function. We examined the effects of
silencing HPL in wild-type plants on aphid infestations at two different stages of plant development
(3 and 5 weeks after planting), in comparison with the effects of the spr2 mutation. Silencing HPL
increased aphid host preference, offspring production, and offspring survival on 5-week old plants,
but did not affect aphid infestations on 3-week old plants, and did not influence the survival of adult
aphids at either stage of plant development. In contrast, the spr2 mutation had a strong suppressive
effect on adult survival, fecundity, and offspring survival at both 3 and 5 weeks after planting. Thus,
the timing and effects of aphid resistance associated with HPL differ from those of spr2-dependent
resistance. We also developed a tomato line (spr2HPL-RNAi) that is deficient in both FAD7 function and
HPL expression in order to determine if loss of function of HPL would compromise aphid resistance
associated with spr2. The spr2HPL-RNAi line showed similar levels of aphid resistance as the spr2
parent, despite dramatically reduced levels of HPL expression. Similarly, bioassays in Arabidopsis
indicated that loss of function of FAD7 could confer aphid resistance even in a genotype that carries
a null mutation in HPL (the fad7-1 mutant, which we confirmed to be homozygous for the hpl mutation).
In summary, our results indicate that both HPL and FAD7 influence antixenosis and antibiosis against
aphids in tomato, but that the effects of FAD7 on aphids are distinct from and independent of HPL.

2. Results

2.1. Confirmation of Silencing of HPL in Tomato

A transgenic line in which expression of HPL was targeted for silencing by RNA
interference (RNAi) [21] was utilized for this study. PCR detection of the kanamycin resistance
gene NPTII confirmed the presence of the transgene in individuals of the HPL-RNAi line,
and semi-quantitative PCR confirmed that HPL transcript abundance was lower in HPL-RNAi plants
than in untransformed controls (cv. Flora-Dade) (Figure 2). Analysis of hexanal, (Z)-3-hexenal,
(E)-2-hexenal, and (Z)-3-hexen-1-ol levels by gas chromatography (Supplementary Figure S1A–D)
also revealed that average C6 volatile production was lower in 5-week-old HPL-RNAi plants than in
wild-type Flora-Dade.

 

2 

Figure 2 

 

Figure 2. Suppression of HPL expression by RNAi. Semiquantitative RT-PCR confirmed reduced
HPL transcript abundance in HPL-RNAi plants (lanes 4–6) compared to untransformed wild-type plants
(cv. Flora-Dade, FD, lanes 1–3). The housekeeping gene Rpl2 was used to confirm uniform RNA quantities
across samples. The presence of the transgene in the HPL-RNAi line was confirmed by PCR detection of
the selective marker NPTII in genomic DNA samples from the same plants. NTC = no template control.
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2.2. Influence of HPL and spr2 on Aphid Survival and Fecundity on Tomato

Survival of adult aphids and offspring production were measured in no-choice aphid bioassays to
assess the effects of silencing HPL on aphid antibiosis in a wild-type tomato cultivar (cv. Flora-Dade).
For comparison, antibiotic aphid resistance was also quantified in spr2 compared to its wild-type
control (cv. Castlemart). Assays were performed with more than one age of plant (3- and 5-week old
plants) just in case the effects of HPL on antibiotic defenses varied with plant age. Based on previous
reports, HPL activity and volatile production both can vary over the course of development [22,23].
At both stages of development tested here, adult survival was significantly lower on spr2 than on the
wild-type control Castlemart six days after inoculation (3-week old plants: p = 0.042; Figure 3A. 5-week
old plants: p < 0.0001; Figure 3B). The average number of live offspring per cage, which is a measure of
adult fecundity, was also more than 50% lower on spr2 than on Castlemart at either developmental
stage (p < 0.0001; Figure 3C,D).

In contrast to spr2, which influenced aphid infestations at both 3 and 5 weeks, the effects of
silencing HPL on aphid populations varied with plant age. The live offspring on HPL-RNAi were
not significantly different from its control Flora-Dade at 3 weeks (p = 0.977; Figure 3C), but were
approximately 29% higher than on wild-type at five weeks (p = 0.005; Figure 3D). Adult survival did
not differ between HPL-RNAi and Flora-Dade at either age (p > 0.05; Figure 3A,B). These data indicate
that HPL contributes to antibiotic defenses against juvenile aphids in five-week old plants, whereas the
spr2 mutation promotes antibiosis against adults and juveniles at both 3 and 5 weeks after planting.

Figure 3. Aphid survival and reproduction on tomato. No-choice assays were performed to assess
adult survival (A,B) and offspring production (C,D) of caged potato aphids on 3-week (A,C) and
5-week old plants (B,D) measured 6 days after inoculation. Asterisks (*) indicate statistically significant
differences at α=0.05 according to student’s t test, and error bars represent SEM (n ≥ 10). Castlemart
(CM) and Flora-Dade (FD) are the respective wild-type (WT) controls for spr2 and HPL-RNAi. ns = no
significant difference.

2.3. Influence of HPL and spr2 on Aphid Host Preference on Tomato

To measure the effects of HPL and spr2 on aphid settling behavior, pair-wise choice tests were
performed to compare the HPL-RNAi line or spr2 to their respective wild-type controls. Choice tests
were performed with 5-week-old plants, since both HPL and spr2 influence antibiotic defenses at
this life stage (Figure 3). In comparisons between spr2 and wild-type (cv. Castlemart) plants, aphids
initially dispersed onto the two genotypes equally, with no significant difference in adult numbers at 1
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h after introduction into the choice arena (p = 0.19; Figure 4A). Over time, the numbers of adults on
spr2 decreased and the numbers on wild-type controls increased; compared to wild type plants, spr2
had significantly fewer aphids at 6 h (p = 0.005), 24 h (p < 0.0001), and 48 h (p < 0.0001) after inoculation
(Figure 4A). Offspring were first observed at 6 h, and their abundance was significantly lower on spr2
compared to wild-type control at 24 h (p < 0.0001), and 48 h (p < 0.0001) (Figure 4B).

When HPL-RNAi was compared to its wild-type control (cv. Flora-Dade), the numbers of adult
aphids were significantly higher on HPL-RNAi at 6 h (p = 0.038), 24 h (p = 0.009) and 48 h (p = 0.038)
(Figure 4C); and the numbers of offspring were significantly higher on HPL-RNAi at 24 h (p = 0.044)
and 48 h (p = 0.030) (Figure 4D). These results indicate that aphid host preference is enhanced on
the HPL-RNAi line compared to wild-type plants, whereas the spr2 mutation decreases aphid host
preference. The effects of spr2 on aphid host preference appeared to be much greater than the effects of
HPL-RNAi; for example, at 48 h, the number of juveniles on spr2 was 97% lower than the number on
wild-type plants, whereas silencing HPL caused only a 37% change in offspring numbers.

Figure 4. Aphid host preference on tomato. Choice assays were performed to compare aphid settling
on spr2 and HPL-RNAi with settling behavior on the respective wild-type (WT) controls: Castlemart
and Flora-Dade. Adult potato aphids were offered a choice of two plants from different genotypes
(14 aphids per pair of plants; 10 pairs of plants for panels (A,B), and 15 pairs of plants for panels (C,D)).
Aphid settling behavior was assessed by recording on which plant the adults were located, and how
many offspring they produced at 1 h, 6 h, 24 h and 48 h after inoculation (HAI). Asterisks (*) indicate
statistically significant differences at α = 0.05 according to Matched pairs one-sided t-tests, and error
bars represent SEM (n ≥ 10).

2.4. Silencing HPL in the spr2 Mutant

To determine whether the HPL pathway might contribute to enhanced aphid resistance in spr2,
the HPL-RNAi line was crossed with spr2, and PCR genotyping was used to identify F2 progeny that
were homozygous for the spr2 mutation and positive for the HPL-RNAi construct. RT-qPCR confirmed
that HPL transcript abundance was significantly reduced in these plants (spr2HPL-RNAi), as well as
in the HPL-RNAi parent line (Figure 5). Compared to the parental lines, the spr2HPL-RNAi line had
intermediate levels of hexanal, a C6 volatile that accumulates to high levels in spr2 (Supplementary
Figure S1A). No-choice assays were performed to assess aphid performance on spr2HPL-RNAi and
the parental lines. Bioassays were performed five weeks after planting to focus on a time point
when both spr2 and HPL-RNAi impact aphid resistance. As in previous assays, adult survival and
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live offspring production were significantly lower on spr2 than on the wild-type control Castlemart
(p < 0.05; Figure 6A,B), and live offspring production was higher on HPL-RNAi than on Flora-Dade
(p < 0.05; Figure 6B). For both measures of aphid performance, numbers on spr2HPL-RNAi were similar
to numbers observed on spr2 (p > 0.05, Figure 6A,B), and were significantly lower than numbers
observed on the wild-type controls Castlemart and Flora-Dade or on the HPL-RNAi parental line
(p < 0.0001; Figure 6A,B). These data indicate that levels of aphid resistance in spr2HPL-RNAi are
comparable to levels of resistance in spr2, and that silencing HPL in an spr2 background does not
compromise aphid resistance mediated by spr2.

Figure 5. HPL Expression in spr2HPL-RNAi. RT-qPCR was used to compare HPL expression in the
wild-type cultivar Flora-Dade (FD), a transgenic line in which the HPL gene was silenced (HPL-RNAi),
and progeny of the spr2 X HPL-RNAi cross that were homozygous for the spr2 mutation in the FAD7 gene
and positive for the HPL-RNAi transgene (spr2HPL-RNAi). Expression values were normalized using the
housekeeping gene Rpl2 and calculated relative to the wild-type control. Relative expression data were
analyzed by one-way ANOVA, and mean separations were performed using Tukey-Kramer HSD. Bars
having the same letter are not significantly different at α = 0.05, and error bars represent SEM (n ≥ 3).

Figure 6. The single and combined effects of impairments in FAD7 and HPL on aphid survival and
reproduction. A no-choice assay on 5-week-old plants was used to measure aphid performance on F2

progeny of the spr2 X HPL-RNAi cross compared to aphid performance on the parental lines (spr2 and
HPL-RNAi) and their respective wild-type controls, Castlemart (CM) and Flora-Dade (FD). All progeny
used for this assay were confirmed by PCR to be homozygous for the spr2 mutation and positive for the
HPL-RNAi transgene. Data was analyzed by one-way ANOVA and Tukey–Kramer HSD. Bars having
the same letter are not significantly different at α = 0.05, and error bars represent SEM (n ≥ 10).
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2.5. FAD7 and HPL in Arabidopsis

In parallel, we also explored whether the homologous FAD7 gene in Arabidopsis required
a functional copy of the HPL gene to influence aphid performance. The Columbia ecotype (Col-0) was
previously reported to carry a ten-nucleotide deletion in HPL that eliminates the gene’s function [24].
PCR genotyping revealed that the fad7-1 mutant, which originated from Col-0, is also homozygous
for the hpl mutation (Figure 7A). This fad7-1 hpl mutant supported significantly fewer aphids than the
wild-type genotypes Columbia and Nossen (p < 0.0001; Figure 7B). Thus, aphid resistance conferred
by loss of function of the FAD7 protein is independent of HPL in Arabidopsis as well as in tomato.

Unlike Columbia, the Nossen (Nos) ecotype carries a functional allele of the HPL gene
(Figure 7A) [24]. Aphid population growth did not differ significantly between these two ecotypes
(p = 0.2293; Figure 7B). These results suggest that HPL does not have a major impact on aphid
infestations on Arabidopsis, or that its effects are outweighed by other differences between these
two genotypes.

Figure 7. Aphid performance on Arabidopsis genotypes with and without mutations in FAD7 and
HPL. PCR was used to determine the presence of wild-type and mutant alleles of the HPL gene in
Columbia (Col-0), Nossen, and fad7-1 ((A), NTC = no template control). A no-choice test was used to
assess performance of the green peach aphid on these genotypes ((B), n = 20). Aphid numbers were
analyzed by one-way ANOVA, and mean separations were performed using Tukey’s HSD. Bars having
the same letter are not significantly different at α = 0.05, and error bars represent SEM.

3. Discussion

One objective of this study was to determine whether HPL contributes to plant defenses against
aphids in wild-type tomato plants. Silencing HPL expression in wild-type plants (cv. Flora-Dade)
had no effect on aphid infestations three weeks after planting (Figure 3), but resulted in enhanced
aphid host preference, reproduction, and survival when infestations occurred about five weeks after
planting (Figures 3 and 4). These data suggest that HPL contributes to both antixenotic and antibiotic
defenses against aphids on tomato, and that these defenses vary between 3- and 5-week old plants.
Potentially, the activity of the HPL pathway may vary with plant age; for example, in rice, HPL enzyme
activity is low in seedlings and peaks twelve weeks after sowing [22]. Therefore, the fact that silencing
HPL at three weeks had little effect on aphids could be due to relatively low levels of HPL activity in
three-week old plants.

A second objective was to determine if the HPL pathway contributes to aphid resistance in the
spr2 mutant, which is defective in a chloroplast-localized fatty acid desaturase FAD7. Like HPL,
the spr2 mutation also impacts C6 volatile synthesis because it alters the relative abundance the fatty
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acid substrates for volatile synthesis. Because the spr2 mutation enhances C18:2 accumulation and
decreases C18:3 synthesis, it promotes production of C18:2-derived volatiles such as hexanal and
inhibits accumulation C18:3 derivatives such as (Z)-3-hexenol [12,13]. However, the results of our
aphid bioassays suggest that products of the HPL pathway do not have a causal role in the enhanced
levels of aphid resistance observed in spr2. Whereas silencing HPL did not influence aphid infestations
on three-week old plants, the spr2 mutation has just as strong an impact on aphids in three-week old
seedlings as in five-week old plants (Figure 3). Moreover, when HPL is silenced in the spr2 mutant line,
it has no effect on aphid performance on this line (Figure 6). These results indicate that HPL expression
is not essential to aphid resistance in spr2.

Consistent with our observations in tomato, the fad7-1 mutation in Arabidopsis also enhances
aphid resistance even in a genetic background that carries the hpl mutation (Figure 7), even though
this mutation has previously been shown to suppress C6 volatile synthesis [22]. Thus, FAD7 activity
in tomato and Arabidopsis modulates direct defenses against aphids independent of HPL activity.
Our results also suggest that HPL may not have a strong, direct impact on aphid infestations on
Arabidopsis, since aphid population growth was similar on ecotypes with (Col-0) and without (Nossen)
the hpl mutation (Figure 7). This is consistent with a previous report that overexpression of HPL had
no influence green peach aphid population increase or host preference on Arabidopsis even though
overexpression increased C6 volatile levels by over 40-fold [18].

In conclusion, HPL contributes to basal aphid resistance in wild-type tomato plants, but enhanced
aphid resistance in mutants with impaired FAD7 function is independent of HPL gene expression.
In Arabidopsis, although HPL aids in indirect defenses against aphids by recruiting parasitoids
wasps [18], HPL does not appear to contribute significantly to direct defenses against aphids in the
fad7 mutant. These results indicate that fatty acid metabolism in plants can influence plant-aphid
interactions through routes independent of C6 volatile synthesis. It is unlikely that loss of function of
FAD7 would impact the nutritional quality of plants for aphids, because polyunsaturated fatty acids
are naturally rare in the phloem sap on which aphids feed [25]. Our prior work also indicates that
aphid resistance in spr2 is not influenced by jasmonate signaling, although it requires salicylic acid
accumulation and Non-expressor of Pathogenesis Related Proteins (NPR1) [10]. These findings emphasize
the need for further work to understand the mechanisms through which components of primary
metabolism including fatty acid desaturation influence plant defense signaling and immunity.

4. Materials and Methods

4.1. Tomato Culture

Five tomato (Solanum lycopersicum) genotypes were used in this study: a mutant line with impaired
FAD7 activity called suppressor of prosystemin-mediated responses2 (spr2) [26], a transgenic line silenced
for HPL (HPLi-1653-3 [21], referred to here as HPL-RNAi), a line deficient in both FAD7 function and
HPL expression (spr2HPL-RNAi), and two wild-type cultivars, Castlemart and Flora-Dade. The spr2
mutant carries a point mutation that results in loss of function of FAD7 [2], and Castlemart is the
genetic background that was originally used to develop spr2. The creation of the HPL-RNAi line in the
tomato cultivar Flora-Dade was previously described [21]. In brief, a 330-bp fragment comprising bases
562–881 of the HPL open reading frame in the sense orientation and a 595-bp fragment comprising bases
562–1154 of the HPL open reading frame in the antisense orientation were expressed in cv. Flora-Dade
under the control of the Figwort mosaic virus 35S in order to induce silencing of HPL. The authors
previously demonstrated that the HPL RNAi line used in this study has significantly reduced HPL
mRNA accumulation and C6 volatile production in the fruits as well as foliage [21]. Since fruits are not
typically produced until at least 8 weeks after planting, this data indicated that silencing was persistent
in mature plants. The spr2HPL-RNAi line was produced by crossing spr2 and HPL-RNAi (described
below). Tomato plants (Solanum lycopersicum) were grown in LC1 Sunshine potting mix (Sungro
Horticulture, Bellevue, WA, USA) with 15-9-12 Osmocote slow-release fertilizer (Scotts-MiracleGro
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Company, Marysville, OH, USA) at 23 ◦C and L16:D8 photoperiod in an environmental growth
chamber (Conviron, Winnipeg, MB, Canada), and watered daily with a dilute nutrient solution
containing 1000 ppm CaNO3 (Hydro Agri North America, Tampa, FL, USA), 500 ppm MgSO4 (Giles
Chemical Corp, Waynesville, NC, USA), and 500 ppm 4-18-38 Gromore fertilizer (Gromore, Gardena,
CA, USA).

4.2. Development of the spr2HPL-RNAi Line

A tomato line with impairments in both FAD7 and HPL was developed by manually transferring
pollen from HPL-RNAi to spr2 and screening the (spr2 × HPL-RNAi) F2 generation for individuals
that were positive for the HPL-RNAi transgene and homozygous for the spr2 mutation. Screening
for the spr2 mutation was performed by PCR using two allele-specific primer sets that target a single
nucleotide polymorphism as described by Avila et al. [10]. Presence of the HPL-RNAi transgene in
F2 plants was determined by amplifying the selectable marker NPTII (Neomycin phosphotransferase II)
using forward (5′-GCAATATCACGGGTAGCCAA-3′) and reverse (5′-GCCGTGTTCCGGCTGTCA-3′)
primers. NPTII PCR was performed at 95 ◦C for 5 min; 95 ◦C for 45 s, 50 ◦C for 45 s, and 72 ◦C for 45 s
(30 cycles); and final extension at 72 ◦C for 5 min.

4.3. Arabidopsis Culture and Materials Development

Arabidopsis plants (Arabidopsis thaliana) were grown in a peat, vermiculite, perlite (4:3:2 ratio,
Sungro Horticulture, Bellevue, WA, USA) soil mixture supplemented with 15-9-12 Osmocote Plus
fertilizer (Scotts-MiracleGro Company, Marysville, OH, USA) at 23 ◦C and L13:D11 photoperiod in
a growth chamber (Conviron, Winnipeg, MB, Canada). The plants were fertilized weekly with Miracle
Gro® all-purpose plant food (Scotts-MiracleGro Company, Marysville, OH, USA). Arabidopsis ecotype
Columbia (Col-0, CS70000) was obtained from the Arabidopsis Biological Resource Center (Ohio State
University, Columbus, OH, USA), and the Nossen ecotype and the fad7-1gl1 mutant (developed in
a Col-0 genetic background) were obtained from Dr. Jyoti Shah (University of North Texas). Because
the fad7-1gl1 mutant carries a mutation (gl1) in a gene required for trichome production (GLABRA1) in
addition to a mutation in FAD7, this mutant was crossed with Col-0 to develop another line (fad7-1)
with impaired FAD7 function but normal trichome development. In the F2 generation, plants with
trichomes were screened by PCR with primer sets specific to the mutant and wild-type alleles of FAD7
to select for plants homozygous for the mutant fad7-1 allele [27]. Plants that lacked the gl1 mutant
phenotype and that were homozygous for the fad7-1 mutation were then propagated to generate seeds
for subsequent assays. All plants were observed to confirm the presence of trichomes before they were
used for experiments.

4.4. Identification of the HPL Mutation in the Arabidopsis fad7-1 Mutant

The fad7-1 mutant in Arabidopsis was screened by PCR for the presence of a 10-bp deletion
(from 161 bp to 170 bp) in the HYDROPEROXIDE LYASE (HPL) gene that occurs naturally in the
ecotype Columbia (Col-0), and that results in a non-functional HPL protein [24]. Col-0 was included as
a positive control for the mutant allele, and the Nossen ecotype was included as a positive control for
the wild-type HPL allele. Genomic DNA was extracted using an extraction buffer that was made by
diluting Edwards solution (200 mM Tris-HCl (pH 7.5), 250 mM NaCl, 25 mM EDTA, and 0.5% SDS) by
10-fold with TE buffer (10 mM Tris-HCl (pH 8) and 1 mM EDTA) [28,29]. Each sample was used for two
separate PCR reactions: one with a primer set that amplifies only the wild-type HPL allele (At4g15440.1)
(forward 5′-GGACCGTTTAGATTACTTCTGGTT-3′, reverse 5′-CGGAAGTCTCCGATGAGAAC-3′),
and another reaction with a primer set that specifically targets the mutant hpl allele with the 10 nts
deletion (5′-GACCGTTTAGATTCCAAGGAC-3′, reverse 5′-CGGAAGTCTCCGATGAGAAC-3′). PCR
amplification was performed at 95 ◦C for 5 min, followed by 30 cycles of 95 ◦C for 45 s; 55 ◦C for
45 s, and 72 ◦C for 45 s, and a final extension at 72 ◦C for 5 min. PCR products were separated by
electrophoresis on 1% agarose gels.



Int. J. Mol. Sci. 2018, 19, 1077 10 of 13

4.5. RNA Isolation and Gene Expression Analysis

For analysis of gene expression, total RNA was extracted from approximately 100 mg of flash-frozen
leaf tissue using TRIzol reagent and chloroform (Invitrogen Corp., Carlsbad, CA, USA) using the
manufacturer’s instructions. cDNA was synthesized from 1 µg of total RNA per sample using Superscript
III reverse transcriptase and oligo dT(18) primers in a 20 µL reaction volume (Invitrogen Corp., Carlsbad,
CA, USA). Transcript abundance in the cDNA was then quantified by semi-quantitative PCR or real-time
PCR. For semi-quantitative PCR, 50 ng of cDNA was used as a template and the final concentration
for each primer was 0.4 µM. The PCR program was: 95 ◦C for 5 min; 95 ◦C for 30 s, 52 ◦C for 30 s,
and 72 ◦C for 30 s (22 cycles); and final extension at 72 ◦C for 5 min. PCR products were detected on
a 1% agarose gel. Real-time quantitative PCR was performed on 2 µL of cDNA in a 20 µL reaction
volume using the QuantiTect SYBR Green PCR Kit (Qiagen, Inc., Valencia, CA, USA) on a StepOnePlus
Real-time PCR system (Applied Biosystems, Foster City, CA, USA). The RT-qPCR program was: 95 ◦C
activation for 10 min, followed by 40 cycles of amplification and quantification (denaturation at 95 ◦C
for 15 s, annealing at 52 ◦C for 30 s, extension 72 ◦C for 30 s with a single fluorescence detection).
Melting curves were generated at 60–95 ◦C with a heating rate of 0.3 ◦C per second. Three biological
replicates for each genotype and two technical replicates for each biological replicate were used.
Transcript abundance of tomato HPL (Solyc07g049690; GenBank accession AF230372.1) was measured
using primers previously described by Shen and coworkers [21] (5′-AGCTACGGATTGCCGTTAGT-3‘/
5′-TTTCCATTCTCTTGGTGAAGAA-3′). Data were normalized to the expression levels of the endogenous
control Ribosomal Protein L2 (RPL2) using primers previously described by Avila and coworkers [10]
(5′-GAGGGCGTACTGAGAAACCA-3′/5′-CTTTTGTCCAGGAGGTGCAT-3′). Gene expression was
calculated relative to the wild-type control for each genotype comparison using the methodology described
by Pfaffl [30].

4.6. Aphid Bioassays

4.6.1. Insect Materials

Potato aphids (Macrosiphum euphorbiae) were reared on an aphid-susceptible tomato cultivar
(cv. BHN876, potato (Solanum tuberosum Linnaeus), and Jimson weed (Datura stramonium Linnaeus)
plants at 20 ◦C and 16-h light photoperiod. Green peach aphids (Myzus persicae) were reared on an
aphid-susceptible cabbage cultivar (Brassica oleracea var. Joychoi) at ~23 ◦C and 16-h light photoperiod.

4.6.2. Aphid Survival and Fecundity on Tomato

No-choice assays were performed to evaluate potato aphid survival and fecundity. Wingless
adult potato aphids within 24 h of emergence to adulthood were confined to single leaflets of intact
plants using clip cages (4 adults per cage, 2 cages per plant, 10–15 replicate plants per genotype),
and the numbers of living and dead adults and offspring were recorded at six days after infestation
(6-DAI). Both 3- and 5-week-old plants were inoculated to determine if aphid resistance varied with
age. The positions of the cages were standardized for all plants in each assay; cages were placed on the
terminal leaflet of the 2–3 fully-expanded leaves below the apical meristem. Plants were maintained in
a growth chamber at 23 ◦C and 16L: 8D photoperiod during the bioassay.

4.6.3. Aphid Host Preference on Tomato

Settling behavior of the potato aphid was measured on intact tomato plants by placing adult
aphids on choice arenas that allowed them to move back and forth between paired tomato genotypes.
Each arena consisted of a Styrofoam platform (15 cm diameter) that was placed underneath two paired
leaflets: the terminal leaflet of the third fully expanded leaf below the apical meristem of each of the
paired plants. Wingless adult potato aphids within 24 h of emergence to adulthood (14 adults per
arena) were placed between the leaflets and confined to the arena using a vented petri dish lid with
a soft gasket that prevented damaging the petioles (Supplementary Figure S2). The number of adult
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aphids on each plant were recorded at 1 h, 6 h, 24 h and 48 h after release. Offspring production
was also monitored because it is a well-established marker of host plant acceptance [31]. In each
experiment, ten to fifteen replicate pairs per combination of genotypes were tested using five-week-old
tomato plants, and each experiment was performed at least twice.

4.6.4. Aphid Survival and Fecundity on Arabidopsis

To measure aphid performance on Arabidopsis, plants were inoculated with the green peach aphid
(3 wingless newly-emerged adults/plant; 15 plants/genotype) when first flower buds were visible
(developmental stage 5.1 according to [32]). After infestation, plants were covered with sleeve cages
and maintained for 7 days in a growth chamber (23 ◦C; 65% relative humidity; L13:D11 photoperiod).
The numbers of live and dead adults and offspring aphids on each plant were scored 7 days after
infestation (DAI) in this no-choice assay.

4.7. Statistical Analysis

All statistical analyses were done with JMP® v.11 (SAS Institute Inc., Cary, NC, USA). Host
preference assays were analyzed by matched pairs one sided t-tests within each time point,
and no-choice assays were analyzed by one-way ANOVA, with α = 0.05.

Supplementary Materials: The following are available online at http://www.mdpi.com/1422-0067/19/4/1077/
s1. Figure S1: Comparison of C6 volatile levels in five-week-old plants with modifications in fatty acid desaturation
and/or HYDROPEROXIDE LYASE expression. Figure S2: Design of choice assays to study aphid host preference
on tomato.
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