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Abstract

Background: High-risk patients are most vulnerable during transitions of care. Due to the high burden of resource
allocation for such patients, we propose that segmentation of this heterogeneous population into distinct
subgroups will enable improved healthcare resource planning. In this study, we segmented a high-risk population
with the aim to identify and characterize a patient subgroup with the highest 30-day and 90-day hospital
readmission and mortality.

Methods: We extracted data from our transitional care program (TCP), a Hospital-to-Home program launched by
the Singapore Ministry of Health, from June to November 2018. Latent class analysis (LCA) was used to determine
the optimal number and characteristics of latent subgroups, assessed based on model fit and clinical
interpretability. Regression analysis was performed to assess the association of class membership on 30- and 90-day
all-cause readmission and mortality.

Results: Among 752 patients, a 3-class best fit model was selected: Class 1 “Frail, cognitively impaired and
physically dependent”, Class 2 “Pre-frail, but largely physically independent” and Class 3 “Physically independent”.
The 3 classes have distinct demographics, medical and socioeconomic characteristics (p < 0.05), 30- and 90-day
readmission (p < 0.05) and mortality (p < 0.01). Class 1 patients have the highest age-adjusted 90-day readmission
(OR = 2.04, 95%CI: 1.21–3.46, p = 0.008), 30- (OR = 6.92, 95%CI: 1.76–27.21, p = 0.006) and 90-day mortality (OR =
11.51, 95%CI: 4.57–29.02, p < 0.001).

Conclusions: We identified a subgroup with the highest readmission and mortality risk amongst high-risk patients.
We also found a lack of interventions in our TCP that specifically addresses increased frailty and poor cognition,
which are prominent features in this subgroup. These findings will help to inform future program modifications and
strengthen existing transitional healthcare structures currently utilized in this patient cohort.
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Brief summary
High-risk healthcare utilizers were segmented into 3
classes, with Class 1 “Frail, cognitively impaired and
physically dependent” having the highest 90-day hospital
readmission and 30- and 90-day mortality.

Background
Globally, healthcare systems are facing the challenge of
an ageing population with multiple chronic conditions
[1]. These patients often experience repeated hospitaliza-
tions and are particularly vulnerable during transitions
of care, resulting in significant hospital readmissions,
mortality and healthcare expenditure [2, 3]. In
Singapore, a multi-ethnic nation of 5.6 million people
[4] with one of the most rapidly ageing population in
Asia, the 30-day all-cause readmission rates in 2010 was
11.6% [5], which increased to 19.0% for patients aged 65
years and older. This is slightly lower than the 19.6% 30-
day readmission rate in the United States [6]. Addition-
ally, healthcare expenditure is predicted to exponentially
rise from Singapore Dollars (SGD) $4 billion (USD $2.98
billion) in 2011 to SGD $12 billion (USD $8.94 billion)
in 2020 [7]. In response to this, the Singapore Ministry
of Health (MOH) launched the Hospital-to-Home
(H2H) program [8], a transitional care program (TCP)
that aims to improve the transition from acute care set-
tings back into the community [9]. Likewise, similar pro-
grams emphasising population health management have
emerged amongst health systems worldwide to under-
stand the determinants of health and deliver solutions to
this emerging problem [10].
However, the effectiveness of TCPs in reducing re-

admission and mortality has so far provided mixed re-
sults. Most programs demonstrated an improvement in
patient outcomes, but a substantial number showed lim-
ited impact or worse outcomes [11–15]. A possible ex-
planation for such inconsistency may be due to different
patient subgroups with accompanying risk profiles pre-
senting with varying responses to a standardized TCP
intervention. Such a disparity is more critical in com-
plex, high-risk patients with heterogeneous medical and
socioeconomic characteristics [3], thereby limiting ef-
fectiveness of TCPs if programs do not adequately ad-
dress this variance. Increasingly, medical complexity
alone is found to be insufficient in explaining patterns of
post-acute repeat hospitalizations [16]. Socioeconomic
risk factors such as religion, health literacy, employment,
and quality of family support are also important factors
driving health care utilization [17–19].
A promising approach is to segment these heteroge-

neous populations into relatively homogenous, distinct
subgroups with similar characteristics using data. A
data-driven approach towards population segmentation
has emerged over the years as an attractive methodology,

with its ability to utilize large amounts of healthcare
dataset to generate evidence-based quantitative insights
into a population’s health status, thereby informing pol-
icy decisions on population health [10, 20]. To date,
data-driven segmentation has not been applied to a
high-risk transitional care patient population using both
medical and socioeconomic determinants of health to
identify specific subgroups of the population with worse
outcomes than others. The identification of the highest
risk population subgroup (whom often have the poorest
health outcome and highest healthcare resource needs)
and its associated targetable characteristics would be
fundamental towards formulating intervention priorities
organized around these characteristics, thereby enabling
the delivery of a more effective integrated care at better
value [3, 21].
In our study, we aim to segment a high-risk patient

population in the H2H program into classes of unique
disease profiles and identify a patient subgroup that has
the poorest 30- and 90-day hospital readmissions and
mortality. In addition, we aim to describe the character-
istics representing the disease profile of this segment
that may account for their poor health outcomes.

Methods
Study site, data sources
Healthcare in Singapore is largely under the responsibil-
ity of the Singapore MOH, which uses a mixed financing
system that includes nationalized healthcare insurance
schemes and deductions from the compulsory savings
plan Central Provident Fund (CPF), for Singapore citi-
zens and permanent residents [22, 23]. In 2017,
Singapore MOH launched the H2H program with the
aim of reducing unnecessary hospital admission & utili-
zations [9]. It involves inpatient care coordination and
community care navigation by nurses through follow-up
calls and home visits for high-risk patients with complex
chronic disease to ensure care continuity during the
transitional period after hospital discharge. These nurses
are full-time, degree-holders with an average of 5 years’
experience in hospital and/or home care in adults, su-
pervised by masters prepared Advanced Practice Nurses.
Hospital readmissions and mortality were obtained at
30- and 90-days after discharge. Duration of intervention
typically lasts 6 months.
We used routinely collected clinical data from the

H2H program. Data included demographics (age, gender
and race), medical and socioeconomic characteristics.
Based on the commonly accepted age to define an older
person [24], age was dichotomized into 2 groups, ≤65
years and > 65 years. We included all H2H enrolled adult
patients (21 years of age and above) who are Singaporean
residents or permanent residents. The Singapore Gen-
eral Hospital (SGH) Population Health and Integrated
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Care Office approved the usage of collected data for this
study. The Centralized Institutional Review Board
(iSHaRe Ref. No. 201707–00005) approved this study for
ethics. This study has been published as an abstract for
the Society for Academic Primary Care 48th Annual Sci-
entific Meeting conference [25].

Variables used in the latent class analysis
Multiple variables straddling medical and socioeconomic
conditions were reviewed for inclusion. Importantly,
these variables were routinely collected in the program
as part of patient assessment.

Medical characteristics
Five variables related to disease state, cognition and
functional status were utilised - Charlson Comorbidity
Index (CCI), Abbreviated Mental Test (AMT), Clinical
Frailty Score (CFS), clinical insight [26] and Activities of
Daily Living (ADLs) dependency. Clinical insight was
assessed by the nurses on the presence or absence of the
patients’ understanding of their own medical condition.
These variables and their grouped categorical scores
have been validated across several countries, including
locally as a good discriminative tool for predicting dis-
ease status and health outcomes [27–31].

Socioeconomic characteristics
Four variables - Religion, medicine consolidation issues,
quality of family support and employment - were utilized.
Religion (or a professed faith) was assessed by the pres-
ence or absence of it. Medicine consolidation issues were
assessed by the presence or absence of the 5 rights of
medication administration: Right patient, drug, dose, route
and time [32]. Quality of family support was categorised
into 4 groups: absent (patient has no kin), dysfunctional
(presence of a high degree of conflict, misbehaviour, neg-
lect and/or abuse occurring continuously and regularly),
distant (presence of kin but minimal contact) and sup-
portive. Employment was categorised into 3 groups: un-
employed, retired or employed.

Latent class analysis
LCA is a data-driven method utilizing individual level
observable data (indicator variables) to identify under-
lying latent groups of individuals (classes) [33]. Examples
of successful LCA utilization in population segmentation
has been demonstrated by Low et al. in the Singapore
regional health system [10] and Yan et al. in a primary
care population respectively [34]. In this study, 9 identi-
fied medical and socioeconomic variables were selected
and described above. MPlus Version 8.2 statistical mod-
elling software was used to perform the LCA [35].
The optimal number of classes is determined by the fit

statistics and clinical interpretability. Model fit was

evaluated using the Bayesian Information Criterion
(BIC) and sample-size adjusted BIC (ABIC) [36]. Starting
with 1 class, a lower value from BIC or ABIC from each
successive model, which has one more class than the
prior model, indicates a better fit. Additionally, the esti-
mated probabilities of each indicator variables within
each class provide information that describes the classes
and determines whether the classes are distinct from
one another and clinically interpretable. Separate LCA
models were generated successively from 1 through 4
class solutions. From the LCA that corresponded to the
optimal number of classes identified, the posterior prob-
ability of membership for each class is computed for
each subject which is assigned to the class with the max-
imum posterior probability.

Statistical analysis
Firstly, to examine whether significant differences between
demographics and disease patterns exist across the classes,
we used Fisher exact test for the categorical variables. Next,
we identified potentially confounding factors through a uni-
variate analysis of demographics against class and health
outcomes. Lastly, to assess the association of class member-
ship on hospital readmissions and mortality, we used logis-
tic regression with Class 3 as reference. The models were
adjusted for age. Analyses were performed using SAS, ver-
sion 0.4 (SAS Institute, Inc., Cary, NC).

Results
Segmentation outcome
A final LCA model of 3 classes was identified based on
its better statistical fit (lowest BIC and ABIC) and clin-
ical interpretability (Additional file 1: Table S1). 752 pa-
tients enrolled from June to November 2018 were
segmented into 3 classes and labelled based on the esti-
mated probability of each indicator variable within each
class: Class 1 “Frail, cognitively impaired, physically
dependent”; Class 2 “Pre-frail but largely physically inde-
pendent”; and Class 3 “Physically independent”. A sum-
mary of the overall prevalence of the 9 indicator
variables and the percentage of individuals in each class
for each variable is provided in Table 1.
The 3 classes displayed significantly different medical

and socioeconomic characteristics (Table 1). Overall,
Class 1 fared the worst in these variables: unemployment
(92.2%), ADLs dependent (44.7%), poor cognition (76.7%
with AMT 0–6), moderately frail (91.3% with CFS 6–8
points) and significant comorbidity (94.2% with CCI ≥3).

Demographics
As shown in Table 1, 68% of the study population were >
65 years old. Subjects in Class 1 were the oldest (90.3%
aged > 65 years old) and those in Class 3 were the youn-
gest (45.1% aged > 65 years old) among the three classes.
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Table 1 Demographics, indicator variables and health outcomes by class (N = 752)
Total
(N = 752)

Class 1: Frail, cognitively impaired, physically
dependent (N = 103, 13.7%)

Class 2: Pre-frail but largely physically in-
dependent (N = 323, 43%)

Class 3: Physically
independent (N = 326, 43.3%)

P-value

Demographics

Age (year) < 0.001

> 65 years 511 (68) 93 (90.3) 271 (83.9) 147 (45.1)

≤ 65 years 241 (32) 10 (9.7) 52 (16.1) 179 (54.9)

Range 20, 98 30, 98 35, 97 20, 95

Gender, n (%) 0.018

Female 394
(52.4)

66 (64.1) 171 (52.9) 157 (48.2)

Male 358
(47.6)

37 (35.9) 152 (47.1) 169 (51.8)

Race, n (%) 0.039

Chinese 588
(78.2)

78 (75.7) 268 (83.0) 242 (74.2)

Indian 69 (9.2) 10 (9.7) 28 (8.7) 31 (9.5)

Malay 77 (10.2) 10 (9.7) 24 (7.4) 43 (13.2)

Others 18 (2.4) 5 (4.9) 3 (0.9) 10 (3.1)

Indicator variables

Religion, n (%) < 0.001

No 234
(31.1)

31 (30.1) 76 (23.5) 127 (39.0)

Yes 518
(68.9)

72 (69.9) 247 (76.5) 199 (61.0)

Medicine
consolidation issues,
n (%)

0.006

No 673
(89.5)

89 (86.4) 279 (86.4) 305 (93.6)

Yes 79 (10.5) 14 (13.6) 44 (13.6) 21 (6.4)

Quality of family
support, n (%)

< 0.001

Absent 48 (6.4) 2 (1.9) 11 (3.4) 35 (10.7)

Dysfunctional 11 (1.5) 1 (1.0) 9 (2.8) 1 (0.3)

Distant 35 (4.7) 2 (1.9) 18 (5.6) 15 (4.6)

Supportive 658
(87.5)

98 (95.1) 285 (88.2) 275 (84.4)

Employment, n (%) < 0.001

Unemployed 537
(71.4)

95 (92.2) 307 (95.0) 135 (41.4)

Retired 30 (4.0) 5 (4.9) 9 (2.8) 16 (4.9)

Employed 185
(24.6)

3 (2.9) 7 (2.2) 175 (53.7)

Clinical insight, n (%) 0.003

No 45 (6.0) 5 (4.9) 30 (9.3) 10 (3.1)

Yes 707
(94.0)

98 (95.1) 293 (90.7) 316 (96.9)

ADL, n (%) < 0.001

Dependent 46 (6.1) 46 (44.7) 0 0

Moderate Assist 56 (7.4) 46 (44.7) 10 (3.1) 0

Minimal Assist 121
(16.1)

11 (10.7) 108 (33.4) 2 (0.6)

Independent 529
(70.3)

000 205 (63.5) 324 (99.4)

AMT, n (%) < 0.001
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The majority of the study population were Chinese, par-
alleling the general Singapore population [37]. The dif-
ferences in age, gender and race were statistically
significant (p < 0.05).

Hospital readmissions and mortality patterns
Table 1 shows the hospital readmissions and mortality
patterns at 30 and 90 days after discharge across the 3
classes. Class 1 had the highest 90-day hospital readmis-
sion (p = 0.004) and 30- and 90-day mortality (p = 0.005
and < 0.001 respectively).
In Table 2, the segmented classes persisted to be signifi-

cantly associated with 90-day hospital readmission, and
30- and 90-day mortality after adjustment for age. Class 1

had the highest odds for 90-day readmission (OR = 2.04,
95% CI: 1.21–3.46, p-value = 0.008), 30-day mortality
(OR = 6.92, 95% CI: 1.76–27.21, p-value = 0.006) and 90-
day mortality (OR = 11.51, 95%CI: 4.57–29.02, p-value<
0.001) among the 3 classes. Though not as high as Class 1,
Class 2 also had higher odds for 90-day readmission (OR =
1.43, 95% CI: 0.96–2.14, p-value = 0.079), 30-day mortality
(OR = 3.56, 95% CI: 1.02–12.43, p-value = 0.046) and 90-
day mortality (OR = 3.84, 95% CI: 1.61–9.12, p-value =
0.002) when compared to Class 3.

Discussion
Utilizing LCA, this study segmented the heterogeneous
health profiles of H2H patients into 3 classes with

Table 1 Demographics, indicator variables and health outcomes by class (N = 752) (Continued)
Total
(N = 752)

Class 1: Frail, cognitively impaired, physically
dependent (N = 103, 13.7%)

Class 2: Pre-frail but largely physically in-
dependent (N = 323, 43%)

Class 3: Physically
independent (N = 326, 43.3%)

P-value

0–6 point(s) 136
(18.1)

79 (76.7) 52 (16.1) 5 (1.5)

7–10 points 616
(81.9)

24 (23.3) 271 (83.9) 321 (98.5)

CFS, n (%) < 0.001

1–3 point(s) 322
(42.8)

0 27 (8.4) 295 (90.5)

4–5 points 292
(38.8)

9 (8.7) 253 (78.3) 30 (9.2)

6–8 points 138
(18.4)

94 (91.3) 43 (13.3) 1 (0.3)

CCI score, n (%) < 0.001

0 points 39 (5.2) 2 (1.9) 0 37 (11.3)

1 point 53 (7.0) 3 (2.9) 0 50 (15.3)

2 points 63 (8.4) 1 (1.0) 10 (3.1) 52 (16.0)

≥ 3 points 597
(79.4)

97 (94.2) 313 (96.9) 187 (57.4)

Health outcomes

Hospital readmission n (%)

30 days 112
(14.9)

18 (17.5) 59 (18.3) 35 (10.7) 0.027

90 days 182
(24.2)

35 (34.0) 86 (26.6) 61 (18.7) 0.004

Mortality, n (%)

30 days 22 (2.9) 7 (6.8) 12 (3.7) 3 (0.9) 0.005

90 days 56 (7.4) 22 (21.4) 27 (8.4) 7 (2.1) < 0.001

Abbreviations – ADL Activities of Daily Living, AMT Abbreviated Mental Test, CFS Clinical Frailty Score, CCI Charlson Comorbidity Index
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distinct medical, social and demographic patterns. We
further showed the different health outcomes between
the 3 classes, demonstrating the utility of population
segmentation in prognosticating patients and highlight-
ing cohorts of patients that require differing tiers of care.
Such an understanding would be fundamental for health
policymakers and clinicians to make informed decisions
on targeted health interventions for each class, allowing
for optimal resource allocation and better health out-
comes in a resource-strapped environment.
Class 1 “Frail, cognitively impaired, physically

dependent” is prominent with the highest 90-day re-
admission and 30- and 90-day mortality amongst the
three classes.. These highlights important areas of inter-
vention for this high risk class in the existing H2H pro-
gram, namely interventions targeting frailty and
cognition. Our findings are congruent with existing lit-
erature, where patients who are frail and/or have poor
cognition have poorer health outcome and increased
healthcare utilization [38, 39]. In addition, the lack of
specific clinical pathways addressing cognition is also
echoed by previously conducted systematic reviews on
TCPs and its components globally [40, 41], highlighting
the need for the development of more robust interven-
tions in TCPs targeting these deficits.
In terms of frailty, multicomponent interventions

spanning multiple domains such as physical exercise
programs (such as Tai Chi and resistance training), cog-
nitive training, and provision of nutritional supplements
have been found to be consistently successful and may
be incorporated in TCPs as deemed appropriate [42].

With regards to cognition, specifically dementia, non-
pharmacological interventions that are low-cost and safe
such as cognitive stimulation therapy and reality orienta-
tion have been found to be correlated with cognitive and
behavioural benefits [43]. Additionally, given that care-
giver burden factors in as a major component affecting
dementia patients’ outcome, adequate interventions such
as caregiver training and education, and peripheral sup-
portive infrastructures are necessary to address this def-
icit [44]. A Alternatively, given the high mortality rate
for Class 1, palliative care may be a viable option to pro-
vide for end-of-life needs; seeking to improve quality of
life and potentially reduce healthcare utilisation [45], es-
pecially when the extension of life may be futile or at the
expanse of patients’ overall well-being. Indicators such
as Advance Care Planning and appropriate place of
death may provide insights into a TCP’s effectiveness, in
addition to metrics such as readmission and mortality
rate.
This study had several limitations. Firstly, the unique

socioeconomic characteristics of our patient population
in a multi-ethnic nation Singapore meant its
generalizability to other patient populations may be lim-
ited. However, given that the bulk of the class differ-
ences lie in medical factors, this limitation would be
limited. Secondly, the indicators used for segmentation
were routinely collected medical and socioeconomic var-
iables, which may not capture all health determinants.
Future research may expand routinely collected data to
variables showing a major influence on health outcomes,
such as mental health and substance abuse [16]. Thirdly,

Table 2 Univariate and multivariate analysis on hospital readmissions and mortality

Unadjusted OR (95% CI) p-value Adjusted ORa (95% CI) p-value

Hospital readmissions at 30 days 0.029* 0.103*

Class 1: Frail, cognitively impaired and physically dependent 1.75 (0.95, 3.23) 0.075 1.61 (0.84, 3.08) 0.153

Class 2: Pre-frail, but largely physically independent 1.80 (1.15, 2.81) 0.011 1.67 (1.03, 2.71) 0.037

Class 3: Physically independent Reference

Hospital readmissions at 90 days 0.005* 0.025*

Class 1: Frail, cognitively impaired and physically dependent 2.20 (1.34, 3.61) 0.002 2.04 (1.21, 3.46) 0.008

Class 2: Pre-frail, but largely physically independent 1.53 (1.05, 2.21) 0.026 1.43 (0.96, 2.14) 0.079

Class 3: Physically independent Reference

Mortality at 30 days 0.012* 0.021*

Class 1: Frail, cognitively impaired and physically dependent 7.06 (1.94, 25.71) 0.003 6.92 (1.76, 27.21) 0.006

Class 2: Pre-frail, but largely physically independent 3.61 (1.09, 11.94) 0.036 3.56 (1.02, 12.43) 0.046

Class 3: Physically independent Reference

Mortality at 90 days < 0.001* < 0.001*

Class 1: Frail, cognitively impaired and physically dependent 11.57 (4.88, 27.46) <.001 11.51 (4.57, 29.02) < 0.001

Class 2: Pre-frail, but largely physically independent 3.84 (1.68, 8.76) 0.001 3.84 (1.61, 9.12) 0.002

Class 3: Physically independent Reference
aOutcomes are adjusted by age. *P-value for the class variable
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the small Class 1 sample size (N = 103) may have con-
tributed to the lack of significance for Class 1 30-day re-
admission. Future research needs to be done with larger
sample sizes to elicit the significance or lack thereof be-
tween class and 30-day readmission rates. Lastly, the as-
sociation between class and health outcomes were not
adjusted by gender and race. Although both gender and
race were significantly associated with the class (expos-
ure), they demonstrated poor association with readmis-
sions and mortality (outcomes) (Additional file 1: Table
S2). Hence, they were not regarded as true confounding
factors to be adjusted for [46].

Conclusions
We identified a high-risk patient population subgroup in
the H2H program that is frail, cognitively impaired and
physically dependent and has the highest overall hospital
readmission and mortality risk. Interventions targeting
frailty and poor cognition may be useful in this patient
segment to improve health outcomes. Segmentation
using medical and socioeconomic factors may be repli-
cated by other health systems, forming the foundation
for population-level health resource planning and tai-
lored transitional care interventions.
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