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ABSTRACT: Biochemical circadian rhythm oscillations play an important role in many signaling mechanisms. In this work, we
explore some of the biophysical mechanisms responsible for sustaining robust oscillations by constructing a minimal but analytically
tractable model of the circadian oscillations in the KaiABC protein system found in the cyanobacteria S. elongatus. In particular, our
minimal model explicitly accounts for two experimentally characterized biophysical features of the KaiABC protein system, namely, a
differential binding affinity and an ultrasensitive response. Our analytical work shows how these mechanisms might be crucial for
promoting robust oscillations even in suboptimal nutrient conditions. Our analytical and numerical work also identifies mechanisms
by which biological clocks can stably maintain a constant time period under a variety of nutrient conditions. Finally, our work also
explores the thermodynamic costs associated with the generation of robust sustained oscillations and shows that the net rate of
entropy production alone might not be a good figure of merit to asses the quality of oscillations.

I. INTRODUCTION

Most living organisms, ranging from simple single celled
organisms like cyanobacteria to multicellular organisms,
possess an internal clock which is entrained with the day−
night cycle.1−5 The fidelity and robustness of this clock are
crucial for the well-being and survival of the organism.6−9 The
time period of the internal clock has, for example, been found
to be robust with respect to changes in the temperature,
nutrient conditions, and pH.10−13 Understanding the bio-
chemical and thermodynamic underpinnings of such robust
behavior remains an important challenge given the crucial
biological role of the internal clock.
In this paper, we build on recent experimental and modeling

work in ref 17 and show how a particular ultrasensitive switch
in the KaiABC biochemical circuit can control the quality and
robustness of oscillations. In particular, in ref 17, the authors

identify a previously underappreciated ultrasensitive response
in the phosphorylation levels of the KaiC proteins as the
concentration of the KaiA proteins is tuned. The KaiB proteins
play no role in this ultrasensitive response. It was postulated in
ref 17 that this ultrasensitive switch plays a central role in
ensuring robust oscillations. Specifically, the ultrasensitive
switch allows the system to exhibit sustained oscillations even
at low levels of the energy rich molecule, ATP.17 Motivated by
this work, we build a minimal Markov state model that
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provides analytical insight for how an ultrasensitive KaiA−
KaiC switch can modulate the quality of oscillations. Our
minimal model also allows us to analytically study how another
biophysical driving force, namely, the differential affinity of the
different forms of KaiC to KaiA,10,15,19,22 also controls
oscillations. Finally, our minimal Markov state model allows
us to comment on the thermodynamic costs associated with
setting up robust oscillations in the KaiABC system.
The KaiABC protein system (see Figure 1) provides a

minimal biochemically tractable model to explore the above-

mentioned questions. The KaiABC system is found in
cyanobacteria S. elongatus where it plays the role of regulating
the circadian cycle. The KaiABC system consists of three
proteins, KaiA, KaiB, and KaiC.14 In vitro, the system of
KaiABC proteins undergoes sustained oscillations as evidenced
by the phosphorylation state of the KaiC protein. These
oscillations have been shown to have many of the same robust
features as those observed in the circadian oscillations they
support in cyanobacteria.15,16 The KaiABC model system has
been probed in many experimental and theoretical studies.10,14

These have elucidated some of the necessary requirements for
the generation of sustained oscillations.10,15,17−21 Despite these
advances, understanding the biochemical and biophysical
driving forces that are responsible for sustaining robust
oscillations remains an open question.10,14,16,19,21,22

The rest of the paper is organized as follows. We first briefly
review the salient features of the KaiABC biochemical circuit
and then outline our minimal model. This model captures the
above-mentioned features of the KaiABC circuit, namely, the
differential affinity of KaiC to KaiA binding, and the
ultrasensitive response of KaiC phosphorylation levels to
changes in KaiA concentration. It also additionally accounts for
many other experimentally characterized biophysical forces.14

We then write down a stochastic master equation to describe
the dynamics of our model. This stochastic master equation is
nonlinear in the probability. The nonlinearity is due to the
various feedback mechanisms that are necessary for sustaining
oscillations. Interestingly, by solving the nonlinear stochastic

master equation, we are able to analytically describe the
emergence of global oscillations in response to changing the
differential affinity.21 Our model allows us to obtain
approximate analytical solutions that provide qualitative insight
into how tuning ultrasensitivity tunes the quality of oscillations.
Crucially, our results allow us to elucidate how an ultrasensitive
switch can support oscillations even at a lower concentration of
ATP. Our results also allow us to explain how the time period
of oscillations can be robustly maintained even as the
concentration of ATP is tuned, a phenomenon known as
affinity compensation. Finally, we comment on the thermody-
namic costs associated with sustaining robust oscillations.

II. METHODS: KaiABC OSCILLATOR AND MODEL
DETAILS

The KaiC protein, complexed with KaiA, and KaiB proteins,
forms the core of the KaiABC oscillator system. The various
possible states of the KaiC protein are described in Figure 1.
Our minimal model, described in Figure 2b and inspired by
refs 14 and 21 (with additional modifications to include
features such as ultrasensitivity), can be viewed as a coarse-
grained description of the various biochemical states accessed
by the KaiABC protein system.14 In the full KaiABC cycle, the
KaiABC has two conformations, an active conformation (cyan
background in Figure 2) which can phosphorylate the Ser and
Thr sites with KaiA as an assistant molecule and an inactive
conformation (red background in Figure 2) which sequesters
KaiA with the help of KaiB and dephosphorylates the Thr and
Ser sites. In our model, the P1 and P3 states correspond to the
active conformation and P2 to the inactive conformation.
The various biochemical states of the KaiABC protein are

summarized in Figures 1 and 2. Below, we briefly recap the
various salient features of the KaiABC oscillatory cycle and
explain how they are taken into account in our minimal model.

II.A. Differential Binding of KaiA to KaiC Drives the
Phosphorylation Phase. At the beginning of the cycle, most
of the KaiC is in the active conformation in the CIDP−CIIDPU
form (IIIA in Figure 2a, P1(0) in Figure 2b), and most of the
KaiA is free. Depending on the phosphorylation level of active
KaiC, it binds differently with KaiA. At low levels of
phosphorylation (IIIA, IIIB), KaiC binds very strongly with
KaiA. By constrast, the affinity of KaiA for KaiC is low when
the KaiC is in a highly phosphorylated state (IIIC, IIID). This
phenomena is termed as a dif ferential af f inity of KaiC for KaiA
dimers.23 Our model captures this effect through the parameter
α, where α > 1. Specifically, the rates of P1−P3 exchange are
given by kAfAf (where Af is the free KaiA concentration) from
P1 to P3 and by kAb,0α

ϕ−π in the reverse direction. As the
phosphorylation level increases with ϕ, the term αϕ−π ensures
that the proportion of P1 (KaiA unbounded) states increases.
The extent of differential affinity in our model can be tuned by
varying the parameter α. Differential affinity ensures that the
unphosphorylated IIIA state is primed for KaiA binding at the
start of the phosphorylation cycle. Indeed, KaiA binding to the
IIIA state transitions the system into the IIA and IA states.
Subsequently, KaiA facilitates rapid exchange of nucleotides
which lead to the formation of more ATP bound states and
pushes the system toward phosphorylation; i.e., it leads to the
formation of CITP−ACIITP

S , CITP−ACIITP
T , and CITP−ACIITP

D

states (IB, IC, and ID states, respectively, in the schematic).
II.B. Dependence of the Kinetic Rates on the ATP

Concentration. The concentration of the energy rich
molecule, ATP, is an important external condition for the

Figure 1. KaiC monomer. The following schematic has been inspired
from ref 14. The KaiC protein exists as a hexamer, and each monomer
consists of 2 domains, CI and CII. The CII domain has two
phosphorylation sites, Ser-431 and Thr-432, a KaiA binding site, and a
nucleotide binding site (which binds either ATP or ADP). The CI
domain binds to KaiB and helps sequester KaiA. Subsequently, the
KaiABC complex will be denoted using −/A/BCITP/DP−−/ACIITP/DP

U/T/S/D.
Here, TP/DP denotes ATP/ADP attached to the domain: U denotes
that none of the sites in CII are phosphorylated, S means that only the
serine site is phosphorylated, T means the threonine site is
phosphorylated, and D denotes the doubly phosphorylated form. A
attached to CI denotes sequestered KaiA; A attached to CII denotes
active KaiA acting as an assistant in phosphorylation. B attached to CI
implies the inactive form which will start sequestering KaiA.
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cyanobacteria which affects the KaiABC oscillator. It has been
observed that oscillations with almost the same time period are
sustained until the % ATP in the system reaches 25% below
which oscillations vanish completely.10 Here, % ATP

≡ [ ]
[ ] + [ ]

ATP
ATP ADP

. In our model, the concentration of ATP

controls the kinetics of the crucial ATP−ADP nucleotide
exchange reaction.14 Since in our minimal model the reaction
corresponding to III(A, B, C) → I(A, B, C) is coarse-grained
into P1(i) → P3(i), and since the second step in these
reactions, i.e., II(A, B, C) → III(A, B, C), is dependent on %
ATP, the % ATP in our model is set by the ratio of the rates
connecting the P1 to the P3 states:

≡K
k

k
A

A
d0

b,0

f (2.1)

Increasing Kd0 decreases the rate of transitions to the P3 form
and thus corresponds to lower % ATP and vice versa.
II.C. Dynamics of the Dephosphorylation Phase. In

the hexamer, the dephosphorylation phase starts even before
total phosphorylation of each and every monomer. Specifically,
once the number of phosphorylated serine sites becomes larger
than the number of threonine sites which are occupied, the
KaiA dissociates from the complex, the KaiC transforms into
an inactive conformation, and the dephosphorylation phase
kicks off. This transition corresponds to ID → IID in the
schematic in Figure 2a and to the vertical rungs between P1
and P2 states that are colored magenta in our model in Figure
2b.
The dephosphorylation phase (IVD → IVA) is relatively

simple. It does not require KaiA as an assistant molecule for

the reactions. When the proportion of doubly phosphorylated
KaiC (ID, IID) is high, KaiB binding to the CI domain of KaiC
is triggered, IID → IIID. In our model, the KaiB binding to
KaiC is taken into account implicitly during the transition from
P1 to P2 states. KaiB bound KaiC, BCIDP−CIIDPD (IIID),
sequesters KaiA, i.e., binds to KaiA and makes it unavailable for
active use. This is taken into account through the parameter
ϵseq in our model which reduces the free KaiA in the system by
an amount ϵseq∑P2. The dephosphorylation proceeds through
the serine sites and then the threonine sites. Dephosphor-
ylation reactions occur through phosphotransfer.22 This
corresponds to the system moving through the P2 states in
our model. As the reactions reach the completely dephos-
phorylated state ABCIDP−CIIDPU (IVB), the KaiABC complex
starts dissociating into KaiC and KaiB and releasing free KaiA
into the system (IVB → IVA). The connection between P2(0)
and P1(0) in our model takes this dissociation step. This
prepares the system for the next cycle.

II.D. Ultrasensitive Response of KaiC Phosphorylation
to KaiA Concentration. It has been experimentally observed
that, in the absence of KaiB in the system, KaiC shows an
ultrasensitive response in phosphorylation to KaiA concen-
tration in the system; i.e., the phosphorylation level of the
KaiC hexamers changes rapidly within a very narrow range of
total KaiA concentration.10,17 This ultrasensitivity was
speculated to be an important prerequisite for sustaining
robust oscillations, particularly in conditions wherein the
concentration of the energy rich molecule, ATP, is low. Our
model captures the ultrasensitive response observed in ref 17
and described in Section II, through the introduction of the
dephosphorylation rate k1 (see Figure 3). Indeed, a standard

Figure 2. In penel a, rows are labeled I, II, III, IV, and columns are labeled A, B, C, D. In panel a, the colors in the reaction arrows correspond to
those in panel b. Active conformations are denoted using a cyan background, and inactive conformations are denoted using a red background. In
our model (panel b), the horizontal axis represents the amount of phosphorylation in the system, with ϕ = 0 and ϕ = 2π corresponding to the
completely dephosphorylated state and ϕ = π corresponding to the completely phosphorylated hexamer. The phosphorylation function is a linearly
increasing function, 0 at ϕ = 0, 1 at ϕ = π, and then symmetrically decreasing from ϕ = π to 2π. Thus, phosphorylation,

ϕ ϕ ϕ= ∑ + + ∑ −ϕ
ϕ
π ϕ

ϕ
π( )(P ( ) P ( )) 2 P ( )1 3 2 . Changes in the phosphorylation levels of the KaiC hexamers give rise to oscillations. KaiA

binds to KaiC during the ”day” and promotes phosphorylation, whereas at “night”, KaiB binds to KaiC and sequesters KaiA, thus leading to
dephosphorylation. The horizontal rungs in all the states correspond to the phosphotransfer reactions and the hydrolysis of ATP accompanying it,
i.e., the red arrows between IA→ IIB, and IB→ IIC, purple arrows between IIIC→ IIIA, and green arrows between IVD→ IVA in Figure 2a. The
ratio of the forward and backward rates is given by, γ, γ1, and γ2 which are all less than 1, because of the fact that these describe reactions coupled to

ATP hydrolysis which are inherently irreversible. In the model, α > 1 is responsible for differential affinity, ≡K
k

kd0
A

A

b,0

f
corresponds to % ATP, and

k1 helps in tuning ultrasensitivity. Free KaiA, Af, provides nonlinearity to the system.
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way to obtain an ultrasensitive response is through the action
of two antagonistic enzymes working at saturation.24,25 Under
such conditions, the response of the system changes rapidly
over a very narrow range of the enzyme concentration. In the
KaiABC system, the roles of the antagonistic enzymes are
played by KaiA, which acts as a kinase phosphorylating KaiC
and KaiC, which acts as its own phosphatase dephosphorylat-
ing itself.10,22

The rate k1 in our model captures this dephosphorylation.
Tuning dephosphorylation rates by increasing k1 leads to
competition between phosphorylation in the P3 states and
dephosphorylation in the P1 states. In the absence of KaiB,
which corresponds to setting ω = ω1 = 0 in our model, we
consequently observe an ultrasensitive response of phosphor-
ylation level of KaiC to changes in the KaiA concentration
(Figure 3).
II.E. Dependence of the Kinetic Rates on the KaiA

Concentration. As has been described above, the rates of
transition between the P1 and P3 states in our minimal model
depend on the concentration of free KaiA, Af. The amount of
free KaiA in turn depends on the concentrations of the P3 and
P2 states since the KaiC complex is bound to KaiA in these
states. Subsequently, ϕ ϕ= − ∑ + ϵ ∑ϕ ϕA A P P( ( ) ( ))tf 3 seq 3 .

As the amount of P3 and P2 states increases, the free KaiA
concentration decreases. This step gives rise to nonlinearity in
the system.

III. RESULTS: ROLE OF DIFFERENTIAL AFFINITY AND
ULTRASENSITIVITY. INSIGHTS FROM AN
ANALYTICAL TREATMENT OF THE NONLINEAR
FOKKER−PLANCK EQUATIONS

Our minimal model described in Figure 2b and Section II can
be represented mathematically using a nonlinear Fokker−

Planck equation, = ⃗∂ ⃗
∂ PWP

t
, where P⃗ is the probability vector of

all the states (P1, P2, P3), and W = W(P⃗) is the rate matrix that
is dependent on the state of the system. The nonlinear
Fokker−Planck equation is described in full detail in the
Supporting Information, Section S1.
If there were no nonlinearity in the Fokker−Planck

equation, the Perron−Fobenius theorem would have ensured
that the Fokker−Planck equation has a stable time-
independent steady-state solution. The oscillatory solutions
of the rate matrix decay with time as they have eigenvalues
with a negative real part. Due to the nonlinearity in the
Fokker−Planck equation in the Supporting Information, eq
S1.5, time-dependent oscillatory steady-state solutions may be
possible.
In this work, we focus on how the solutions of the Fokker−

Planck equation change as two specific parameters, namely, α
controlling the differential affinity and k1 controlling the
ultransensitivity, are varied. In particular, we analytically show
how the system can be made to transition from a time-
independent steady state, where it cannot function as a
biological clock, to a time-dependent steady state, where it can
function as a biological clock, as the differential affinity
parameter α is tuned. For the case where the ultrasensitivity
parameter k1 is tuned, we take inspiration from our solution
from tuning α and obtain an approximate solution. Our
approximate analytical arguments provide insight into how
ultrasensitivity also supports the functioning of the biological
clock.
Finally, as has been reported in many experimental and

theoretical studies,10,14,16 oscillations are affected by the
concentration of % ATP in the system. In particular, it has
been found that the KaiABC system cannot sustain oscillations
below a critical ATP concentration. In the next section, we will
use our minimal model to show how stronger differential
affinity and a better ultrasensitive switch can in fact sustain
oscillations even at lower ATP concentrations.17

We begin our analytical treatment by first considering the
case where k1 = 0, i.e., in a model devoid of ultrasensitivity. In
this case, a time-independent solution for the nonlinear
Fokker−Planck equation can be obtained in the limit when
ϵseq = 0 and ϕ0 = π. ϵseq = 0 corresponds to the absence of KaiA
sequestration by KaiB bound KaiC states. ϕ0 = π means that
the dephosphorylation phase starts only after all the KaiC
species have become doubly phosphorylated. Our analytical
derivation is discussed in detail in Supporting Information,
Section S2A, and leads to the following solutions (Figure 4).

= ∀ ∈ [ ]P j b j N( ) 0,3 (3.1)

α δ δ γ= [ + − − ]

∀ ∈ [ ]

πP j
k A

k k b

j N

( )
1

( ) (1 )

0,

Af f
Ab

j N
j j j1

/
0, , 00

(3.2)

Figure 3. Ultrasensitive response in phosphorylation of KaiC with
regard to the total KaiA concentration for Kd0 = 10 and α = 10. The
values in the bracket are the Hill coefficients for the response curves
(calculated using the method of relative amplification26). Values of
other parameters are given in Table S2. These kinetics are in the
absence of KaiB and P2 states (ω = ω1 = 0); i.e., they represent only
the active form of KaiC in Figure 2b. Thus, there are no oscillations,
and the system always settles into a final steady state.
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(3.3)

where b = P3(0) can be obtained by solving a quadratic
equation as mentioned in the Supporting Information, Section

S2, α= = =π
ϕ

ϕ
ϕ

π
Δ Δ

−N j k k, , A Ab b,0 . Even when ϕ0 < π, our

solution gives a very good approximation if we set P1(j) ≈
P2(2N − j) ≈ P3(j) ≈ 0 ∀j ∈ [j0, N].
As α is increased, this time-independent state becomes

unstable giving rise to a oscillatory state. As described in the
Supporting Information, Section S3, a linear stability analysis

can be performed around the steady state of the system,
⎯→⎯
Ps , to

characterize this instability. The linear stability analysis has
been detailed in the Supporting Information, Section S3A. This
analysis correctly predicts the observed oscillatory behavior.
Indeed, in Figure 5, we show that the analytical estimate of the
time period of oscillations provides a very good description of
the actual observed oscillation periods.
In the case of k1 ≠ 0, only an approximate solution for the

time-independent steady state can be obtained. In order to
obtain this approximate solution, we take inspiration from the
solution for the case when k1 = 0 and assume kAfAfP1(ϕ) =
kAb0α

ϕ−πP3(ϕ) for ϕ ∈ [0, ϕ0] (along the P1−P3 connections
in Figure 2b) and P1(ϕ) ≈ 0 ≈ P3(ϕ) for ϕ > ϕ0. This
assumption is supported by numerical evidence. Under this
assumption, we obtain

ϕ ϕ α
α

ϕ ϕ= ′ | + |
| + |

∀ ∈
ϕ

ϕ

′
P P

B A
B A

( ) ( ) (0, )3 3 0 (3.4)

ϕ α ϕ ϕ ϕ= ∀ ∈ϕP
K
A

P( ) ( ) (0, )1
d0

f
3 0

(3.5)

γ ϕ γ ϕ= − − Δ = − ΔB k A
K
A

k(1 ) (1 )0
d0

f
1 1 (3.6)

Here, P3(0) can be obtained numerically, and ϕ0 denotes the
place where P1−P2 connections start in Figure 2b. This is
described in more detail in Supporting Information, Section
S2B. Figure 6 shows a comparison between the numerically
obtained steady state with the one constructed using our
approximate solution. We also provide approximate analytical

Figure 4. Comparison between numerical and analytical results for
the time-independent solution of P1 states (eq 3.2) for different α’s.
The figure in the inset is a representation of the Markov state network
with the P1 states highlighted. In the main figure, gray corresponds to
α = 2, red to α = 4, blue to α = 6, and green to α = 8.

Figure 5. Time period of oscillations for various α and Kd0, i.e., at
varying levels of differential affinity and % ATP. k1 = 0. Other
parameters are given in Table S1. Since k1 = 0, there is no effect of
ultrasensitivity. The figure on the left represents time periods
calculated by numerically simulating the FPEs. The figure on the
right represents the time periods which were calculated from the
imaginary part of the maximum positive eigenvalue of the instability
matrix W, for small perturbations around the steady-state probability
distribution. As can be seen, the analytical solution provides us with a
good approximation of the time period as well as the critical α at
which oscillations take place for different Kd0 values. The contours in
the figure are for the time period of the oscillations.

Figure 6. Comparison between numerical and approximate analytical
results for the time-independent solution of P3 states for the case
when k1 ≠ 0 (eq 3.4). The figure in the inset represents the Markov
state network with the P3 states highlighted. In the main figure, gray
corresponds to k1 = 0, cyan to k1 = 10−4, violet to k1 = 5 × 10−4, red to
k1 = 10−3, blue to k1 = 5 × 10−3, green to k1 = 10−2.
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arguments to show how a linear instability analysis can again
be used to characterize the onset of oscillations as k1 is tuned.
The Gershgorin circle theorem provides us with a way to
understand where we can find the eigenvalues of any matrix. As
k1 is tuned, the negative off-diagonal elements of the rate
matrix W increase in magnitude, as do the radii of the
Gershgorin discs (see Figure S7), because, for any transition
rate matrix,M,∑iMij = 0. In effect, the Gershgorin discs have a
finite area protruding into the positive half-plane. With higher
k1, this area increases; thus, there is a higher chance of finding
eigenvalues in the positive half-plane. These arguments are
explained in more detail in the Supporting Information,
Section S3A.
In the next section, we build on these results and show how

ultrasensitivity and differential affinity can support oscillations
even at a lower ATP concentration. We also use the insight
from these analytical arguments to explain how the time period
can be stably maintained in a variety of ATP concentrations, a
phenomenon known as affinity compensation. Finally, using
our minimal model, we also comment on the thermodynamic
costs associated with maintaining oscillations.

IV. DISCUSSION
IV.A. Increasing Differential Affinity Leads to Oscil-

lations at Low % ATP. It has been numerically shown
previously in ref 21 that oscillations in a model system similar
to ours can be obtained by increasing the value of α, i.e., by
improving the differential affinity. α controls the rate of
reaction between P1 and P3 states in Figure 2b. Our analytical
results explain this numerical observation. Further, our
analytical results at k1 = 0 also help predict the required
interplay between α and the ATP concentration in order for
oscillations to be sustained. Specifically, we find that, at k1 = 0,
a higher value of α is required for oscillations to take place at
higher Kd0 (or a lower ATP concentration). In Figure 8, we
provide estimates of how the critical value of α changes as a
function of the Kd0. Our analytical estimates agree very well
with those obtained from the numerical calculations.

IV.B. Improving the Ultrasensitive Response Leads to
Oscillations at Lower % ATP and Fixed Differential
Affinity. As mentioned in Section II, it has been speculated
that ultrasensitivity plays an important role in sustaining
oscillations at low % ATP conditions. Our minimal model
captures this role played by ultransensitivity. Indeed, we find
that, at a higher value of k1, corresponding to a sharper

Figure 7. Instability leading to oscillations when changing k1. The y-axis denotes the maximum eigenvalue of the rate matrix W for the
perturbations (refer to Supporting Information). The presence of a positive eigenvalue denotes that the time-independent steady state is unstable. α
= 10, and the other parameter values are listed in Table S2.
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ultransensitive response (Figure 3), oscillations can be
sustained for a larger Kd0 (or a smaller ATP concentration).
We describe this trade-off in Figures 7 and 9.

Our analytical analysis also allows us to provide a
phenomenological understanding of the role played by the
ultransensitive switch. Ultrasensitivity offers coherence to the
traveling wave packet of phosphorylation at the start of every
new cycle of oscillation. Phosphorylation is halted until a
critical amount of KaiA is present in the system. Just before the
beginning of every new phosphorylation cycle, most of the
KaiA is sequestered by the P2 states. Only after a certain
amount of KaiA is freed from P2 states can the phosphorylation
reactions in the P3 states start again. This leads to a build-up of
probability density near P2(2π) and P1(0) before the start of
every cycle and provides coherence to the system, and
oscillations can be sustained.
IV.C. Metabolic Compensation of Time Period:

Insights from the Minimal Markov State Model. One
of the most important features of the KaiABC oscillator is that
the time periods of the oscillations are robust to changes in the

% ATP in the system, a phenomenon known as metabolic
compensation. Our model shows a similar behavior. Upon
increasing Kd0, the time period increases, changing by 10% for
an increase from Kd0 = 1 to 11 (see Figures 10, 11, and 12). At
Kd0 > 11, oscillations are not supported. This is analogous to
losing oscillations when % ATP is below 20% ATP in the real
system.10,14

Our minimal model helps provide a simple phenomeno-
logical explanation of affinity compensation. In the regime
where our model allows oscillations, the speed of the waveform
as it traverses the top P1−P3 rungs in Figure 2b from regions of
lower ϕ to regions of higher ϕ can be shown to be

= γ γ− − −
+v

k cK k
cK

1
3

(1 ) (1 )

1
0 d0 1 1

d0
through a first-passage time analysis

(outlined in Supporting Information, Section S4). Thus, it is
expected to decrease with Kd0. Simultaneously, 1/Kd0 ≡ kAf/
kAb,0 can be expected to control the relative occupancy of the
P1−P3 states, and the transitions in the P3 states promote the
probability flux toward regions of higher ϕ. Thus, with

Figure 8. Value of α required for the onset of oscillations as a function
of Kd0. Estimates have been obtained both from our theory and from
numerical simulations. We set k1 = 0 for these calculations.

Figure 9. Value of k1 required for the onset of oscillations as a
function of Kd0. Since k1 ≠ 0 is only approximately tractable
analytically, we have only plotted estimates from numerical
simulations.

Figure 10. Time period of oscillations for various Kd0 and k1 values,
i.e., at different levels of % ATP and ultrasensitivity. The white region
denotes the parameter space which does not support oscillations. This
is also supported by the plot for the amplitude of oscillations, Figure
11. In order to have oscillations at higher values of Kd0, the system
requires a higher value of k1. The contours in the figure are for the
time period of oscillations.

Figure 11. Amplitude of oscillations as a function of Kd0 and k1 at α =
10 and parameters given in Supporting Information, Section S2. The
contours in the figure are for the amplitude of oscillations.
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increasing 1/Kd0, the waveform can be expected to traverse
more of the large ϕ states in the P3 rung before transitioning to
the P1 and then eventually to the P2 states as it restarts the
oscillation. Hence, at higher 1/Kd0 or higher % ATP, the
system traverses a larger orbit as described in the “angle-
angular velocity” phase space (Figure 12). This is analogous to
shifting in the trough and crest in the phosphorylation
oscillations observed in the KaiABC system.10 Together,
these effects make the time period of oscillations relatively
insensitive to % ATP levels (Figure 12). In this way, the
KaiABC system can accomplish affinity compensation and
maintain a relatively constant time period.
IV.D. Thermodynamic Costs of Setting Up Oscilla-

tions. Finally, the stochastic thermodynamics of our minimal
model can be readily probed. The total steady-state entropy
production rate can be estimated using the probability fluxes
along every edge of the model as27

∑σ ̇ = −+ −
+

−
J J

J

J
( )ln

Edges (4.1)

Here, J+ refers to the flux in the forward direction, and J− refers
to the flux in the backward direction. For instance, if A and B
are two states of a system with reactions between them given

by FA B
k

k

2

1
, then J+ = k1[A] and J− = k2[B]. Since the entire

KaiABC system has been coarse-grained into a minimal
Markov system, we underestimate the value of actual entropy
production in the entire system.28 We use eq 4.1 to estimate
the entropy production rate for various values of α, Kd0, and k1.
These results are described in Figures 13 and 14. Of particular
note, our results show that σ̇ varies continuously through the
transition of the system from a stationary to an oscillatory
phase. In the case where the ultrasensitivity parameter k1 is
tuned (Figure 14), the entropy production rate σ̇ is almost a
linearly increasing function of k1. While the entropy production
rate σ̇ does indeed increase as oscillations are set up in

agreement with previous studies,21 and it does indeed improve
the overall quality and coherence of oscillation,29,30 an analysis
focused on just the entropy production rate might miss the
important and specific roles played by biophysical mechanisms
such as the ultransensitivity and differential affinity in
promoting and sustaining robust oscillations.31

V. CONCLUSION
In conclusion, this work elucidates the role played by
biophysical mechanisms such as ultrasensitivity and differential
affinity in controlling the quality of circadian oscillations. Our

Figure 12. Velocity of phosphorylation wavepacket as a function of
average angle for k1 = 0.05, with various Kd0’s and other parameters as
given in Table S2. Here, the average angle ⟨ϕ⟩ = ∑ϕϕP(ϕ), and

velocity = ϕ⟨ ⟩v
t

d
d

. The time period of oscillation for the different

cycles is denoted along the curves.

Figure 13. Entropy production rate vs α for Kd0 = 5, k1 = 0, and other
parameters given in Table S1. Oscillations start at α = 21. α = 1
corresponds to the absence of differential affinity. In order to have
oscillations, an additional 0.113 units of energy are required. This
energy goes into building coherence among the KaiABC oscillator
population21

Figure 14. Entropy production rate vs k1 for α = 10, Kd0 = 8 and other
parameters given in Table S2. Unlike the case with changing α in
Figure 13 where the entropy production plateaus very quickly with
increasing α, in this case, the entropy production increases almost
linearly with increasing k1. As expected, decreasing Kd0 and increasing
k1 lead to a higher dissipation of energy. Oscillations start at k1 = 0.03.
k1 = 0 corresponds to the absence of ultrasensitivity in the system. An
additional 0.052 units of energy are dissipated in order to have
oscillations. This additional energy goes into improving the
ultrasensitive response of the system, eventually leading to coherence.
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minimal theoretical model also provides a route to explain how
biochemical circuits can ensure oscillations with constant time
periods, even under a range of experimental conditions. Finally,
we show that the net rate of energy dissipation is not a very
effective order parameter to gauge the quality of oscillations,
particularly in regimes where the ultrasensitivity is important,
while our work relies on a very minimal abstraction of the
KaiABC system. In future work, we hope to adapt these ideas
to more complex and complete models of circadian rhythm
oscillators.
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