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Chemotherapeutic intervention remains the primary strategy in treating and controlling
tuberculosis (TB). However, a complex interplay between therapeutic and patient-
related factors leads to poor treatment adherence. This in turn continues to give
rise to unacceptably high rates of disease relapse and the growing emergence of
drug-resistant forms of TB. As such, there is considerable interest in strategies
that simultaneously improve treatment outcome and shorten chemotherapy duration.
Therapeutic vaccines represent one such approach which aims to accomplish this
through boosting and/or priming novel anti-TB immune responses to accelerate
disease resolution, shorten treatment duration, and enhance treatment success rates.
Numerous therapeutic vaccine candidates are currently undergoing pre-clinical and
clinical assessment, showing varying degrees of efficacy. By dissecting the underlying
mechanisms/correlates of their successes and/or shortcomings, strategies can be
identified to improve existing and future vaccine candidates. This mini-review will discuss
the current understanding of therapeutic TB vaccine candidates, and discuss major
strategies that can be implemented in advancing their development.

Keywords: tuberculosis, therapeutic vaccine, chemotherapy, immunotherapy, respiratory mucosa, mycobacterial
life cycle

INTRODUCTION

In 2014, the World Health Organization (WHO) supported a post-2015 END TB Resolution
that aimed to curb 90% of both cases and deaths associated with tuberculosis (TB) by 2035 (1).
Although measurable progress toward these goals has been made to-date, recent reports show
that many interim goals originally set for 2020 will not be met globally (2). A major proportion
of these shortcomings stem from current anti-TB chemotherapy regimens including fragmented
patient adherence, treatment failure, and emergence of multi- and extensively drug resistant disease
(3). Novel strategies to be administered in adjunct with conventional chemotherapy, known as
Host-Directed Therapies (HDT), are designed to combat such shortcomings by improving patient
adherence, improving cure rates, and preventing disease relapse (4, 5). In this mini-review, we
focus on therapeutic vaccination strategies as HDTs for TB. We discuss current requirements for
therapeutic vaccines in accordance with WHO standards, their mechanisms of action, detail the
current pipeline, and expand on strategies to improve therapeutic vaccines.
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CURRENT TB CHEMOTHERAPY
LANDSCAPE AND ITS SHORTCOMINGS

Chemotherapy for drug-susceptible TB requires two months of
continuous treatment with a cocktail of rifampicin, isoniazid,
ethambutol, and pyrazinamide followed by four months of
rifampicin and isoniazid. Although this regimen has remained
largely unchanged for the last 35 years, numerous healthcare
policies such as Direct Observed Treatment Short course have
allowed for cure rates as high as 85% (2, 6). This, however,
starkly contrasts the low success rate (56%) for drug-resistant
disease, for which treatment can last upwards of 24 months (2).
Although there are numerous factors that contribute to such
low rates, many arise from, and are further exacerbated by poor
patient adherence due to the duration of treatment required to
successfully treat disease.

It is important to note that novel drugs and drug regimens
progressing through the clinical pipeline continue to substantially
improve TB treatment outcomes. Novel chemotherapeutics such
as bedaquiline and pretomanid have allowed for regimens
as short as nine months to be effective in curing drug-
resistant forms of TB (7). However, despite such continued
improvements, patient adherence remains poor. Chemotherapy
durations remain longwinded and costly, and novel antibiotics
pose the threat of off-target toxicities such as peripheral
neuropathy and cardiac manifestations (8). Non-compliance
additionally drives drug resistance which has alarmingly already
been documented for bedaquiline (9). These, alongside other
socioeconomic issues, are entangled with the longevity of
treatment and therefore remain a major roadblock toward the
success of chemotherapy against TB.

The development of novel immunotherapeutic strategies
that synergize with antibiotics to further shorten the duration
of chemotherapy required to successfully treat disease is
an alluring platform for improving patient compliance and
treatment success.

RATIONALE BEHIND PROLONGED
MULTI-DRUG REGIMENS

Logically, multiple drugs are required to treat TB as to avoid
the selection of resistant mycobacterial subpopulations that arise
from single-drug monotherapy (defined as genetic tolerance)
(10). Therefore, individuals with a higher bacillary burden are
statistically more likely to carry intrinsically resistant mutants.
In stark contrast, the rationale behind the length of therapy is
perhaps less intuitive and requires scrutinization of the host-
pathogen interface.

Airway macrophages comprise the major niche for
Mycobacterium tuberculosis (M.tb) infection and outgrowth
(11, 12). Infected macrophages deploy numerous mechanisms
to eliminate M.tb which include phagolysosome fusion,
upregulation of antimicrobial peptides, and autophagy (13–15).
Eventual priming and recruitment of adaptive Th1 immunity
further enhances mycobacterial control in part by promoting
innate-mediated killing (16). Unfortunately, innate and adaptive

immune responses together are often unable to fully eliminate
the pathogen. This necessitates addition of chemotherapeutic
interventions to further enhance mycobacterial clearance
through inhibition of cell wall synthesis (isoniazid and
pyrazinamide), and transcription (rifampicin) (10).

However, M.tb is fully capable of adapting to both the
immunological and pharmacological pressures placed upon it.
Examples of such bacterial countermeasures include inhibiting
phagosome acidification, delaying adaptive responses, and
upregulation of drug efflux pumps (15–18). In addition,
immunological and chemotherapeutic stresses also cause M.tb
to undergo transcriptomic and metabolic shifts leading to a
state of dormancy. In this non-replicative state, the antigenic
profile of M.tb shifts toward expression of stress/dormancy
associated genes (19–25). Collectively, this not only further
circumvents adaptive immune responses established against the
replication antigens, but it also thwarts the efficacy of such
therapies (defined as phenotypic tolerance) since the majority
of TB chemotherapeutics only target actively replicating bacilli.
These phenotypically tolerant, non-replicating mycobacteria are
a major and under-investigated subpopulation responsible for
disease relapse and the need for prolonged antibiotic therapy
(26). As such, there has been a growing interest in strategies which
can address such problems. Host-directed therapies represent a
promising therapeutic category designed to accomplish this goal.

IMPROVING TREATMENT OUTCOME
WITH HOST-DIRECTED THERAPIES

Host-directed therapies are administered in tandem with
conventional chemotherapy to improve treatment success
and reduce disease relapse. Depending on the strategy, HDTs
accomplish this by (1) augmenting the host anti-TB immune
response, (2) limiting lung pathology, and/or (3) enhancing
mycobacterial sensitivity to chemotherapy. Numerous drug-
based HDTs are currently under pre-clinical and clinical
investigation. For example, the antihyperglycemic agent
metformin has shown promise as it enhances macrophage
intracellular mycobacterial killing by increasing phagolysosome
fusion and production of reactive oxygen species (27, 28).
Drug-based HDTs have been reviewed extensively elsewhere and
will not be the focus of this review (4, 5, 29).

VACCINES AS HOST-DIRECTED
THERAPIES AGAINST TB

Tuberculosis vaccination strategies encompass those
administered prophylactically (to prevent infection),
therapeutically (to improve treatment of active disease),
and post-exposure (to prevent re-infection/re-activation) (30).
Therapeutic vaccines continue to gain traction as leading
candidates for TB HDTs.

Therapeutic vaccines are administered in adjunct (at the
start or during) with conventional chemotherapy to accelerate
treatment, shorten chemotherapy duration, and improve
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treatment completion rates. The WHO has generated a detailed
list of parameters necessary for an ideal therapeutic vaccine
candidate, of which the major targets/goals are presented in
Figure 1 (31). Therapeutic TB vaccines aspire to accomplish
these goals by boosting host anti-TB immunity, priming novel
immune responses, and modulating the host inflammatory
response. The following section briefly outlines the most recent
advancements in emerging therapeutic TB vaccines, as identified
by the TuBerculosis Vaccine Initiative (TBVI)1 and the 2018
WHO Global TB Report (Figure 2).

1https://www.tbvi.eu/

MYCOBACTERIAL-BASED
THERAPEUTIC TB VACCINES

VaccaeTM

VaccaeTM consists of a heat-killed Mycobacterium vaccae (M
vaccae) variant (32). This non-tuberculous mycobacterium
is currently the most advanced therapeutic TB vaccine
candidate and is approved for administration alongside
standard chemotherapy in patients with active TB in China
(33, 34). Although clinical data pertaining to VaccaeTM

efficacy is conflicting (with certain meta-analyses indicating
little-to-no improvement), recent studies have highlighted its

FIGURE 1 | WHO target characteristics for therapeutic tuberculosis vaccines. In order to guide research and development, the WHO has set aspirational
targets/characteristics for candidate therapeutic TB vaccines. These include three major areas to address (orange boxes): Vaccine targets that determine efficacy,
the target population, and the subsequent long-term impact on the chemotherapy regimen. Candidates which meet some/all of these targets must also be safe,
efficacious in a minimum number of repeated doses, and investigated to define their mechanism-of-action or potential efficacy biomarkers, to further refine/guide
future vaccination strategies (green boxes).

FIGURE 2 | Therapeutic TB vaccine pipeline. Numerous TB vaccine candidates under pre-clinical and/or clinical testing for their prophylactic efficacy are also
evaluated as immunotherapies.
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therapeutic efficacy (35, 36). In particular, such studies have
highlighted the ability of orally administered VaccaeTM to
accelerate negative sputum smear conversion. A large-scale
phase III trial with 10,000 recruited participants is ongoing with
interim results showing high retention rates (clinicaltrials.gov,
NCT01979900). However immunological data pertaining to
VaccaeTM mechanism of action is limited. Pre-clinical and
clinical immunological studies have suggested that induction of
robust Th1 (and conversely skewing away from Th2) immune
responses, alongside induction of cytotoxic CD8 T lymphocytes
are correlatives of efficacy (37).

Mycobacterium indicus pranii
Mycobacterium indicus pranii (MIP) is a non-pathogenic
mycobacterium whose heat-killed variant has been successfully
used as an immunotherapeutic for leprosy (38, 39).
Characterization of the antigenic profile of MIP has shown
broad antigenic congruency with M.tb, warranting further
investigation toward its potential as a therapeutic vaccine.
A recently published phase II trial where MIP was intradermally
administered in adjunct to chemotherapy showed success in
enhancing bacterial clearance, and improved lung pathology in
patients with bi-lateral, drug-resistant disease (40). Pre-clinical
studies in numerous animal models (including hyper-susceptible
guinea pigs) have correlated the therapeutic efficacy of MIP
to its ability to drive robust Th1-skewed immunity (41–43).
Interestingly, these studies also compared the contribution
of immunization route to efficacy, showing that respiratory
mucosal vaccination was immunologically superior to the
parenteral route.

RUTI R©

In contrast to whole, heat-killed mycobacteria, RUTI R© is
composed of liposomes containing detoxified fragments of M.tb
grown under hypoxic/stress conditions (44, 45). The growth of
virulent M.tb under these conditions drives expression of an
array of stress and latency associated antigens, thereby expanding
the antigenic breadth of the RUTI R© formulation, theoretically
allowing for adaptive immune responses to target latent bacilli
(46). The added advantage of this strategy is targeting the
latent bacillary population which, as stated previously, is a
major contributor to disease relapse. RUTI R© is currently being
investigated as a subcutaneously administered post-exposure
vaccine in individuals with drug-resistant disease who have
completed chemotherapy (45, 47). As such, RUTI R© remains to be
tested therapeutically in patients with active disease, potentially
due to issues related to the Koch phenomenon (45).

RECOMBINANT-BASED THERAPEUTIC
TB VACCINES

H56:IC31
H56:IC31 is a recombinant fusion protein of three M.tb antigens:
Ag85B, ESAT-6, and Rv2660c combined in a stabilizing agent
containing a TLR9 agonist as an adjuvant (48). By expressing

replication and pathogenicity-based antigens (Ag85B, and ESAT-
6, respectively) and latency-associated antigens (Rv2660c),
H56:IC31 is designed to drive multi-functional Th1 immunity
against both actively replicating and dormant bacilli, and has
been shown to prevent M.tb reactivation in macaques following
parenteral delivery (48, 49). H56:IC31 has undergone extensive
clinical testing as a prophylactic vaccine in phase 1 and 2
trials showing a favorable safety and immunogenicity profile
in IGRA− and IGRA+ individuals (50). In line with its
success and clinical advancement as a prophylactic vaccine,
H56:IC31 is also being investigated as an intramuscularly
administeredtherapeutic for TB. This includes a phase 1
combinatorial HDT regimen with a Cyclooxygenase-2 inhibitor
etoricoxib (clinicaltrials.gov, NCT02503839), and a phase II
efficacy trial in South Africa addressing prevention of disease
reoccurrence (clinicaltrials.gov, NCT03512249).

ID93/GLA-SE
ID93/GLA-SE is a recombinant vaccine expressing three
virulence (Rv2608, Rv3619, and Rv3620) and one latency-
associated (Rv1913) antigen in combination with a synthetic
TLR4 agonist in an oil-in-water emulsion (51, 52). Similar to the
other vaccine candidates described in this review, ID93/GLA-SE
has been extensively characterized in pre-clinical animal models.
Such studies have shown that ID93/GLA-SE drives robust and
sustained anti-TB specific CD4 and CD8 T cell responses
following parenteral delivery, correlating with significantly
improved prophylactic protection against pulmonary TB (53).
Therapeutic vaccination by the intramuscular route with
ID93/GLA-SE in non-human primate models significantly
reduced pulmonary mycobacterial burden, pathology, and
improved survival (53). Thus far, a phase I trial has shown
that ID93/GLA-SE is safe and immunogenic in QuantiFERON
positive individuals, thereby supporting its further assessment as
an immunotherapeutic (54).

VIRAL-VECTORED THERAPEUTIC TB
VACCINES

Modified Vaccinia Ankara
Modified Vaccinia Ankara (MVA)-based TB vaccines have
a checkered history with a phase IIb trial of MVA85A
failing to enhance prophylactic immunity following parenteral
immunization in BCG-vaccinated infants (55). Regardless, MVA-
vectors remain widely utilized as TB vaccines given their
remarkable ability to accommodate large transgene inserts and
drive long-lived Th1 immunity (56). A recently developed MVA-
based vaccine expressing 10 M.tb antigens has been assessed
for its therapeutic efficacy in a murine model. Interestingly,
this vaccine provided minimal reduction of bacterial burden
within the lungs and a modest reduction in relapse (57). This
was observed following parenteral, but not respiratory mucosal
immunization. Additionally, immunological studies revealed that
immune responses against some antigens were not induced.
These observations highlight certain key considerations for
vaccine design which will be addressed further in this review.
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Adenovirus
Adenoviruses represent the most widely used viral vector
platform for vaccine design (58). Human adenoviruses, in
particular human adenovirus serotype 5 (AdHu5), have been
extensively tested as a prophylactic vaccine platform delivered
both parenterally and via the respiratory mucosal route (58–
62). Unfortunately, in some instances the high seroprevalence of
antibodies against this common respiratory pathogen has limited
its efficacy. This has prompted the development of platforms
founded in serotypes exotic to humans (63).

Non-human adenoviruses, such as chimpanzee adenoviruses
have gained traction as vaccine vector candidates given their
robust immunogenicity and low seroprevalence (63).

We previously characterized the prophylactic potential of
a chimpanzee adenoviral-vectored vaccine expressing M.tb
Ag85A (AdCh68Ag85A) (64). Our study showcased the superior
immunogenicity and efficacy of this vector following respiratory
mucosal administration in comparison to its AdHu5 counterpart.
Additionally, utilizing a clinically relevant murine model
of chemotherapy treated active TB disease, our group has
shown that respiratory mucosal therapeutic immunization with
AdCh68Ag85A accelerated bacterial clearance, limited lung
pathology, and limited disease relapse following pre-mature
chemotherapy cessation (65).

ADVANCING THERAPEUTIC TB
VACCINE DESIGN

Although definite protective immune correlates for TB remain
elusive, insights from ongoing pre-clinical and clinical trials
provide invaluable information to steer development of
efficacious therapeutic TB vaccination strategies. Such insights
stem from both the immunological as well as the mycobacterial
areas of research. In this section we highlight three categories
(Figure 3) which we believe are most important in advancing
therapeutic TB vaccine design: Vector formulation and
immunization route, antigen/epitope optimization, and antigen
selection dictated by the mycobacterial life cycle.

Vector Choice
Factors such as feasibility, safety, and immunogenicity are largely
dictated by vector choice. As such, this represents a major
consideration when developing novel TB therapeutic vaccine
strategies. Whole organism-based vaccines (VaccaeTM and PIM)
are advantageous given their antigenic breadth. These vectors
however may not be amenable for delivery via the respiratory
mucosal route in humans due to potential safety considerations.
Additionally, utilization of whole mycobacteria/mycobacterial
fragments can potentially skew and/or mask immunological
responses against less immunogenic, yet protective antigens (see
below). As such, utilization of recombinant molecular biology
techniques allows for construction of recombinant vaccines
that focus immune responses against well-recognized protective
antigens. This is the case for recombinant protein and viral-
vectored vaccination strategies (58, 66).

In addition, through careful adjuvant selection, antigen-
specific immunity can be polarized toward certain immune
profiles. Use of TLR agonists (such as TLR9 in H56:IC31and
TLR4 in ID93:GLA-SE) enhance both the cytokine functionality
and longevity of Th1 immune responses which are critical for
anti-TB immunity (67). Identification of adjuvants capable of
inducing cytotoxic CD8 T cell responses can be challenging
however and may represent a roadblock in developing
optimal therapeutic TB vaccines. We have recently shown
that antigen-specific CD8 T cells are the major cell type
involved in the therapeutic efficacy of AdCh68Ag85A, thereby
providing supporting evidence of their importance in anti-TB
immunity (65).

Viral vectors, particularly adenoviruses, remain the most
widely utilized platforms for vaccine design given their genetic
malleability, safety, and amenability for respiratory mucosal
administration (58). However as echoed by us and others, viral
serotype selection is a major consideration in the downstream
immunogenicity and efficacy of a vaccine candidate. For example,
human adenovirus serotype 35 (AdHu35) has been used in
place of AdHu5 given its low seroprevalence, which allows it
to circumvent anti-vector immunity (68). Thus, this vector has
been extensively tested as a putative prophylactic TB vaccine
candidate (AERAS-402) (69). Unfortunately, recent studies have
shown that parenteral administration of this vaccine did not
significantly induce antigen-specific immunity (70, 71). In line
with this observation, it is well documented that AdHu35 induces
robust type 1 interferon responses, leading to downstream loss
of vector transgene expression, which may negatively impact T
cell immunity (72). Alongside the choice of immunization route
(explained below), this also may explain why AERAS-402 failed
to confer efficacy when administered therapeutically (73).

Progress in the development of other novel vaccine platforms
provide new opportunities in further advancing therapeutic TB
vaccine development. For example, nanoparticle-based vaccines
have shown tremendous progress against a plethora of infectious
diseases (74). Nanoparticles not only act as antigen carriers,
but also possess intrinsic immunogenic properties (often not
requiring adjuvants) which can be fine-tuned by altering their
physiochemical properties (75). Recent studies have shown that
nanoparticle-based TB vaccines are not only amenable for
respiratory mucosal delivery, but can drive robust Th1-skewed
immune responses which provide similar-to-grater immunity
than BCG alone (76, 77).

Immunization Route
Compelling evidence suggests that protection against mucosal
pathogens such as M.tb is heavily reliant on the presence of
pathogen-specific immune cells at the primary site of infection
(78–80). As seen during natural M.tb infection, bacterial control
is observed when anti-TB specific T cells appear in the lung (81).
Specifically, it is the presence of such immune responses within
the airways that is critical in anti-TB immunity. Immunization
route largely determines the anatomical location of antigen-
specific T cells and therefore, vaccine efficacy (82). Pre-clinical
studies show that parenteral immunization with TB vaccines
drives robust antigen-specific T cell immune responses. However,
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FIGURE 3 | Designing improved therapeutic TB vaccination strategies. In accordance with Figure 1, the current TB vaccine landscape has provided invaluable
evidence which can be used to improve therapeutic vaccination strategies. These include the type of vaccine vector, the route of immunization, the selection and
design of the epitope(s)/antigen(s), and further focus on identifying targets from the different stages of the mycobacterial life cycle.

such cells are primarily restricted to the periphery, unable to
quickly enter the lung interstitium and airway lumen, and largely
fail to confer protection against pulmonary TB (83). In stark
contrast, respiratory mucosal immunization generates a long-
lasting population of tissue-resident polyfunctional T cells that
are primed to express homing molecules to allow preferential
migration and residence in the airway lumen and lungs (80, 82,
84, 85). These immune cells, located at the portal of infection,
are able to rapidly respond and carry out their effector function,
providing markedly enhanced protection against pulmonary
M.tb infection.

Antigen/Epitope Optimization
Most TB vaccine candidates in development continue to
utilize antigens that are widely characterized in M.tb-
infected individuals and are proven to be immunogenic
(e.g., Ag85A, ESAT6, TB10.4). Seminal studies however
have shown that M.tb infection in humans is characterized
by adaptive T cell responses which are skewed toward
hyper conserved epitopes (86, 87). Broad conservation of
immune responses against such epitopes is a non-prototypic
measure of immune evasion which M.tb is speculated to
have evolved to control and concentrate the host immune
response against non-protective antigens. As most vaccine
strategies are formulated to include such immunodominant

antigens and have been ineffective, it suggests that these
candidates may be suboptimal for vaccine-derived protection.
Consequently, targeting non-dominant (cryptic) antigens
may represent a superior avenue for designing efficacious
vaccines (88).

Expanding the repertoire of T cell immunity through
immunization with cryptic antigens has been evaluated in TB
in pre-clinical models (89, 90). Such studies have shown that
T cell responses against cryptic antigens are significantly more
functional than those elicited against classical immunodominant
antigens and provide enhanced protection. Importantly,
T cell responses against such cryptic antigens are longer-
lived, and are less prone to exhaustion, making them ideal
for long-lasting immunity. Collectively, such observations
warrant the inclusion of cryptic antigens in therapeutic
vaccination strategies.

Antigen Selection
Following pulmonary infection, adaptive immune responses are
primarily skewed toward replication and virulence-associated
antigens. As previously mentioned, immunological and
pharmacological stresses proceed to drive M.tb into a non-
replicating, dormant state. Antigenically, this is associated with
a shift from replication-associated antigens to those involved
in the stress and the dormancy response. Consequently this
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allows M.tb to evade existing adaptive immune responses that
have already been primed against such antigens. Two major
conclusions can be inferred from this: Only targeting replication-
associated antigens may be suboptimal for therapeutic
vaccination platforms, and including dormancy/stress-associated
antigens may improve therapeutic vaccine efficacy. A plethora
of dormancy antigens are currently under investigation as
tantalizing vaccine antigen candidates. As detailed earlier,
H56:IC31 expresses the latency antigen Rv2660c and ID93:GLA-
SE expresses Rv1813 (48, 53). These represent just two of
many potential dormancy candidates (such as those controlled
by the DosR Regulon) that warrant further investigation.
In addition, it will be critical to assess whether immune
responses to such antigens are able to specifically eliminate
dormant bacilli. To do so will require implementation and
standardization of experimental techniques that delineate
between these mycobacterial subpopulations, which have been
described previously (91).

In addition, targeting M.tb populations resuscitating from
dormancy would also be critical in the development of
therapeutic vaccines, as to eliminate/minimize reactivation.
Mycobacterial resuscitation is a complex process and is regulated
in a coordinated transcriptional burst preceding expression
of metabolic and growth-related pathways (92). Resuscitation
promoting factors (RPFs) represent a major class of antigens
involved in this process and may represent promising vaccine
antigen targets (92–94).

Evidence supporting further investigation of RPFs as vaccine
antigens stems from clinical studies that correlated the long term
maintenance of multifunctional adaptive immunity against these
antigens in M.tb-infected non-progressors (95). This strongly
supports the role of such immune responses in controlling
reactivation from latency. Although RPFs have been included
in numerous pre-clinical prophylactic vaccine candidates, no
study to-date has investigated the contribution of RPF-specific
immunity in restricting resuscitation (96, 97). Given the
significant contribution of resuscitating M.tb populations to
disease relapse, developing therapeutic vaccines to improve
immune surveillance during or post-chemotherapy against such
subpopulations would have substantial benefits.

CONCLUDING STATEMENT

Reaching the END TB set goals for 2035 remains a daunting
task which we are unlikely to meet short of a revolution
in current treatments. Investigation into therapeutic vaccines
has expanded rapidly in the last several years offering novel
insights toward vector design, and targeted antigen selection
from differing stages of the bacterial lifecycle. While this
field lags behind the development of prophylactic strategies,
therapeutic vaccines have the potential to enhance treatment
success rates, even for difficult-to-treat drug-resistant forms
of TB. As this emerging field of TB vaccine development
continues to flourish, there are several factors that will be critical
to assessing their potential success, and eventual utilization.
Namely, to what extent are these vaccines able to shorten the
duration of existing chemotherapeutic regimens? How will we
evaluate the efficacy of these vaccines under realistic situations
such as fragmented or incomplete therapy? Can therapeutic
immunization protect against recurrent infection? Intertwined
with this are establishing correlates to measure efficacy, and
the standardization of complex, pre-clinical models necessary to
account for the myriad of moving parts at play. This includes,
but is not limited to, dissecting immune responses from vaccines
versus those induced from infection, the role of chemotherapy
in driving dormancy/escape from immunological pressures, and
safety/efficacy in individuals living with HIV.
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