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Abstract

Array-based comparative genomics hybridization (aCGH) has gained prevalence as an effective technique for measuring
structural variations in the genome. Copy-number variations (CNVs) form a large source of genomic structural variation, but
it is not known whether phenotypic differences between intra-species groups, such as divergent human populations, or
breeds of a domestic animal, can be attributed to CNVs. Several computational methods have been proposed to improve
the detection of CNVs from array CGH data, but few population studies have used CGH data for identification of intra-
species differences. In this paper we propose a novel method of genome-wide comparison and classification using CGH
data that condenses whole genome information, aimed at quantification of intra-species variations and discovery of shared
ancestry. Our strategy included smoothing CGH data using an appropriate denoising algorithm, extracting features via
wavelets, quantifying the information via wavelet power spectrum and hierarchical clustering of the resultant profile. To
evaluate the classification efficiency of our method, we used simulated data sets. We applied it to aCGH data from human
and bovine individuals and showed that it successfully detects existing intra-specific variations with additional evolutionary
implications.
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Introduction

Since the largest source of known genomic variations consists of

single nucleotide polymorphisms (SNPs), an extensive amount of

research has been conducted for characterizing SNPs in the

human genome [1,2]. A great volume of ongoing work has also

involved finding the relationship between specific SNPs and

human or animal disease. However, recent reviews [3] have

suggested that structural variations, such as copy number

variations (CNVs) and segmental duplications (SDs) may also be

responsible, at least in part, for giving rise to complex disease. The

advent of various high-throughput technologies such as array-

based comparative genomics hybridization (CGH) has made it

easier to probe such variations.

Array-based comparative genomic hybridization (aCGH) is

becoming a popular and cost-effective way of detecting and

measuring structural variations of the genome, and could be used

for phylogenetic research. Although a wide range of computa-

tional methods exist [4,5,6,7], the accurate estimation of copy

number from CGH data is still an open problem. Segmentation

approaches attempt to partition the genome into regions of ‘gain’

or ‘loss’, while denoising methods use distributional assumptions

about experimental error to smooth the signal [5,6,8,9,10]. The

latter are often coupled with a thresholding step to define regions

of CNV [4,7,11]. There have been recent attempts to compare

existing algorithms and to quantify their performance in detection

of CNVs from aCGH [12], but no efforts have been directed

towards using aCGH information for a population study. It is

generally accepted that the ideal phylogenetic study should use

genome-wide information from a large set of individuals, but this is

impossible at present because of prohibitive cost, incomplete

information and intensive computing requirements. Alternative

ways are to use housekeeping genes, the largest possible DNA

region or concatenation of core genes, which frequently result in

biased inference and systematic overestimation within-species

[13,14,15]. In addition, through decades of artificial selection

and natural selection as well as population divergence created by

geographical isolation, individuals from the same species have

differences in their DNA sequences, which include SNPs and

Structural Variations (SVs), although these differences cannot fully

explain existing phenotypic differences. A recent effort to quantify

the effect of genetic variation on gene expression found that SNPs

and CNVs contribute 83.6% and 17.7% of the total variation

found [16]. Therefore, the contribution of CNVs to genetic

diversity is unquestionable [17].

In this paper, we propose a wavelet-based method to quantify

structural variation profiles to enable comparisons between

genomes of closely related individuals, which may pave the way

for the use of genome-wide structural information for a phylo-

genetic study. We first use an appropriate denoising algorithm
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to smooth the CGH data and then extract features using wavelets.

We quantify the information by calculating the wavelet power

spectra, finally conducting hierarchical clustering of the resultant

profiles to obtain a tree that serves to classify the individuals based

on similarities in the CGH data. Our method is quite general; at

every step we use well-known and often simple methods to achieve

our aims. However, we are attempting to answer difficult questions:

(a) Does CGH data contain adequate genetic information to enable

us to distinguish between intra-species groups? (b) Are these patterns

discernible over and above existing genetic diversity in a

population?

Wavelet decomposition has been used for analyzing genome

and gene expression profiles [18,19,20,21], however, its applica-

tion as a distance measure to find evolutionary relationships is

novel. We validate the classification accuracy of our method using

simulated data sets. Subsequently, we apply our method to human

data sets from divergent populations [17] and bovine data sets

from several breeds. These data sets capture varying degrees of

genetic diversity in a natural population. We also conduct

statistical tests to confirm the results of hierarchical clustering.

Results

Simulation Results
To evaluate our method, the simulated data sets were generated

with varying degrees of divergence between groups of individuals.

The simulation parameters, d and the total number of CNVs, x,

were varied. For each experiment we simulated 25 individual

genomes belonging to 5 different groups, each differing by d*x

CNVs. The true positives (TP) and false positives (FP) from the

resulting hierarchical clustering tree were estimated by a simple

rule: a cluster was assigned a particular group if more than 50% of

its contents belonged to that group. The individuals that were

correctly classified according to this rule were considered TPs. We

plotted the % true positives from our simulation study. As shown

in Figure 1, we found the precision of our classification increases

with the extent of divergence, except when the total number of

CNVs, x, is extremely low (x = 10). The accuracy is low when x is

low, even when groups differ by as much as 50%. However, with

increasing CNV, the FP rate decreases dramatically. For groups

having a total of 40 CNVs (comparable to human CGH data sets),

24 out of 25 individuals (96%) were correctly classified for groups

differing by 30%, with the number decreasing to 20 (80%) for

groups differing by 20%.

Notably, the size of the CNVs in the simulation (1–10 probes),

was much smaller than typical sizes considered for the validation

of CNV detection algorithms (10–40 probes) in recently published

studies [8,12].

Calculation of Hurst Parameter
The Hurst parameter, H, is a measure of self-similarity and H

greater than 0.5 indicates the presence of long-range correlations.

A recent study [11] has shown the presence of long-range

correlations in aCGH data from a human individual suffering

from cancer. Cancer is characterized by large scale CNVs and

hence, such a finding is understandable. However, the data sets in

our study are obtained from normal individuals and we establish

the presence of long-range correlations to justify our use of the

above de-noising algorithm.

With the above objective in mind, we calculated the Hurst

parameter for each of the human and bovine data sets as shown in

Figure 2. The Hurst parameter, H, was found to be greater than

0.5 in all cases, confirming the presence of long-range correlations

in our data sets. This proved the non-applicability of the normality

assumption for aCGH data sets and hence, justified the use of our

chosen aCGH de-noising algorithm.

Human CGH Data Sets
The human CGH data sets for this study came from different

populations and included individuals of African descent from

Nigeria, European descent from Utah, USA, and Asian descent

from China and Japan. We found some similarities between the

Chinese and Japanese individuals and hence these samples were

pooled together to form a third population alongside the African

and European populations. We then carried out hierarchical

clustering of the human CGH data profiles (Figure S1). The

hierarchical clustering tree showed some interesting features, with

several individuals from the same population clustered together in

different regions.

In order to optimize the cluster size and total cluster number

and also to further explore the reasons for the apparent

misassortment, we cut the tree at height 12, creating 26 clusters

with a median size of 9.5. We obtained the observed frequencies of

the three populations from this clustering and conducted a

permutation test to establish statistical significance as follows: The

contents of all the clusters were pooled and shuffled. The

reordered list was partitioned into sets with the same size

distribution as our original clustering. The observed counts in

our original clustering were compared with those obtained from

the reordered list. This process was repeated 105 times and the

p-value of the comparison was calculated as the fraction of times

the counts were lower in the observed clusters than in the random

reordering.

The relative proportions of the three populations in the clusters

are depicted in Figure 3(a). We found that 11 out of the 26 clusters

(42.3%) were significantly enriched (pƒ0:05) for one population,

with 7 clusters (26.9%) highly enriched (pƒ0:01). If we considered

larger clusters (size 8 or larger), we got 16 clusters, covering 220

individuals (81.78%), nine of which were significantly enriched

(pƒ0:05). To demonstrate the presence of patterns in the power

spectrum profiles, we plotted the spectra from individuals

contained within certain clusters with high statistical enrichment,

as shown in Figure 3(b). We also found some interesting clusters –

cluster 4 and cluster 18 have similar proportions of Asian and

African individuals, and clusters 7, 8, 9 and 16 have similar

proportions of Asian, African and European individuals.

On using a simple majority rule in deciding the annotation of a

cluster (Asian, African or European) we get some interesting results

Figure 1. Plot of % TP vs % difference between groups, for
changing values of total CNV number, x. The precision of the
classification increases markedly with increasing divergence, with
almost perfect classification for x§20, and % difference §30.
doi:10.1371/journal.pone.0007978.g001

CGH and Wavelet
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(Figure 4). The tree has two major branches. The left branch

consists mostly of Asian individuals, with only one cluster highly

enriched for African individuals (p,0.01). These clusters form a

small fraction of our total data set (14.13%), and could conceivable

be outliers. The right branch consists of Asian individuals

clustering at one end, European individuals clustering in the

center and African individuals clustering at the other end. Hence,

we see definite patterns of clustering, with individuals from the

three populations clustering at distinct locations in the hierarchical

clustering tree. We also see evidence that the African population

has similarities with both Asian and European populations, while

the latter two are more distant.

Bovine CGH Data Sets
In an extended study, we analyzed the bovine CGH data sets

generated in the Bovine Functional Genomics Laboratory, USDA.

Figure 3. Plots of the clusters. (a) Bar graph showing relative proportions of the three populations in clusters obtained from the hierarchical
clustering tree (Figure S1). Clusters are ordered by their location in the tree. Several clusters are highly statistically enriched for one population
(p,0.01 **) while some others are also moderately enriched (p,0.05*). (b) Plot of power spectrum profiles of highly enriched (p,0.01) clusters 3, 11,
14 and 19 showing distinct patterns. Cluster 3 and 19 consist of predominantly African individuals, cluster 14 consists of European individuals and
cluster 19, Asian individuals.
doi:10.1371/journal.pone.0007978.g003

Figure 2. Plots of Hurst parameters from individuals. (a) 269 human individuals and (b) 13 bovine individuals. The dotted line corresponds to
H = 0.5. The plots indicate the presence of long-range correlations in both human and bovine CGH data sets.
doi:10.1371/journal.pone.0007978.g002

CGH and Wavelet
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We had 13 individuals belonging to 6 different breeds: Angus

(ANG), N’Dama (NDA), Holstein (HOL), Charolais (CHAR),

Limousin (LMS) and Hereford (HFD). We expect a greater genetic

variation between bovine breeds as compared to the human

populations, with amplification of differences through several

generations of artificial selection in cattle as opposed to imperfect

geographical isolation for the humans. The power spectrum

profiles from the bovine individuals were plotted (Figure 5(a)) and

the hierarchical clustering of these profiles was carried out

(Figure 5(b)). The plot of the spectra shows distinct patterns of

similarity between individuals of the same species, a feature

captured by the clustering tree. Besides, our test set in this case is

much smaller than for the human data and hence, we manually

curate the clustering tree. By cutting the clustering dendrogram at

height 60, we obtained four well defined clusters. Considering a

breed to be correctly classified if all the members of that breed are

in a single cluster, we found that 5 out of the 6 bovine breeds and

11 out of the total 13 (84.6%) individuals in our data set are

correctly classified. The other interesting aspect to note is the co-

clustering of CHAR and HFD individuals.

We then used the exact F-test to check whether significant

differences exist between breeds clustering separately [22]. The

results of the statistical test confirmed the findings of the clustering

tree and were plotted as a heatmap in Figure 5(c). We found the

breeds that were in close proximity in the clustering tree, were not

statistically different. For instance, NDA, LMS and HOL were not

significantly different at the 5% significance level, but LMS is

statistically different from ANG (p = 0.003), HFD (p = 0.0023) and

CHAR (p = 0.00087).

The clustering tree therefore, provides some interesting findings.

We found most of the individuals co-clustered with other

individuals from the same breed with the exception of Holstein.

The two HOL individuals are split between 2 clusters with NDA

and LMS, but there is no significant difference between these

breeds as shown by the results of the F-test. Moreover, 3 HFD

individuals are co-clustered with CHAR individuals, and these

breeds are also not significantly different.

Discussion

In this study we have developed a new strategy towards using

genome-wide information for a phylogenetic study and for

classifying a population into distinct subgroups based on

similarities and differences of aCGH data via wavelet spectra.

Because wavelet analysis can capture the pattern information of a

numerical signal by decomposition into time-frequency space, it

has been used as a signal processing technique in many diverse

fields, such as signal and image processing, numerical analysis and

statistics. The basic idea of the method is to transform a sequential

profile into several groups of coefficients, each group containing

information about features of the profile at a different scale. In our

study, the spectra represent structural features of the genome

and reflect a compressed and comprehensive representation

of structural variations consisting of SNPs, CNVs, SDs, etc.

Moreover, it is executable on standard desktop computers and is

not computationally demanding. This makes it easier to conduct

comparative genomics and large-scale phylogenetic studies

without being constrained by logistics. It is worthy of note that

in our simulation the classification problem we consider is harder

than the real case as the simulated CNVs contain fewer probe-sets

and are shorter on average than CNVs from real aCGH data.

Hence, the results are more remarkable.

In further studies, we analyzed data from two independent

sources: 269 human CGH data sets from three populations and 13

bovine CGH data sets from 6 different breeds. In case of the

human data sets, we analyzed the contents of the clusters using a

permutation test and found 42.3% of the clusters to be significantly

enriched for one population. The clustering tree showed groupings

Figure 4. A hierarchical clustering tree showing the clusters colored by a majority rule. If more than 50% of the clusters contents belong
to a particular population, the cluster is annotated according to this population. Size of the symbols indicate high statistical significance** or
moderate statistical significance* as per the results of the permutation test.
doi:10.1371/journal.pone.0007978.g004

CGH and Wavelet
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of Asian, European and African individuals in distinct regions.

Moreover, African individuals seem to share similarities with both

Asian and European individuals, while the latter appear to be less

related. Our results are in accordance with the generally-held view

that Homo sapiens originated in East Africa before spreading to

different parts of the globe [23]. However, surprisingly we also

found some clusters with comparable proportions of the three

populations, indicating a broad base of similarity between them.

Using our approach on the bovine data sets we were able to

successfully classify 11 out of 13 individuals (84.6%) and 5 out of 6

breeds. The clustering tree uncovered putative evolutionary

relationships between bovine breeds CHAR, HFD and NDA,

LMS, HOL that were previously unknown. Our findings are

supported by the results of an exact F-test which show that these

sets of breeds are not significantly different amongst themselves.

The clustering trees from both species exhibit distinct

characteristics. While the tree from bovine samples has clearly

demarcated regions with most breeds clustering separately, the

tree from human samples is more diffuse. This is consistent with

the characteristics of the two populations: The human population

possesses greater genetic diversity within populations as compared

to between populations due to migration, mixing and imperfect

geographical isolation. The low between-group variation in

humans leads to a diffuse clustering tree with certain individuals

from different populations appearing more similar than those from

the same population. In comparison, the bovine population is

Figure 5. Plot of results of our method applied to bovine data sets. (a) Plot of power spectrum profiles and (b) Ward’s hierarchical clustering
tree for the 13 bovine individuals in our study and (c) Plot of –log10P values from comparisons of the breeds using the exact F-test (see Methods).
Statistical significance (p,0.05) is indicated when –log10P = 1.3.
doi:10.1371/journal.pone.0007978.g005

CGH and Wavelet
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quite the opposite, with higher variation between breeds due to

artificial selection and conscientious isolation of genetic pools. The

higher between-group variation makes it easier to distinguish

between bovine breeds leading to a more clear-cut demarcation.

This shows that our strategy is sensitive towards detecting

underlying patterns of similarity within populations even in the

presence of genetic diversity.

There are other possible reasons for the qualitative difference in

the clustering trees from the two species: First, the de-noising

algorithm used by us [11], although realistic, depends on a user-

defined threshold T that can define performance. We conducted a

systematic search of the parameter space to find the optimal value

of T and reduce false positives. However, it is possible that the

results will improve for a different value of the parameter. Notably,

this is the only step of our method that requires choice of

parameters. Alternatively, the use of a non-parametric smoothing

algorithm such as (mean-shift-based) MSB [8] could produce an

improved classification. Second, the array platforms for the two

species have different resolutions with much higher resolution for

the bovine data sets. In other words, the CGH data from humans

may not detect small CNVs due to lower resolution and the

differences that arise due to fine structural variations are therefore

not picked up. The oligonucleotide arrays used for the cattle data

sets do not suffer from this limitation and this may be one of the

reasons behind the more diffuse clustering for the humans

compared to the bovines. Third, we use the wavelet power

spectrum to compress information from the wavelet decomposi-

tion by calculating sum-of-squares of the coefficients at each scale;

the resultant profiles are subsequently clustered. This step is

analogous to comparing energies of electrical signals with different

scales corresponding to different bands of wavelength. The

individual peaks of the wavelet decomposition may be different

but the overall energy may be the same and consequently some

differences may be missed. However, the fact that this strategy is

very successful for the bovine data set shows that there is definite

merit in this approach and a more involved scoring function based

on the wavelet coefficients could produce marked improvements in

classification. Lastly, the sample sizes in the two test sets are very

different. The human CGH data set, although of a lower

resolution, has a much larger number of individuals and

consequently encapsulates much greater individual variation than

the bovine data set. This coupled with the lower resolution makes

it a difficult classification problem and could explain why we

obtain a diffuse clustering tree.

Finally, no discussion related to copy number information can

be completed without a mention of next-generation sequencing

technologies and the alternatives they provide to aCGH. Genome-

wide read counts provide a natural means of CNV detection

without the limitations of intensity measurements that are

characteristic of array-based techniques. In this study, we consider

aCGH data as a discrete signal, and hence our approach is directly

applicable to copy number data from such next-generation

sequencing technologies.

In summary, our primary objective in this study was to verify

whether CGH data representing genome-wide information can be

used to distinguish between distinct groups or to do phylogenetic

research via a wavelet-based novel strategy. Our results suggest that

the idea is feasible. A logical next step in improving the power of

inference would be to combine the CGH profiles with SNP

information and investigate possible patterns of association between

the occurrence of SNPs and CNVs. The advent of SNP-arrays have

enabled recent efforts to combine SNP and CNV information in

genome-wide association studies [24]. An extension of our method

to this problem can potentially lead to interesting results.

Methods

CGH Data Sets
We use 269 human CGH data sets from a previous study [17]

that used whole genome tiling path (WGTP) CGH arrays each

having 26,574 probes. The samples are from four distinct

populations: 90 individuals are of European descent, 45 from

Japan, 45 from China and 89 from Nigeria and a sample from

male individual of European descent served as the reference. We

also analyze our bovine CGH data taken from 13 individuals from

6 different breeds, namely, Hereford (HFD), Charolais (CHAR),

Limousin (LMS), N’Dama (NDA), Angus (ANG) and Holstein

(HOL). The data is obtained from NimbleGen 385k oligonucle-

otide CGH arrays and the reference sample was blood taken from

the sequenced Hereford cow. The study was specifically approved

by USDA-ARS standard animal care procedures and guidelines.

Since our primary objective is to establish the fact that features

extracted from CGH profiles can be used to classify different

groups within the same species, the data was pre-processed to

eliminate unwanted sources of variation or bias as far as possible.

The reference sample for the human data sets was a male

individual while that for the bovine data sets was female. However,

the test samples from humans included both male and female

individuals while the bovine data set consisted of male individuals

and the data corresponding to the sex chromosomes may

introduce biases into the study. Therefore, in order to remove

sex-related effects, the data from the X chromosome was removed

from both human and bovine data sets. We also removed the data

from the unannotated and highly variable ChrUnAll region of the

bovine genome.

Simulated Data Sets
We created simulated data sets to validate the efficacy of our

proposed method in distinguishing groups of closely related

individuals based on their CGH profiles. We simulated artificial

‘‘genomes’’ of length 300,000 bp with CNVs uniformly distributed

across the genome. Our strategy was to create a controlled

difference between groups of individuals while keeping the rest of

the genome relatively unchanged.

Assuming we have m groups of equal size n, we generated CNVs

such that each group differs from the others by a fixed percentage.

Keeping the number of CNVs in each individual at a constant

level, say x, we define d as the fraction of CNVs unique to each

group as a measure of divergence, i.e. with increasing d, the groups

become more divergent. We kept within-group variation to a

minimum to set up the baseline performance of our method.

For our simulations we chose m = 5 and n = 5 and varied d from

0.1 to 0.5. The average number of CNVs detected per individual

[17], was 35 for the WGTP arrays. Therefore, in our simulations,

we increase x in steps of 10 from 10 to 50. The median size of the

CNVs detected by the WGTP arrays was 228 kb, but this is partly

due to the lower resolution offered by the large-insert clones of the

platform and in case of oligo-based CGH arrays, the resolution is

much higher (,10 kb). In order to accommodate smaller CNVs

we vary the size of the CNVs from 10 to 100 kb in our simulation.

The copy number states, k, of these segments are chosen to be

between 26 to +6, based on the range of log-ratios observed in the

bovine CGH data. We assume larger CNVs are less frequently

observed, and the probability of choosing a particular copy

number state k is proportional to 1
�

k2. We add simulated noise to

our genome from a Gaussian distribution of mean 0 and standard

deviation 0.3, as the median standard deviation observed in our

data sets was 0.26.

CGH and Wavelet
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Denoising Algorithm
There are several existing methods and algorithms for detection

of regions of copy number change from noisy CGH data.

However, a majority of approaches make normality assumptions

about experimental noise. A recent study [11] has shown the

presence of long-range spatial correlations in array CGH data and

utilized this property to improve detection of regions of copy

number change. Since we found the existence of long-range spatial

correlations in our data, we use this algorithm for smoothing the

CGH data in our study. Here is a brief overview of the procedure.

CGH data, y, of size N, is pre-processed using a median filter

with a sliding window of length 3. A random walk, yRW, is

constructed from the filtered data yf, by conducting a partial

summation.

y
RW

nð Þ~
Xn

i~1

½y
f

ið Þ{m� ð1Þ

where, m is the mean of yf, and n = 1,2, … N. The remainder of the

algorithm is based on the properties of a random walk. yRW is

divided into overlapping windows within which local trends are

calculated as the ordinates of linear least-squares fit for the random

walk. The deviation between yRW and the local trend is denoted by

yDEV that can be also be used to calculate the Hurst parameter.

The original filtered data, yf, is then transformed in the following

manner, to accomplish both segmentation and smoothing.

y�f nð Þ~
yf nz1ð Þ if yf nð Þ{yf n{1ð Þ

�� ��w yf nð Þ{yf nz1ð Þ
�� ��

yf n{1ð Þ otherwise

(
ð2Þ

We define, ymax nð Þ~y�f nð Þ|yDEV nð Þ. The smoothed data is

given by,

ysmooth nð Þ~
y�f nð Þ, if ymax nð Þj jwT

ymax nð Þ, otherwise

�
ð3Þ

where, T is a user-defined threshold. We use this smoothed data

for further processing using wavelets.

We conducted an exhaustive search of the parameter space and

found that this algorithm performs best with a threshold (T) of 0.5

for the human data sets and 0.75 for the bovine data sets. We

found these values to be partly determined by the level of noise in

the data. The human data had fewer data points and was less noisy

as compared to the bovine data sets, and hence we needed a lower

threshold for good performance. We anticipate the use of varying

thresholds for different experiments for optimal results.

Long-Range Spatial Correlations: The Hurst Parameter
CGH data from human or bovine individuals have not been

previously shown to have spatial correlations. We test our data sets

for the presence of spatial correlations by calculating the Hurst

exponent [25], which can help detect patterns of self-similarity, for

our dataset. We employ a simplified version of the classical Hurst’s

rescaled range algorithm for the calculation of the Hurst exponent.

Let us denote the CGH data of an individual by y(n) where

n[ 1,2:::,Nf g. N denotes the number of data-points which, in this

case, is the number of probes along the entire length of the

genome. We define a vector C~ tif g denoting the window size,

where ti [ 2k : k [ 3,:::,tlog2 Nsf g
�

and divide the data y into

W~tN=tis non-overlapping segments of size ti. Let

y tið Þ,i [ 1,::,W½ � denote the mean of each such segment and the

cumulative sum of deviations,

X t,tið Þ~
Xt

n~ i{1ð Þtiz1

y nð Þ{y tið Þ
n o

ð4Þ

Where t = 1, 2, … iti. We, then, define R as,

R tið Þ~ max
i

X t,tið Þf g{ min
i

X t,tið Þf g ð5Þ

and the standard deviation, S,

S tið Þ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ti

Xiti

n~ i{1ð Þtiz1

y nð Þ{y tið Þ
n o2

vuut ð6Þ

We calculate the mean of the rescaled range,R tið Þ=S tið Þ, over

all segments. The Hurst parameter, H, is given by the following

relation,

E
R tð Þ
S tð Þ

� �
~CtH as t??

We plot log2 R=Sð Þ vs. log2t and the slope of the linear

regression gives us an estimate of the Hurst parameter, H. The

presence of long-range correlations is implied if Hw0:5.

Feature Extraction with Wavelets
Wavelets have been used extensively in electrical engineering

and biomedical research for signal processing and diagnostic

purposes, respectively. They have been used as a tool for analyzing

temporal data, such as, gene expression profiles [26], as also for

the specific purpose of denoising CGH data by thresholding

wavelet coefficients [4]. We propose to use wavelets for extracting

and quantifying structural variations from the CGH data and

classifying it into distinct levels or ‘scales’.

The discrete nature of CNVs and the lossless property of

wavelet decomposition suggested their use in solving this problem.

Since different wavelets produce the same or similar results, we use

the Haar wavelet as the wavelet mother function for its simplicity

and ease of use. It can be defined as,

y nð Þ~
{1
� ffiffiffi

2
p

, {1vnƒ0,

1
� ffiffiffi

2
p

, 0vnƒ1,

0, otherwise

8><>: ð7Þ

This wavelet is dilated and translated to form the wavelet basis

according to the following relation:

yj,k nð Þ~2j=2y 2jn{k
� 	

ð8Þ

where, j and k denote the scale of the decomposition and the

position of the wavelet respectively. The data, y(n), can then be

represented as a linear combination of the wavelets as follows,

y nð Þ~
X
j,k

cj,kyj,k nð Þ ð9Þ

where, cj,k denotes the wavelet coefficients.

(2)
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Wavelet Power Spectrum
A natural way of quantification of the wavelet decomposition, is

the wavelet power spectrum, which has previously been used for

processing various biomedical signals, e.g., electrocardiogram

(ECG), electroencephalogram (EEG) and heart rate variability

(HRV) data, providing valuable diagnostic potential that can have

far-reaching consequences in medicine [27,28,29] and also as a

classification tool for gene expression profiles [30].

The wavelet decomposition divides the information from

genome-wide CGH data into J scales. The wavelet power

spectrum is calculated as follows:

Sj~
X2j{1

k~0

c2
j,k ð10Þ

where, Sj denotes the power spectrum at scale j, where j = 1, 2, …

J, and cj,k are the wavelet coefficients as in eq. (9). The power

spectrum for each individual is calculated at several levels to

generate a power spectrum profile which facilitates genome-wide

comparison and classification using various clustering techniques.

We use cluster analysis in order to classify the power spectrum

profiles after a log2 transformation. Various clustering strategies

were tested including distance-based methods like average linkage

and partition-based methods like k-means clustering. We finally

choose Ward’s method of hierarchical clustering [31] that merges

clusters resulting in the smallest increase in information loss,

defined in terms of an error sum-of-squares criterion.

Statistical Analysis
We evaluate the statistical significance of differences between

power spectrum profiles, by a transformation of q-fold principal

components (PC) [22,32].

Let n 1ð Þ and n 2ð Þ represent the number of individuals in two

groups to be compared, such that, n 1ð Þzn 2ð Þ~n. If we have the

wavelet power spectrum for each individual at p scales, we define

X~ x1,x2:::xnð Þ as a p|n matrix representing the power

spectrum values. Assuming xi eN(mi,S), the null hypothesis to

be tested is,

H0 : m1~m2~:::~mn ð11Þ

Let us denote X~X1n1
0

n

�
n, and let D be a p|q matrix

consisting of the first q 1vqvmin n,pð Þð Þ eigenvectors of the

solution to the following general eigenvalue problem,

X{X
� 	

X{X
� 	0

D~diag X{X
� 	

X{X
� 	0
 �

DL ð12Þ

where L is the q|q diagonal matrix of the q largest eigenvalues.

If H0 holds, the statistic,

F~
n{q{1

q
k0Z0G{1Zk ð13Þ

where Z~D0X and G~Z In{
1

n
1n1

0

n{kk0
� 


Z0, exactly follows

the F distribution with q and n-q-1 degrees of freedom. k is a vector

calculated according to following equation

k~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n 1ð Þn 2ð Þ

n 1ð Þzn 2ð Þ

s 1

n 1ð Þ 1n 1ð Þ

{
1

n 2ð Þ 1n 2ð Þ

0BB@
1CCA ð14Þ

For given n and p, the power of this statistic depends on q, the

number of principal components to be considered. We determined

this parameter based on a cumulative energy content (CEC)

criterion, such that, the q principals capture at least 85% variance

in the data.

Supporting Information

Figure S1 Figure S1

Found at: doi:10.1371/journal.pone.0007978.s001 (0.12 MB EPS)
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