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MicroRNAs (miRNAs) are short RNA sequences involved in posttranscriptional gene regulation. Their experimental analysis is
complicated and, therefore, needs to be supplemented with computational miRNA detection. Currently computational miRNA
detection ismainly performed usingmachine learning and in particular two-class classification. Formachine learning, themiRNAs
need to be parametrized and more than 700 features have been described. Positive training examples for machine learning are
readily available, but negative data is hard to come by. Therefore, it seems prerogative to use one-class classification instead of two-
class classification. Previously, we were able to almost reach two-class classification accuracy using one-class classifiers. In this work,
we employ feature selection procedures in conjunction with one-class classification and show that there is up to 36% difference in
accuracy among these feature selection methods. The best feature set allowed the training of a one-class classifier which achieved
an average accuracy of ∼95.6% thereby outperforming previous two-class-based plant miRNA detection approaches by about 0.5%.
We believe that this can be improved upon in the future by rigorous filtering of the positive training examples and by improving
current feature clustering algorithms to better target pre-miRNA feature selection.

1. Introduction

MicroRNAs (miRNAs) are short regulatory nucleotide seq-
uences which were discovered about 2 decades ago [1]. Since
then, they were shown to exist in organisms ranging from
sponges [2] to human [3] and also in plants where they may
have evolved independently [4]. Due to their involvement in
posttranscriptional regulation,miRNAshave been implicated
in human diseases [5, 6] and, for example, in plant stress
response [7]. Regulation of gene expression is of great interest
and, therefore, miRNAs have received increasing interest.

Some miRNAs have been experimentally detected and
they are stored in databases such as miRBase [8] and miR-
TarBase [9]. Unfortunately, experimental detection of miR-
NAs is quite involved and further suffers from the fact that
some miRNA-target combinations may be expressed only
in response to specific external or internal stresses so that
it seems impossible to experimentally detect all miRNAs of

any higher eukaryotic organism [10–13]. Additionally, current
approaches may not use the full potential of available exper-
imental techniques [14]. Even among the experimentally
validated miRNAs in miRBase, there may be entries which
are dubious and we have shown that some may not rep-
resent true miRNAs [15]. Thus, computational methods for
miRNA detection are required to complement experimental
approaches.

Computational approaches for miRNA detection and
miRNA’s target detection [16] are generally based onmachine
learning [17]. In order to use miRNAs in machine learning,
they must be parameterized and many different features have
been described [18]. For successful machine learning, known
examples need to be provided to the algorithms and these are
generally collected from miRBase. Except for a few examples
[10], two-class classification is used for machine learning.
In this case in addition to the positive learning examples,
negative ones have to be provided.
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Unfortunately, the negative class cannot be defined for
any larger eukaryotic organism since any part of a genome
must be coexpressed with any other part of the genome to
prove that they cannot interact as miRNAs, a futile endeavor.
Therefore, examples for the negative class have been arbi-
trarily created in studies performing machine learning for
miRNA detection, but the most abundantly used negative
dataset is from [19] although new datasets are being proposed
[20]. While in our experience the dataset is a significant
improvement over using randomly selected or generated
examples, it is likely to also contain positive examples.

To overcome the problem of needing to define artifi-
cial negative examples, one-class classification can be used
instead [21, 22]. One-class classification (OCC) only needs
the target class for learning and then classifies unknown
examples into target or unknown (outlier) class. We have
recently analyzed the use of one-class classification for
miRNA detection in plants and found that it is competitive
in comparison to two-class classification [23].

We also found that some features among the hundreds of
features described formiRNAparameterization [24] aremore
discriminative than others. Unfortunately, feature selection
is NP-hard [25] and selecting the best subset from more
than 700 features on a per-dataset basis is not possible in
an acceptable amount of time. Apart from the computational
complexity of feature selection, methods have only been well
established for two-class classification [26–28], while only few
approaches deal with one-class classification [29–31].

In this study, we used different feature selection approa-
ches and evaluated the effectiveness of each one against the
others for the classification of miRNAs from different plant
species using one-class classification. We found that cluster-
ing of features is important for classification performance and
helps to improve classification accuracy by up to 36% (Oryza
sativa) and on average by about 30% compared to selecting
features by the lowest information gain. Clustering in its
present form, however, is ill suited for selection from pre-
miRNA features, since logically correlated features may be
uncorrelated when examining the feature vectors in isolation
and vice versa. Therefore, the clustering methods performed
best, but not the expected clustering method which selected
the feature with the highest information gain from each
cluster. With a peak performance of 98.80% accuracy for
Zea mays, feature selection using clustering methods was
able to increase the accuracy achieved in our previous
studies by 1–4% and the two-class classification benchmark
PlantMiRNAPred by ∼0.5%. This study showed that feature
selection is effective despite varying data quality. Conclud-
ing, it seems important to devise effective data selection
methodologies to ensure that only true miRNAs are used as
positive examples. Novel feature clustering approaches taking
into account logical feature correlation need to be coupling
this data filtering strategy. When both are achieved, one-
class classification may significantly outperform two-class
classification for pre-miRNA detection in all cases (for plant)
since the gap is already closed with this study.

2. Materials and Methods

2.1. Data. We downloaded all available microRNAs from
selected plant species from miRBase [8] (Releases 20 and
21). The selected species were Glycine max (gma), Zea mays
(zma), Sorghum bicolor (sbi), Physcomitrella patens (ppt),
Arabidopsis thaliana (ath), Populus trichocarpa (ptc), and
Oryza sativa (osa). Our negative data pool consisted of the
980 pseudo pre-miRNAs constituting the PlantMiRNAPred
dataset [32]. For these data, all pre-miRNA features were
calculated as described previously [24, 33, 34].

2.2. One-Class Classification. One-class classification was
performed using randomly sampled 90% of the positive data
for training and 10% for testing (Supplementary File 1 in
Supplementary Material available online at http://dx.doi.org/
10.1155/2016/5670851, Figure 2). In addition to the 10% posi-
tive data during testing, the pseudo negative sequences were
used as unknown class. To determine the stability of the
feature set, the process was repeated 100 times. We used the
DDtools [35] implementation of a OCC.

2.3. Feature Selection Strategies. Feature selection is not a
straightforward process since two features which individually
may not be very discriminativemay have high selective power
in combination. Additionally, we havemore than 700 features
so trying all combination of features from 1 to 700 for all
datasets considered in this study is not possible. In order
to test the impact of feature selection on the classification
accuracy, four negative and four positive feature selection
methods were designed. According to our previous research
[24], 50 features seem sufficient for miRNA detection [24]
and this limit was used in this study. Among the feature
selection methods used in this study, only PCF is using only
the positive class whereas all others are using both classes.

2.3.1. Selecting Features with Low Information Gain (LIG).
Information gain was calculated on a per-dataset level using
KNIME [36] and for each dataset the process had to be
iteratively repeated until the 50 features with lowest infor-
mation gain. First information gain was calculated and since
most features received a score of zero they could not be
differentiated. After removing all features with information
gain above zero and recalculating information gain for the
remaining features, the pool of features that receive zero
became successively smaller until only 50 features remained.
These remaining features were selected and used for classifi-
cation (Supplementary File 1, LIG).

2.3.2. Random Feature Selection (RFS). 50 features, from
the overall list of features, were randomly selected for each
dataset (Supplementary File 1, RFS).

2.3.3. Selecting Random Feature from Feature Clusters (RFC).
Since correlated features may not much contribute to the
discriminative power of a feature set, features were clustered
into 100 clusters and from each cluster a random feature was
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selected from which 50 random features were selected for
classification (Supplementary File 1, RFC).

2.3.4. Selecting Features from Clusters (SFC). Instead of
selecting a representative feature per cluster (as in RFC and
HIC), this approach selects up to three clusters and uses
all features therein to see the impact of correlation among
features on the classification (Supplementary File 1, SFC).

2.3.5. Selecting Features with High Information Gain (HIG).
Contrary to the selection of features with low information
gain, we selected the features with the highest information
gain on a per-dataset basis (Supplementary File 1, HIG).

2.3.6. Selecting Featurewith theHighest InformationGain from
Feature Clusters (HIC). Among the 700 features describing
miRNAs are likely some which describe very similar infor-
mation and, to avoid overrepresentation of such information,
it may be beneficial to cluster such features and use single
features to represent each cluster. 100 clusters were produced
per dataset and from each cluster the feature with the highest
information gain was selected. The selected features were
again ranked via information gain and the top 50 were
selected (Supplementary File 1, HIC).

2.3.7. Zero-Norm Feature Selection (ZNF). For each feature
vector, we define the zero-norm to be the nonzero values
for all positive examples. First features whose vector consists
of zero values are removed. Additionally, we defined #a(V)
as the number of values with nonzero value, for example,
#a(0.4, 0, 0.6, 0, 0, 0.8, 0, 1, 1.4) = 5. Moreover, we define dif-
ferent thresholds for #a(V) to determine the relevance of
a feature and remove the ones below a given threshold
(Supplementary File 1, ZNF).

2.3.8. Pearson Correlation-Based Feature Selection (PCF).
The Pearson correlation-based feature selection method was
introduced by Lorena et al. [29]. The Pearson correlation
measure allows detection of the linearity relation among fea-
tures. The pairwise distances among features were calculated
using Pearson correlation. Features with lower correlation
were preferred during the feature selection process (Supple-
mentary File 1, PCF).

3. Results and Discussion

3.1. Feature Selection. Feature selection is an important pro-
cess in machine learning and not all of the more than 700
features which have been proposed to describe a pre-miRNA
might be useful. We used eight feature selectionmethods and
performed one-class classification using each of the selected
feature sets. 50 features were used as a target and we did
not try different sized feature sets. Additionally, for each
feature selection method a combined feature set was created
containing the most commonly selected features (denoted
by suffix comb). To judge feature selection success, one-
class classification was performed using the selected features.
The average accuracy of 100 times cross validation served
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Figure 1: Classification accuracy of the combined feature sets on a
per-organism basis. Note that there is no mathematical relationship
that supports the connection among points (measurements) and
that the lines were only added for visual guidance to enhance the
synchronized variation on a per-organism basis. Supplementary
Table 2 contains the underlying data (including sensitivity and
specificity) and a plot for the individual feature selection on a per-
species basis.

as performance measure to evaluate the feature selection
methods.The selected features by the differentmethodologies
are presented in Supplementary Table 1.

For the combined feature selectionmethod, SFC andHIC
outperform all other feature selection methods consistently
for all datasets (Figure 1). However, the performance varies
strongly with the organism and the variation is similar for
all feature selection methods. This synchronized variation
indicates that the available training data is either not sufficient
or not accurate enough or both.This is in line with a previous
study where we showed that not all data on miRBase may
represent true miRNAs [15]. Nonetheless, since the feature
selection methods SFC and HIC consistently achieved the
highest accuracy compared to all other feature selection
methodologies, the assessment of feature selection methods
is not hampered by the shortcomings of the datasets. The
average accuracy over all feature selection methods can
further help define dataset quality. ppt has the best result
(∼88%) followed by zma (∼87%), while gma (∼80%) and osa
(∼78%) are tailing the list (Supplementary Table 2).

Data in Figure 1 is in respect to combined feature sets and
it may be informative to investigate accuracy in respect to
feature selection on a per-organism basis (Figure 2) since the
average accuracy of average accuracies for all feature selected
methods is slightly higher for individual feature selection
(84.69%) as compared to combined feature selection (84.58);
see Supplementary Table 2 for more information.

Figure 2 shows that the feature selection methods fall
into three categories, improved accuracy (SFC, HIC, and
RFS), no or little effect (RFC, HIG, ZNF, and PCF), and
finally LIG, which was chosen as a negative control along
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Figure 2: Accuracy distribution for the seven selected organisms
assessed using one-class classification.

with RFS and SFC. LIG which selects the features with the
lowest information gain performs as expected and leads to the
lowest effectiveness of the resulting classifiers. Interestingly,
RFS and SFC which we expected to provide low performance
lead to effective classifiers. Many feature clusters exist in
the large feature space and RFS (random feature selection)
likely picked from different clusters. This is supported by
the observation that the spread of RFS is much larger than
for SFC and HIC. SFC merely selects features from three
clusters andwas expected to have low performance. However,
it turned out to be the best performing algorithm which
we attribute to a critical problem in clustering for feature
selection. We used 𝑘-means clustering on the feature vector
containing calculations for positive examples. Unfortunately,
features like % A and % G are strongly correlated although
their vectors are anticorrelated. This is true for many of
the features among the more than 700 described features
and the opposite is also true where two feature vectors
appear highly correlated although they describe logically
uncorrelated information. For these reasons, HIC which
selects the feature with the highest information gain from
each cluster performed not as well as would be possible if
correlation would be perfectly following logical constraints.
RFC (random feature selection from clusters) performed
better than HIG, ZNF, and PCF, which supports the notion
of why HIC did not consistently show the best performance
among all algorithms. Nonetheless, HIC showed the overall
best performance for zma with 98.80% accuracy. Among the
feature selection methods, there is a large performance gap
(∼38%). On a per-organism basis, the gap reaches ∼36% (O.
sativa) but on average it is close to 30% (Supplementary
Table 2), which highlights the importance of proper feature
selection.

3.2. Organism-Based Feature Selection. Feature selection as
described above was performed on a per-organism basis and
from the selected features the most common ones were used
to define a combined feature selection (Supplementary Table
1). It was our belief that using feature selection on a per-
organism basis would have an effect on the accuracy that can
be achieved. On average this is true and a slight advantage
of about 0.2% accuracy when comparing the averages of the
averages of all feature selection methods can be observed
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Figure 3: Phylogenetic relationship among the selected plant spe-
cies.

(Supplementary Table 2). Unfortunately, it turns out that the
number of positive results and their correctness are more
important than the feature selection method and whether it
is performed on a per-organism basis or not. For A. thaliana,
G. max, andO. sativa the assumption holds but, for the other
species used here, the results were not so clear. Perhaps the
strategy of selecting the 50most common features among the
first 100 features into the combined feature set is not actually
selecting a feature set that would describe the selected clade.

In order to investigate whether feature selection has to
be made on a per-species basis, we used the interactive tree
of life [37] to establish the phylogenetic relationship among
the selected plant species (Figure 3). Three larger groups are
visible one of which consists of a single species (ppt) while the
other two contain three species each.

We checked the deviation of the accuracy achieved using
feature selection on a per-organism basis to the average for
the organisms and found that for SFC and HIC the distance
of P. patens to the average was different from the distances
of the other organisms which were alike in their groups
(Supplementary Table 2) as expected from their placement in
the phylogenetic tree (Figure 3).

3.3. Performance Comparison. In a previous study we intro-
duced sequence motifs as features for pre-miRNA detection
and compared one-class classification to two-class classi-
fication [23]. Compared to the results we achieved with
MotifmiRNAPred, this study shows that feature selection is
essential for classification performance (Table 1).

For some of the organisms (gma, zma, and sbi), Plant-
MiRNAPred, which employs two-class classification, per-
forms better than the one-class classification performed in
this study. On the other hand, on average one-class clas-
sification is slightly better and performs better than Plant-
MiRNAPred on some organisms (ath, ppt, ptc, and osa).
The improvement to MotifmiRNAPred which also uses one-
class classification is about 3.5% on average and this again
highlights the importance of feature selection. The improve-
ment of classification accuracy in this study (using one-
class classification) over PlantMiRNAPred (using two-class
classification) is about 0.5% accuracy, but it is an important
step since for the first time OCC based pre-miRNA detection
outperforms two-class classification.
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Table 1: Comparison of classification accuracies among this and other published methods (PlantMiRNAPred [32], Triplet-SVM [38],
microPred [39], and MotifmiRNAPred [33]). The best performance per organism is highlighted in bold. ACC: accuracy.

Organism PlantMiRNAPred Triplet-SVM microPred MotifmiRNAPred This study
ACC ACC ACC ACC ACC

gma 98.50 74.10 86.70 89.80 97.38
zma 98.30 66.90 93.80 94.80 93.59
sbi 98.40 69.50 94.60 93.50 94.25
ath 92.20 76.00 89.40 93.30 97.39
ppt 92.40 71.40 89.50 90.20 97.20
ptc 91.80 75.20 84.90 92.20 94.00
osa 94.20 75.50 90.40 90.30 95.32
Avg 95.11 72.66 89.90 92.01 95.59

4. Conclusions

One-class classifiers were trained using different feature sets
selected by various feature selection methods (see Supple-
mentary Table 1 for selected features). Feature clustering
seems essential since the best performing methods use
clustering (Figure 2). On average 30% accuracy can be gained
using feature selection (Supplementary Table 2). Compared
to previously publishedmethods, the OCC using SFC filtered
features performs better (∼3.5%) than our previously estab-
lished OCC and slightly better (∼0.5%, ∼96%) than the best
two-class classifier for plant pre-miRNA detection (Table 1).

A peak accuracy of close to 99% may seem sufficient for
miRNA detection, but this figure needs to be put into context
with millions of hairpins in a genome which could constitute
a pre-miRNA. Thus accuracies above 99.99% (about 1000
false positives in a genome of 3Gb) are needed if all prediction
ought to be tested experimentally.

To achieve such high accuracies, the following points
need to be tackled:

(1) In the future, it will be important to devise a method
to filter the positive training data since not all datasets
seem to represent a pure class and this strongly
influences classification accuracy (Figure 1).

(2) Clustering is essential for feature selection, but cur-
rent clustering methods do not take into account
logical correlation (Figure 2).

(3) A switch to OCC needs to be performed since nega-
tive data for pre-miRNAs does not exist [10, 40].

(4) Feature selection should be performed on a per-
organism basis and how classifiers perform for groups
of organisms when features are selected on the group
basis should be investigated.

Finally, all feature selection methods in this study, save PCF,
are based on two classes and in the future additional feature
selection methods that are independent of the negative class
should be investigated. Since there is a large interest in the
field of feature selection spawned by big data problems, many
new methods have been devised and we plan to use some
of them [41, 42] in future research to select a stable and
performant set of features.

Competing Interests

The authors declare that there are no competing interests
regarding the publication of this paper.

Acknowledgments

The work was supported by the Scientific and Technological
Research Council of Turkey (Grant no. 113E326) to Jens
Allmer.

References

[1] R. C. Lee, R. L. Feinbaum, and V. Ambros, “The C. elegans
heterochronic gene lin-4 encodes small RNAs with antisense
complementarity to lin-14,”Cell, vol. 75, no. 5, pp. 843–854, 1993.

[2] V. N. Kim, J. Han, and M. C. Siomi, “Biogenesis of small RNAs
in animals,” Nature Reviews Molecular Cell Biology, vol. 10, no.
2, pp. 126–139, 2009.
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