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H I G H L I G H T S

� Automatic regression infrared imaging system for nondestructive estimation of physicochemical properties in apple fruit.
� Tissue firmness (kgf/cm), acidity (pH) and starch content (%) fruit properties estimated.
� Hardware used includes: spectrophotometer, photo-detector, light source, and optical fiber.
� System comprises both variable wavelength Vis-NIR ranges and fixed optimal NIR wavelength windows.
� Results: regression plots, regression (R) and determination (R2) coefficient boxplots, measured vs estimated value graphs.
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A B S T R A C T

Nondestructive estimation of fruit properties during their ripening stages ensures the best value for producers and
vendors. Among common quality measurement methods, spectroscopy is popular and enables physicochemical
properties to be nondestructively estimated. The current study aims to nondestructively predict tissue firmness
(kgf/cm), acidity (pH level) and starch content index (%) in apples (Malus M. pumila) samples (Fuji var.) at various
ripening stages using visible/near infrared (Vis-NIR) spectral data in 400–1000 nm wavelength range. Results
show that non-linear regression done by an artificial neural network-cultural algorithm (ANN-CA) was able to
properly estimate the investigated fruit properties. Moreover, the performance of the proposed method was
evaluated for Vis-NIR data based on optimal NIR wavelength values selected by a genetic optimization tool.
Regression coefficients (R) in estimated acidity, tissue firmness, and starch content properties were R ¼
0:930 � 0:014, R ¼ 0:851 � 0:014, and R ¼ 0:974 � 0:006, respectively, using only the three most effective
wavelengths from the acquired spectra.
1. Introduction

Application of smart agricultural techniques to evaluate fruit ripening
stages may help in management of their quality. Because physicochem-
ical issues in fruits directly impact their final quality, nondestructive and
early prediction of these properties is of high commercial significance.
Features such as titratable acidity (TA), soluble solid content (SSC), SSC/
TA ratio, pH, starch content, tissue firmness and internal features such as
shape, size, color, and appearance, are commonly used by the fruit in-
dustry to determine quality of apples (Mesa et al., 2016). Unfortunately,
ourdarbani), jarribas@tel.uva.es

6 April 2021; Accepted 2 Septem
evier Ltd. This is an open access a
most of these parameters result in sample destruction and are time
consuming to assess.

Among the widely used nondestructive methods for measuring fruit
quality, Vis-NIR spectroscopy techniques are often the preferred ones
(Pourdarbani et al., 2019). NIR spectroscopy applied to measure food
quality has been presented by several researchers (Carames et al., 2017;
Guo et al., 2016; Sirisomboon et al., 2018; Eisenstecken et al., 2016).
Moreover, several investigations have been conducted to predict fruit
quality. Soluble solid content, pH, total acidity, and ascorbic acid of apple
fruits have been also estimated successfully using NIR technology
(Pourdarbani et al., 2020; Nturambirwe et al., 2019). Shah et al. (2021)
(J.I. Arribas).
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Figure 1. System flowchart for the nondestructive prediction of three physicochemical properties in apple (Malus M. pumila) fruits under various ripening stages with
optimal Vis-NIR wavelengths: firmness (kgf/cm), acidity (pH) and starch content (%).
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developed a Kensington Pride (KP) model for mango (Indigenous variety)
ripening prediction using NIR spectra. They obtained promising results
using partial least squares (PLS) regression. Nturambirwe et al. (2019)
considered three varieties of apples (Golden Delicious, Gala and Smith)
from the viewpoint of predicting the SSC and TA using a genetic algo-
rithm. In their study, mean error improved by 30% with the use of ge-
netic algorithms. Bian et al. (2021) studied the classification of apple
juice based on variety and geographical origin. They applied PLS
regression and fluorescent spectroscopy to analyze fluorescent spectra
with two apple fruit varieties. Results proved that fluorescent spectros-
copy combined with PLS method was successful in quality control of fruit
juice. Subedi and Walsh (2020) introduced dry matter content (DMC) to
evaluate the quality of avocado fruit using NIR spectroscopy. A PLS
regression model was built for joint analysis of fruit in four locations and
three growing seasons in a crop field. Zhang et al. (2020) determined the
maturity of Fuji apples. A total of 846 apples were classified into three
maturation stages based on starch content. The results from different
modeling methods were compared: the performance of the best proposed
model had an accuracy of 89.05%. On the other hand, the accuracy of
Figure 2. Vis-NIR spectroscopy system setup, depicting: apple sample
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LDA models was the least with value ranges in 77.63%–80.95%. Uwa-
daira et al. (2018) developed a spectroscopy (Vis-NIR) system for
nondestructive analysis of peaches. Spectral data of samples were ac-
quired by Vis-NIR spectroscopy and a determination coefficient of 0.8
was achieved for predicting the SSC. Tilahun et al. (2018) predicted
beta-carotene and lycopene in tomato cultivars by NIR and chromatog-
raphy spectra. More than two hundred tomato fruit samples were used at
three ripening levels. Spectral information was extracted and
beta-carotene and lycopene were measured destructively in lab.
Regression coefficients of carotene were found to be in the range of
0.52–0.98.

Based on the potential of NIR spectroscopy in predicting fruit quality,
the aim of this study is set to accurately and nondestructively predict
three physicochemical properties (starch, firmness and acidity) in Fuji
apples in the 400–1000 nm range. The multi-dimensionality of the ob-
tained spectra is to be reduced using artificial neural network-genetic
(ANN-GA) algorithm so that a few selected wavelengths could poten-
tially be used to further develop a simple and portable device for this
apply quality prediction. The performance of prediction of a regression
, holder, laptop PC, light source, spectrometer, and optical fiber.
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Figure 3. Spectral graphs of different apple input samples. (a) reflectance spectra of different samples; (b) pre-processed spectral absorbance spectra, as done in three
steps: 1) conversion of reflectance to absorbance spectra with Eq. (1), 2) light scatter and baseline correction by MSC, and 3) smoothing of spectral peaks by me-
dian filtering.

Table 1. Statistical evaluation of actual value of three physicochemical proper-
ties in Fuji apple fruit samples: maximum (max.), minimum (min.), mean, stan-
dard deviation (std. dev.) and CV (std. dev./mean) values shown, for firmness
(kgf/cm), acidity (pH), and starch (%).

max. min. mean std. dev. CV ¼ std. dev./mean

firmness (kgf/cm) 15.8 11 13.11 1.18 0.090

acidity (pH) 4.36 3.8 4.10 0.16 0.039

starch content (%) 85 2 52.63 24.71 0.470
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model based on a reduced (three) wavelengths with ANN-CA is
investigated.

2. Materials and methods

Figure 1 depicts the nondestructive proposed prediction system,
comprising five steps needed to generate the input data, and to train and
evaluate the system, which will be discussed in detail next.

2.1. Sample collection

The collection of various samples was the first step for establishing
the proposed prediction system: the approximate harvest time of Fuji
apples was determined by human experts. A total of 160 samples were
selected and classified in four growth stages by the human expert panel:
20 days before the optimal harvest date, 10 days before optimal, exact
optimal harvesting time and 10 days after optimal harvesting date. Each
ripening stage consisted of 40 samples. Immediately after collecting the
fruit samples, they were scanned, and spectral data collected.

2.2. Extraction of spectral data

2.2.1. Vis-NIR instrumentation
A Vis-NIR spectrophotometer (EPP200NIR, StellarNet, Tampa, FL)

equipped with an indium-gallium-arsenide (InGaAs) photo-detector was
used to acquire the spectral information in reflectance mode (Figure 2).
Illumination was done using a 20W. tungsten lamp (StellarNet, FL). To
further process the acquired data, it was transferred to a laptop PC
(Corei5, 500M at 2.13GHz, 4GB of RAM, Windows 10, MatLab).

2.2.2. Spectral data pre-processing
Multiplicative scatter correction (MSC) functions were used to pre-

process the spectral data obtained from the spectroscopy system (Rossel,
2008). This operation is needed to correct variations in spectra arising
from sample size, surface sample roughness and type of spectrometer,
3

among others. Eq. (1) was used to convert reflectance to absorbance
spectra (see Figure 3) for each input sample:

absorbance spectra¼ logð1=reflectance spectraÞ (1)

2.3. Measurement of actual (true) physicochemical properties from apple
samples using laboratory (destructive) methods: firmness (kgf/cm), acidity
(pH) and starch content (%)

Table 1 provides the statistical summary of actual (measured) value of
firmness, acidity and starch content of Fuji apple samples. According to
Table 1, the relative standard deviation, also known as the Coefficient of
Variation (CV ¼ std. dev./mean) of starch content is higher than those in
acidity and firmness properties.

2.3.1. Firmness
The method used by De Belie et al. (2000) was applied to measure

fruit firmness, on hand. In brief, the different steps taken are as follows: a
handheld penetrometer with a special probe (diameter of 11 mm and a
height of 8 mm)was used and the probes were placed on both sides of the
apple. The probes were pushed into the samples to record the amount of
force applied, measured in kgf/cm units. The average force applied on
both sides of the apple was considered as firmness measure.



Table 2. Structure of a NN-MLP architecture applied in selecting the most
relevant Vis-NIR wavelengths: MatLab software.
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Figure 4. Regression analysis (ANN-CA) between mean estimated and true
firmness (kgf/cm) values in apple fruit from whole spectral data at 400–1000
nm: test set.
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2.3.2. Starch content (%)
The method used by Martínez-Valdivieso et al. (2014) was used to

measure starch content: the middle part of the apple was pealed and a
slice weighing 0.5 g was isolated. The slice was crushed in the mortar and
apple juice extracted. A phosphate solution was prepared and the
resulting sediment was mixed with 1.5 ml of the buffer solution.
Centrifugation was performed at 12,000 rpm for twenty minutes to
completely separate the mixed sediment. The resulting emulsion was
mixed with iodine-hydrochloric acid (1:5) and samples absorbance was
measured (in mg/g) with a spectrophotometer (Optizen 2120 UVplus,
Mecasys, Korea) working at a wavelength of 600 nm. Standard starch
emulsion was prepared using specified starch concentrations (0–100
mg/l). With the help of the absorbance numbers of standard starch so-
lutions, a scatter graph was plotted using Excel and a linear curve fitting,
as well as the equation of conversion of the absorption number to starch
value in g/ml was obtained. The curve was used to determine starch
values.

2.3.3. Acidity (pH)
A general purpose pH-meter was employed to measure acidity of fruit

samples.
2.4. Selection of effective (relevant) spectral data wavelengths in Vis-NIR
spectrum: ANN-GA optimization algorithm

As mentioned above, development of portable nondestructive devices
requires as little as possible number of wavelengths, therefore from the
entire spectral data a subset of the most effective wavelengths must be
selected. In this paper, ANN-GA algorithm was applied to select optimal
wavelength values in the Vis-NIR range. A genetic algorithm is a special
type of evolutionary optimization algorithm that uses biology parameters
such as inheritance, biological mutation probability, and Darwin's theory
of natural selection to seek the optimal formulae for predicting a certain
property in regression problems. Then potential optimal solutions are
evaluated as candidates by a fitness function, and if a pre-defined exit
condition is met, the algorithm ends. In general terms, the whole spectra
is organized in a vector formulation first. Different size vectors are
selected as input to the NN by the GA algorithm. In our problem, the
output of the neural network (NN) are the fruit properties under
consideration. Data is split intro tree disjoint data sets: 70% training,
15% validation, and 15% test set. The ANN (multilayer perceptron (MLP)
type) hidden layers' structure is given in Table 2. Mean squared error
(MSE) is computed and saved, and lower MSE value vector is chosen as
the winner, with the wavelength values within that vector selected as the
optimal Vis-NIR wavelengths.s
2.5. Prediction of three physicochemical properties in apples by ANN-CA
regression algorithm

Cultural Algorithms (CA) are the socio-cultural counterparts of ge-
netic algorithms (GA), and instead of biological evolution, socio-cultural
evolution is considered the lifeblood in optimization. CA algorithms are
focused on knowledge-based data structure.
4

2.6. Performance evaluation of neural networks to estimate fruit properties

We used well-known performance indices: mean square error (MSE),
root-mean-square error (RMSE) and mean absolute error (MAE). We also
computed common regression (R) and determination (R2) coefficients
(Pourdarbani et al., 2020; Sabzi et al., 2020).

3. Results and discussion

Three most effective (optimal) wavelengths in the acquired spectral
range (i.e. 400–1000 nm) were identified using ANN-GA for each fruit
property, as listed next: for firmness, wavelengths of 869, 798 and 902
nm were selected as optimal wavelengths; acidity (pH) could be best
estimated using the wavelengths of 842, 867 and 881nm; for starch
content, 799, 864 and 900 nm were selected as optima wavelengths.

3.1. Prediction of fruit properties using reflectance spectra at 400–1000
nm: regressions

3.1.1. Firmness (kgf/cm)
Figure 4 illustrates the scatter plot of regression analysis between

estimated (mean) and true firmness values in apple samples from the
whole spectrum data inside 400–1000 nm over the entire test set. Given
that each iteration includes forty-eight test samples, there were a total of
5472 samples in 114 repeated uniform random trials (iterations) to
choose different combinations of training, validation and test sets. Since
we had a total of 158 samples, there were around 34 estimated firmness
values on average, per test set sample. A regression coefficient of 0.829
was reached. Observing Figure 4 scatter plot, one can see a relatively low
regression coefficient, at least lower than that observed for other apple
fruit properties, which could be due to the fact that firmness was harder
to estimate using spectral information alone.

Figure 5 shows boxplots of different evaluation criteria of ANN-CA
method to estimate firmness using the whole spectral data at
400–1000 nm after 114 uniform random test samples iterations. In
general words, compact diagrams imply the closeness of the results in
various repetitions indicating high reliability (robustness) of the pre-
diction. It is also observed that the graph of the mean squared error is also
compact.
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Figure 5. Boxplot diagram of different performance evaluation criteria: a) Error indices, b) Regression (R) and determination (R2) coefficients ANN-CA method in
estimating firmness (kgf/cm) on the 400–1000 nm spectral data (test set).
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Figure 7. Linear regression plot between estimated (mean) and true acidity
(pH) apple fruit values from spectral data of 400–1000 nm: test set.
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Figure 6 illustrates graphs showing the performance of ANN-CA
method in fruit tissue firmness estimation using the whole spectral
data in 400–1000 nm, displaying true and estimated (mean) values after
over 100 experiments. Whenever true and mean estimated value are
close to each other, they overlap in the graph, which is a common case
shown in Figure 6. However, there are several outliers. The presence of
these outliers indicates that there are some input fruit samples for which
the performance of the regression was poor, thus reducing total system
robustness.

3.1.2. Acidity (pH)
Figure 7 illustrates the regression analysis between mean estimated

and true acidity (pH) values in apple fruit from the whole spectral data
inside the 400–1000 nm range, with about 34 (on average) estimated
property values for each test set sample, reaching a regression value of R
¼ 0.948. The linear regression coefficient for acidity is significantly
higher than that shown in the estimation of firmness property before, as
remains also clear after observing graph circular samples.

Figure 8 shows the boxplot of error criteria, regression (R) and
determination (R2) coefficients of ANN-CA in estimating acidity in the
whole range of 400–1000 nm after over 100 iterations. It can be observed
that most regression coefficient values (median value) are above 0.9.

Figure 9 illustrates the performance of ANN-CA regression in esti-
mating pH values of apple samples. It can be observed how estimated
values in different iterations are close together and often true and mean
estimated pH values are really close and overlapping. The number of
observed outliers here is rather low.
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Figure 8. Box diagram of different performance evaluation criteria: a) Error indices, b) Regression (R) and determination (R2) coefficients) ANN-CA method in
estimating acidity (pH) on 400–1000 nm (test set).
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3.1.3. Starch content index (%)
Figure 10 depicts the regression analysis of estimated and true starch

content values (%) in apple samples within the entire 400–1000 nm
spectral range. Again, to predict the starch content values more than 100
6

uniform random experiments (random sampling) were executed, reach-
ing a rather high regression coefficient value of R¼ 0.973. Starch content
(%) linear regression coefficient was highest among the three fruit
properties estimated, which is clearly indicated in Figure 10.

Figure 11 represents the performance evaluation criteria of ANN-CA
method to predict starch content (%). These graphs show that R value
for starch content (%) was greater than 0.97 (median value). Boxplots of
error-based criteria are compact implying high and stable performance.

Figure 12 shows the regression performance estimating starch con-
tent (%) of apple samples using true and mean estimated values. In most
cases, there are either overlaps or closeness between true and mean
estimated values indicating a remarkable performance of the proposed
nondestructive regression method in predicting starch content (%)
values. The number of observed outliers here is again rather low,
implying a good estimation robustness.
3.2. Comparison of regression performance using either entire spectral data
or the three most effective (optimal) wavelengths: three error indices and
regression (R) and determination (R2) coefficients

3.2.1. Firmness (kgf/cm)
Table 3 provides mean � standard deviation (std. dev.) values of

regression method in predicting fruit firmness (kgf/cm) after 114 uni-
form random iterations, as well as the results using the entire spectra data
and the three most effective (optimal) wavelengths. The standard devi-
ation values in most criteria remain low implying a highly reliable (sta-
ble, reduced variance) estimation. Moreover, since the performance of
the proposed method when comparing entire Vis-NIR spectra versus
three effective wavelengths is almost identical, the use of spectral data
based on optimized wavelengths is preferred in order to save cost and
computation time.
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Figure 11. Boxplot diagram of different performance evaluation criteria: a) Error indices, b) Regression (R) and determination (R2) coefficients, ANN-CA method in
estimation of starch content (%) at whole spectral range of 400–100 nm (test set).
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Table 3. Mean � standard deviation (std. dev.) performance of various criteria
and regression (R) and determination (R2) coefficients with ANN-CA method in
estimating firmness (kgf/cm) using either whole spectral data at 400–1000 nm or
using only optimized spectral wavelength data: 114 iterations, test set.

Performance indices MSE RMSE MAE R R2

Whole spectral
data at 400–1000
nm

mean �
std.
dev.

0.033
�
0.007

0.173
�
0.019

0.130
�
0.013

0.853
�
0.014

0.728
�
0.024

best
case

0.018 0.134 0.101 0.913 0.833

Three most
effective
wavelengths data

mean �
std.
dev.

0.034
�
0.005

0.174
�
0.016

0.131
�
0.010

0.851
�
0.014

0.727
�
0.026

best
case

0.022 0.142 0.112 0.911 0.827

Table 4.Mean� standard deviation (std. dev.) of performance of several criteria
and regression (R) and determination (R2) coefficients with ANN-CA method in
estimating acidity (pH) using either whole Vis-NIR spectral data at 400–1000 nm
or optimal wavelength data: 114 iterations, test set.

Performance indices MSE RMSE MAE R R2

Whole spectral
data at
400–1000 nm

mean �
std. dev.

0.043�
0.009

0.208�
0.023

0.155�
0.018

0.932�
0.013

0.869�
0.025

best
case

0.027 0.165 0.127 0.962 0.926

Three most
effective
wavelength data

mean �
std. dev.

0.045�
0.02

0.211�
0.024

0.158�
0.017

0.930�
0.014

0.862�
0.028

best
case

0.024 0.157 0.128 0.962 0.923

Table 5. Mean � standard deviation (std. dev.) of several performance criteria
and regression (R) and determination (R2) coefficients with ANN-CA method in
estimating starch content (%) using either whole Vis-NIR 400–1000 nm spectral
data range or only three more relevant wavelength spectral data:114 iterations,
test set.

Performance indices MSE RMSE MAE R R2

Whole spectral
data at
400–1000 nm

mean �
std. dev.

0.020�
0.004

0.140�
0.016

0.106�
0.013

0.972�
0.005

0.944�
0.009

best
case

0.018 0.137 0.106 0.971 0.943

Three most
effective
wavelength data

mean �
std. dev.

0.022�
0.006

0.145�
0.019

0.110�
0.012

0.974�
0.006

0.941�
0.012

best
case

0.017 0.134 0.105 0.978 0.949
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3.2.2. Acidity (pH)
Table 4 compares performance criteria according to two types of data:

whole Vis-NIR spectra and the three most effective wavelengths, when
estimating acidity (pH) values after 114 random iterations. The regres-
sion coefficients (R) of both types are almost the same, implying that
acidity (pH) value may be predicted using only data based on optimal
wavelengths alone.

3.2.3. Starch content index (%)
Table 5 displays regression analysis of ANN-CA method using

different criteria based on either whole Vis-NIR 400–1000 nm spectral
range or only the three more relevant spectral data wavelengths. Ac-
cording to regression coefficient values shown in table, it can be
concluded that starch content (%) can be properly predicted using only
data from optimal wavelength values.



R. Pourdarbani et al. Heliyon 7 (2021) e07942
Results also show that the effective wavelengths for predicting firm-
ness, acidity and starch content were selected in the following NIR
spectral wavelength ranges: 798 to 902, 842 to 881, 799–900 nm,
respectively. This implies that it is not possible to predict properties in
the visible light region non-destructively and thus prediction operations
must be performed in the NIR region. The reason for this might be due to
the molecular structure of fruits. Given that the spectral properties
depend on the amount of radiation absorbed by the fruit, it might be
possible to predict different physicochemical properties at certain
optimal wavelengths, Nicolai et al. (2007), nullO. We also verified that
using only spectral data coming from the three most discriminant
wavelengths, fruit properties under study are estimated with regression
coefficients (R) comparable to those from total Vis-NIR spectral data in
the 400–1000 nm range, implying that optimized wavelength values
generated valid results for the potential development of portable devices
to accurately and nondestructively predict apple fruit properties.

4. Conclusion

Physicochemical degradation of fruits can cause a loss of quality.
Therefore, a rapid, non-destructive method of estimating these properties
could help improve industrial quality control of horticultural products. In
this study, nondestructive prediction of three Fuji apple (Malus M. pum-
ila) fruit physicochemical properties, i.e. firmness, acidity and starch,
were accomplished using ANN-CA regression method. Based on our re-
sults, mean coefficients of determination (R2) of firmness (kgf/cm),
acidity (pH) and starch content (%) were R2 ¼ 0:727 � 0:026 , R2 ¼
0:862� 0:028, and R2 ¼ 0:941 � 0:012, respectively, using only the
three most effective wavelength spectral data, over the test set.
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