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Abstract: The tortilla is a foodstuff that has a short shelf-life, causing great losses to the industry.
The objective of this work was to evaluate, for the first time, the physicochemical properties and
resistant starch (RS) content of flours. These were obtained from nixtamalized corn tortillas made
with traditional and industrial (commercial) methods, stored at 4 ◦C for 7, 15, and 30 days. The flours
were characterized by measuring particle size distribution, color, water absorption index (WAI), water
solubility index (WSI), viscosity, calcium, and RS content. Additionally, chemical proximate analysis,
scanning electron microscopy (SEM), and thermal analysis were conducted. Storage at 4 ◦C increased
the friability of tortillas and shifted the particle size distribution toward a greater content of coarse
particles in corn tortilla flours. The commercial corn tortilla flours showed higher WAI and WSI
values than the traditional corn tortilla flours. On the other hand, the traditional corn tortilla flours
exhibited higher RS content values than commercial corn tortilla flours as well as peak viscosity. X-ray
diffractograms revealed the presence of amylose-lipid complexes (RS5) in experimental samples. The
thermograms evidenced three endotherms corresponding to corn starch gelatinization and melting of
type I and type II amylose–lipid complexes.

Keywords: nixtamalization; corn tortilla flours; friability; resistant starch; refrigeration storage;
amylose–lipids complexes

1. Introduction

The dietary change as well as a sedentary lifestyle practiced by the population of countries in
development implies the intake of hypercaloric diets, rich in calories and low in vitamins and minerals.
These have led to an increase in the prevalence of chronic diseases such as diabetes mellitus and
cardiovascular diseases. These conditions are important problems for the health sector [1–3]. The food
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industry offers a wide range of products designed for a wide spectrum of consumers that can help to
their individual needs, which include health problems [4]. The development of functional foods that,
in addition to their basic nutritional functions, provide physiological benefits and reduce the risk of
chronic diseases has led to a growth in the use of new technologies and ingredients [5]. Functional
foods contain a component with a positive effect on health as well as eliminating a component with a
negative effect on it. One of these added components is resistant starch (RS), which is a functional
ingredient, especially in foods with a high content of dietary fiber. These foods are used to prevent
various pathologies such as obesity, diabetes, and colon cancer, among others [6].

Studies related to the content of RS in products made from nixtamalized corn have been directed
to the effect of this component on serum glucose levels in vivo studies [7,8]. In addition, it has been
reported that the content of RS can increase in a food in different ways, for example, during storage [9].
Nevertheless, a process for obtaining products or ingredients with high RS content, obtained from
nixtamalized byproducts, has not been proposed yet.

The tortilla is a basic foodstuff in the Mexican population diet, so the tortilla industry annually
processes millions of tons of corn for its production [10]. On the other hand, 29% of tortilla production
is wasted [11], so it is necessary to reduce product losses that involve energy and raw materials
expenditure by reusing sub-products with nutraceutical properties for the benefit of consumer health.
Therefore, it is possible to propose an alternative for the manufacture of food products and ingredients
with high RS content focused on the needs of the Mexican population, either as a preventive to chronic
diseases as well as avoiding waste, ecological damage, and promoting the use of by-products from the
tortilla industry. Based on the above, the objective of this work was to evaluate the physicochemical
properties and resistant starch content of flours obtained from nixtamalized corn tortillas, considered
as waste and lost by the tortilla industry, stored in refrigeration at different periods of time.

2. Materials and Methods

2.1. Preparation of Experimental Samples

The nixtamal flour obtained by the traditional method (TF) was prepared with corn (variety “Criollo
Acatlán”) by using the traditional nixtamalization method described by Gutiérrez-Cortez et al. [12],
where 3 kg of corn were cooked in a solution of 6 L of distilled water and 30 g of calcium hydroxide
(reagent powder, Fermont, Monterrey, NL, Mexico). The corn kernels were added into a container and
cooked at 92 ◦C for 25 min. After cooking, the corn was steeped for 9 h. Subsequently, the cooking
liquid (nejayote) was drained off and the nixtamal sample (cooked corn kernels) were washed twice in
distilled water using 2:1 (v/w) ratio by stirring the kernels in the wash water for 1 min. After washing
and draining, the nixtamal was ground in a stone mill (FUMASA, M100, Queretaro) into corn dough
and then dried at room temperature with an electric fan until it reached a moisture content of 12%
w/w (method 925.10) [13]. Then, the nixtamal flour was pulverized in a hammer mill (PULVEX 200,
Mexico City, Mexico).

The nixtamal was hydrated to obtain the dough to prepare the tortillas with a manual press to
obtain disks with a 20 cm of diameter and 1 mm of thickness. The disks were placed on a heating plate,
and then were cooked for 1 min on each side at a temperature of approximately 250 ◦C. Subsequently,
the tortillas were dried at room temperature to reach a moisture content of 12% w/w. The hardened
tortillas were crushed and the particle size was homogenized in a sieve No. 4 (USA series) prior to
grinding. On the other hand, a portion of crushed tortillas was ground in a hammer mill (PULVEX 200,
Mexico City, Mexico) to obtain flour without storage for analysis (TF0). Another portion of crushed
tortillas was stored at refrigeration temperature (4 ◦C) for 7, 15, and 30 days. Then, the tortillas were
pulverized in a hammer mill (PULVEX 200, Mexico City, Mexico) to obtain samples TFR7, TFR15, and
TFR 30, respectively.

The nixtamalized corn tortilla flour obtained by the industrial method, named as commercial flour
(CF), was purchased from a local establishment considering a recent elaboration date. The dough was
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prepared according to the manufacturer’s instructions and the tortillas were made in a semi-industrial
tortilla machine (Celorio, Model 70 KS). Subsequently, the tortillas were dried at room temperature to
reach a moisture content of 12% w/w. The hardened tortillas were crushed and the particle size was
homogenized in a sieve No. 4 (USA series) prior to grinding. As above-mentioned, a portion of crushed
tortillas was ground in a hammer mill (PULVEX 200, Mexico City, Mexico) to obtain commercial flour
without storage for analysis (CF0). As previously described, another portion of the crushed tortillas
was stored at refrigeration temperature (4 ◦C) for 7, 15, and 30 days. Then, the tortillas were pulverized
to obtain samples CFR7, CFR15, and CFR 30, respectively.

2.2. Determination of the Power and Energy Consumption Average for Grinding

The hardened tortillas were triturated by using a hammer mill, described in the previous section,
and a dispenser was used to feed the feedstock to the mill. The used rate was 32.48 kgh−1

± 0.47,
which was constant for all samples to produce a muffed grinding. A mesh of 0.8 mm was placed at the
output restriction. The energy (E) and power (P) required for grinding were determined according to
equations reported by Gutiérrez-Cortez et al. [14].

2.3. Texture Analysis of Hardened Tortillas

Hardened tortillas were analyzed at room temperature in a texture analyzer (Instron
Texture Technologies Corp., Hamilton, MA, USA), according to the method reported by
Ochoa-Martinez et al. [15].

2.4. Proximal Chemical Analysis

Flours obtained from the different treatments were subjected to a proximal chemical analysis in
accordance with the methods established by the Association of Official Analytical Chemists (AOAC,
2000) [13] and the American Association of Cereal Chemists (AACC, 2000) [16]. The analysis included
the determination of crude fiber (Method 962.09) [13], crude protein (Method 955.04) [13], moisture
(Method 925.10) [13], lipids (Method 30–25) [16], ashes (Method 08-01) [16], and nitrogen free extract
calculated by difference (%NFE = 100 − [%moisture + %Crude fiber + %Crude protein + %Ether
extract + %Ash]).

American Association of Cereal Chemists

2.5. Resistant Starch Content Analysis

The analysis of resistant starch was carried out with a commercial kit (R-Star, Megazyme®,
Bray, Ireland). The samples were subjected to protein hydrolysis with pepsin (3200–4500 U/mg, Sigma
Chemical Co. St. Louis MO, USA) at acid medium (pH = 2.0) and incubated for 30 min at 37 ◦C in a
shaking water bath to simulate stomach conditions, followed by hydrolysis of starch with pancreatic
α-amylase (3 Ceralpha U/mg) for 16 h and pH close to neutrality. After centrifugation (1500 g for
10 min), the products of the hydrolysis were removed. The indigestible starch fraction remaining in the
residue was dispersed in an alkaline medium (2 mL of 2 M KOH to each sample, J.T. Baker Center
Valley, PA, USA) and then hydrolyzed with amyloglucosidase (300 U/mL). Subsequently, 8 mL of 1.2 M
sodium acetate buffer (pH = 3.8, J.T. Baker Center Valley, PA, USA) was added to each sample with
stirring. Immediately, 0.1 mL of amyloglucosidase (300 U/mL) were added to the samples and mixed.
The samples were placed in a water bath at 50 ◦C and incubated for 30 min with intermittent mixing on
a vortex mixer. Then, the samples were transferred to a 100 mL volumetric flask and adjusted to 100 mL
with distilled water and mixed. A 10 mL aliquot of the solution was centrifuged at 1500 g for 10 min
(Heraeus, Thermo Scientific, Bartlesville, OK, USA). Two aliquots of 0.1 mL were transferred into
glass test tubes (16 × 100 mm) and 3.0 mL of glucose oxidase plus peroxidase and 4-aminoantipyrine
(GOPOD) reagent (prepared according to the manufacturer’s instructions) were added to the test tubes.
Successively, the tubes were incubated at 50 ◦C for 20 min. Finally, the absorbance of each solution was
measured at 510 nm (VE-5100 UV, Velab, Pharr, TX, USA) against the reagent blank (0.1 mL of 100 mM
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sodium acetate buffer at pH = 4.5 and 3.0 mL of GOPOD reagent) and compared with the absorbance
of D-glucose standards prepared with 0.1 mL of D-glucose (1 mg/mL) and 3 mL of GOPOD.

2.6. Calcium Content Analysis

The calcium content in experimental samples was determined by the dry ashing method
(968.08) [13]. In brief, 0.5 g of flour were placed in glazed silica crucibles and weighed to the
nearest 0.0001 g. The samples were then placed in a muffle furnace maintained at 550 ◦C. After 2 h,
the crucibles were removed, cooled, and the residue was treated with 3 M HCl (J.T. Baker Center
Valley, PA, USA) to dissolve the residues. The content of each crucible was transferred to 100 mL
volumetric flasks and diluted to volume with distilled water. The calcium concentration in the
experimental samples was determined by atomic absorption spectrometry (Perkin Elmer, Mod. Analyst
300, Boston, MA, USA) with a flame detector. Calcium concentration in samples was determined with
a standard calcium solution and a calibration curve. The operating conditions were similar to those
reported by Gutiérrez et al. [12].

2.7. Color Measurement

The color of the flours was determined with a colorimeter (Minolta, CR300, Tokyo, Japan) using
the granular solids device and expressed as Hunter L, a, and b color values. Color values were recorded
as L, darkness/lightness (0, black; 100, white); a (−a, greenness; +a, redness); and b (−b, blueness; +b,
yellowness). The color measurements were repeated from three different positions [17].

2.8. Particle Size Distribution

Particle size distributions of samples were measured by using a RO-TAP equipment with a set of
meshes (U.S. standard Rot-tap model KH59986-60) with a horizontal and vertical automatic stirrer,
mesh numbers: 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 100, and pan). The separating procedure was done
according to the ASAE Standards [18], where 100 g of flour was separated during 12 min with rigorous
series. Then, the fractions retained on each one of the different meshes were collected and weighed.
The fractionation process was performed in triplicate [14].

2.9. Water Absorption Index (WAI) and Water Solubility Index (WSI)

The WAI and WSI of the samples were determined using the procedure reported by Anderson [19].
In brief, a 2.5 g sample of flour (<60 mesh) was suspended in 3 mL of water at 30 ◦C in a 50 mL
tared centrifuge tube, stirred intermittently for 30 min and centrifuged at 3000 g for 10 min (Heraeus,
Thermo Scientific, Bartlesville, OK, USA). The supernatant liquid was decanted carefully into a tared
evaporating dish. The remaining gel was weighed and the WAI calculated from this weight. The WSI
was determined with the amount of dried solids recovered by evaporating the supernatant from the
water absorption test and the result was expressed as a percentage of dry solids in the 2.5 g of sample.

2.10. Determination of Apparent Viscosity Profile

In this analysis, the samples were adjusted to a moisture content of 12%. The viscosity profile was
obtained using a rheometer (Anton Paar, model MCR 102. St Albans, UK) that was programmed under
the following conditions: the initial temperature of the system was adjusted to 50 ◦C and maintained
for one minute. Subsequently, the sample was heated for 5.3 min from 50 to 90 ◦C and then the
temperature remained constant at 90 ◦C for 5.3 min. Finally, the samples were cooled at 50 ◦C during
5.3 min and kept at this temperature for 1 min. All tests were performed with constant agitation at a
speed of 193 rpm [20].
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2.11. X-Ray Diffraction Analysis

Prior to the analysis, the flours were defatted and subsequently passed through a No. 100 USA
series screen. The pulverized material was densely packed on an aluminum support. The analysis was
carried out with x-ray diffraction equipment (Rigaku Ultima IV diffractometer, Tokyo, Japan) and using
a wavelength of
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were made from 10 to 70◦ on a 2θ scale with a step size of 0.02◦ [21]. Additionally, the total relative
crystallinity was obtained from the x-ray diffraction data by measuring the ratio of the crystalline and
total area in the diffractogram (see Equation (1)) [22].

Total relative crystallinity (%) =
Total area− amorphous area

Total area
× 100 (1)

2.12. Morphological Study

The morphological study of the experimental samples was carried out by low vacuum scanning
electron microscopy (LV-SEM) by using a JSM 5600LV (Tokyo, Japan) microscope with a resolution of
5 nm, adjusted with an x-ray spectrometer, with dispersion energy (Noran instrument, Mod. Voyager
4.2.3). Prior to the analysis, the samples were placed in an aluminum sample holder attached with
carbon tape. The analyses were carried out under the following conditions: an electronic acceleration
voltage of 20 kV, with a pressure in the range of 12–20 Pa in the sample chamber.

2.13. Differential Scanning Calorimetry (DSC) Thermal Analysis

The thermal properties of samples were studied with a differential scanning calorimeter (DSC1
model 821, Mettler Toledo, Greifensse, Switzerland) previously calibrated with indium. Gelation
onset (To), peak (Tp), final (Tf) temperatures, and enthalpy change (∆H) were obtained directly from
the Mettler Toledo analysis software for Windows, according to Amador-Rodríguez et al. [23] and
Santiago-Ramos et al. [24]. Prior to the analysis, the samples were sieved at U.S. mesh (250 µm), then
3 mg of sample was weighed into an aluminum pan and added to 7.5–8.5 mg of deionized water.
The pan was sealed tightly, and the empty aluminum pan was used as a reference. The sample was
heated at a temperature ranging from 30 to 130 ◦C with a heating rate of 10 ◦C/min. Each sample was
run in triplicate.

2.14. Statistical Analysis

The results obtained from the physicochemical characterization of samples were analyzed with an
analysis of variance (ANOVA) followed by a Tukey’s test with α = 0.05 and in all cases, the statistical
package SPSS version 2.2 was used. At least three to five replicates for the measurements were carried
out depending on the analysis and an average value is reported.

3. Results and Discussion

3.1. Power and Energy Consumption for Grinding

Table 1 shows the values observed for the hardness, flour yield, power, and energy consumed
during the grinding of hardened tortillas obtained by the traditional and industrial method without
storage and stored in refrigeration. It is evident that by increasing the refrigeration storage time
in the tortillas made with the traditional and industrial (commercial) methods, the power, energy
consumption, and the hardness decreased significantly (p ≤ 0.05) with values of 21.42, 40.75, and
17.42%, respectively in comparison with the tortilla flours without storage. However, the highest values
were detected in tortillas made with the traditional method. The refrigeration storage time increases the
tendency of tortillas to crack (friability) and consequently, require a lower energy input during milling.
On the other hand, as the storage time in refrigeration is prolonged, the flours yield decreased (6.14%)
with statistically significant differences (p ≤ 0.05) in comparison with tortilla flours without storage. It
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has been pointed out that the texture attributes of foods depend on the structure and composition that
are obtained by submitting the ingredients to a sequence of operations, which comprise a given food
process [25]. This means that during storage, the composition of the tortillas was modified, resulting in
the transformation and destruction of the original structures in the food including the development of
new structures, which is reflected in an increment in terms of weakness in the tortilla, thus a lower
energy input is needed to cause fracturing. The hardness values observed in all experimental samples
were higher than those reported by Ochoa-Martínez et al. [15] and Matiacevich et al. [26] for tortilla
chips (0.8 to 2.5 kgforce), which can be attributed to starch retrogradation during tortillas storage.
Starch is the main carbohydrate constituent of tortillas, when starch is cooked in excess of water, as
happens in the nixtamalization process, starch gelatinization takes place. Then, when starch pastes are
stored for some time (hours or days), retrogradation (a recrystallization phenomenon) occurs, which is
responsible of textural and starch digestibility changes during storage of starch-based products [9,27].

Table 1. Hardness, flour yield, power and energy consumption during grinding of corn tortillas
obtained by the traditional and industrial (commercial) methods.

Sample Power (W) Energy (W.h/kg) Hardness Kgforce Flour Yield (g)

TF 1031.86 ± 27.54 f 15.78 ± 2.21 e NE 58.76 ± 1.39 c

CF NE NE NE 66.04 ± 1.62 a

TF0 1512.58 ± 15.19 a 36.58 ± 3.19 a 4.73± 0.47 a 56.59 ± 0.15 cd

CF0 1441.96 ± 27.48 b 33.40 ± 2.74 b 3.66 ± 0.15 c 54.49 ± 0.98 d

TFR7 1402.59 ± 24.05 c 33.78 ±2.15 ab 4.04 ± 0.71 b 61.74 ± 0.79 b

CFR7 1382.67 ± 17.60 c 29.17 ± 1.51 c 3.33 ± 0.07 d 56.63 ± 0.95 cd

TFR15 1205.08 ± 25.35 d 23.32 ± 0.02 d 3.87 ± 0.21 bc 50.94 ± 1.018 e

CFR15 1115.03 ± 18.79 e 17.67 ± 1.71 e 3.23 ± 0.06 d 51.76 ± 1.59 e

TFR30 931.15 ± 16.01 g 10.54 ± 0.97 f 3.21 ± 0.14 d 45.35 ± 1.67 f

CFR30 928.11 ±19.55 g 9.87 ± 0.30 f 3.06 ± 0.06 d 46.41 ± 1.40 f

The values represent the mean ± standard deviation (SD), n = 5. Means in columns with different letters differ
significantly (p ≤ 0.05). NE = Not evaluated. TF = Nixtamal flour made with the traditional method, CF =
Nixtamalized corn flour made with the industrial (commercial) method, TF0 = traditional tortilla corn flour without
refrigerated storage, CF0 = commercial tortilla corn flour without refrigerated storage, TFR(7, 15, 30) = traditional
tortilla corn flours with refrigerated storage during 7, 15, and 30 days, respectively, CFR(7, 15, 30) = commercial
tortilla corn flours with refrigerated storage during 7, 15, and 30 days, respectively.

3.2. Chemical Composition of Traditional and Industrial Corn Tortilla Flours

The proximal chemical analyses of flour samples are summarized in Table 2. The moisture content
in all experimental samples was in a range between 8.44 and 8.77%. These values were within the
Mexican Standard for nixtamalized corn flours (NMX-F-046-S-1980) [28], which specifies a maximum
value of 11%.
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Table 2. Chemical proximate analysis and calcium content of corn flours and corn tortilla flours
(g/100 g).

Samples. Moisture Protein Fat Crude Fiber Ashes NFE Calcium

TF 8.77 ± 0.05 a 7.40 ± 0.10 bcd 4.10 ± 0.05 a 2.60 ± 0.10 a 2.32 ± 0.10 a 74.81 0.21 ± 0.04 a

CF 8.53 ± 0.05 bc 7.70 ± 0.10 a 3.12 ± 0.07 b 1.86 ± 0.15 b 1.51 ± 0.12 b 77.28 0.08 ± 0.02 b

TF0 8.64 ± 0.10 ab 7.36 ± 0.05 cd 3.97 ± 0.11 a 2.65 ± 0.10 a 2.42 ± 0.17 a 74.96 0.23 ± 0.03 a

CF0 8.64 ± 0.12 ab 7.64 ± 0.20 a 3.17 ± 0.07 b 1.86 ± 0.15 b 1.61 ± 0.11 b 77.08 0.10 ± 0.01 b

TFR7 8.58 ± 0.01 abc 7.16 ± 0.25 d 3.92 ± 0.11 a 2.53 ± 0.20 a 2.32 ± 0.10 a 75.49 0.19 ± 0.01 a

CFR7 8.54 ± 0.08 bc 7.60 ± 0.10 abc 3.09 ± 0.07 b 1.96 ± 0.15 b 1.61 ± 0.12 b 77.20 0.09 ± 0.01 b

TFR15 8.44 ± 0.22 c 7.30 ± 0.10 d 4.20 ± 0.20 a 2.63 ± 0.10 a 2.25 ± 0.05 a 75.18 0.20 ± 0.01 a

CFR15 8.57 ± 0.11 bc 7.63 ± 0.06 ab 3.13 ± 0.22 b 1.83 ± 0.25 b 1.64 ± 0.13 b 77.2 0.08 ± 0.01 b

TFR30 8.66 ± 0.10 ab 7.33 ± 0.21 d 3.95 ± 0.07 a 2.70 ± 0.17 a 2.28 ± 0.03 a 75.08 0.21 ± 0.02 a

CFR30 8.70 ± 0.10 ab 7.66 ± 0.15 a 3.20 ± 0.13 b 1.80 ± 0.17 b 1.67 ± 0.07 b 76.97 0.08 ± 0.02 b

The values represent the mean ± standard deviation (SD), n = 5. Means in columns with different letters differ
significantly (p ≤ 0.05). NFE = Nitrogen free extract. TF = Nixtamal flour made with the traditional method, CF =
Nixtamalized corn flour made with the industrial (commercial) method, TF0 = traditional tortilla corn flour without
refrigerated storage, CF0 = commercial tortilla corn flour without refrigerated storage, TFR(7, 15, 30) = traditional
tortilla corn flours with refrigerated storage during 7, 15, and 30 days, respectively, CFR(7, 15, 30) = commercial
tortilla corn flours with refrigerated storage during 7, 15, and 30 days, respectively.

The protein and fat content in samples were slightly lower than the NMX-F046-S-1980 standard [28]
(minimum values of 8 and 4% for protein and fat, respectively). Nevertheless, the protein content
in commercial corn tortilla flours was significantly higher (p ≤ 0.05) than the values observed for
traditional corn tortilla flours; whereas significant low values (p≤ 0.05) for the fat content were observed
in commercial corn tortilla flours in comparison with traditional corn tortilla flours. These results
were similar with those reported by Bello-Perez et al. [29] in traditional and commercial tortillas for
protein (7.82 and 7.73%, respectively) and fat (3.63 and 3.41%, respectively) contents. On the contrary,
the protein and fat contents observed in this study exhibited higher values compared with contents
detected in nixtamalized corn tortillas from different points of sale in Mexico City [30]. Crude fiber
and ash contents were higher in traditional corn tortilla flours, although commercial corn tortilla flours
passed the standard set by NMX-F046-S-1980 [28] for crude fiber content (maximum 2%). The ash
contents of traditional and commercial corn tortilla flours were more than the NMX-F046-S-1980 [28]
standard (maximum 1.5 %). It is important to note that ash contents in the experimental samples were
different to those reported previously for traditional and commercial corn tortillas [29,30]. Regarding to
calcium content, no significant differences (p ≤ 0.05) were detected in the content of this mineral in the
experimental samples due to refrigeration storage. Nevertheless, it is evident that the calcium content
in traditional corn tortilla flours was significantly higher (approximately 133 %) when compared to
commercial corn tortilla flours. These data were in accordance with the calcium content reported
previously [30–32] for instant corn flours and tortillas prepared with traditional and industrial methods.
Undoubtedly, differences in the chemical composition of the experimental samples can be attributed to
different factors such as maize phenotype, grain quality (fractured grain percentage), and mainly to
the nixtamalization method used to prepare the tortillas [30]. Concerning this, the lime amount added
in the traditional method is between 1 to 2% w/w of the corn grain; while in the industrial method, it
varies from 5 to 6% w/w of corn grain. Additionally, the traditional nixtamalization process involves
longer steeping times than the industrial process, which facilitates water and calcium diffusion into
the anatomical structures of corn grain, allowing the starch gelatinization and increasing the mineral
content [12,31]. In several industrial nixtamalization processes, the hull or pericarp (bran) of corn
kernel removal during the washing step is common practice to avoid undesirable color sources to the
nixtamalized corn products [33]. Additionally, an excessive washing of nixtamal is directly associated
with dry matter loss, which implies the loss of fat, fiber, and minerals mainly located in the germ and
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pericarp [34]. This may explain lower contents of fat, crude fiber, ash, and calcium in industrial corn
tortilla flours (22.08, 29.01 and 58.65%, respectively) than in traditional corn tortilla flours.

The resistant starch (RS) content in traditional nixtamalized corn flour and traditional corn tortilla
flours with and without refrigeration storage were significantly (p < 0.05) higher than the values
observed in commercial nixtamalized corn flour and commercial corn tortilla flours (see Figure 1). It
was observed that the increase of RS was 8.49 and 11.6%, respectively, in the transformation of flours into
tortillas obtained with both traditional and industrial (commercial) methods. Santiago-Ramos et al. [24]
described the increase in RS content from nixtamalized corn flour to tortilla using the traditional
method. Nevertheless, increases detected in this study differed from values observed by those authors
(≈50%), who mentioned that there are three types of RS in tortillas: RS5 (V-amylose-lipid complexes),
RS3 (retrograded starch), and physically inaccessible native starch (RS1), and discrepancies can be
attributed to maize variety and type of calcium salts used during thermo-alkaline treatment.
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It is important to note that RS content in samples increased as a function of refrigeration storage
time, where the maximum values were detected at long storage times with an average relative resistant
starch increase of 33.10 and 37.66% for traditional and commercial corn tortilla flours, respectively, in
comparison to the unrefrigerated samples. The same trend was observed in previous reports, which
mentioned that the starch retrogradation phenomenon is responsible for RS content rising [9,29,35,36].
However, the RS content reported by these authors exhibited lower RS values in tortillas stored at 4 ◦C
for similar periods when compared with the results obtained in this study. Moreover, the RS content
detected in the corn tortilla flours was greater than the values reported by Enriquez-Castro et al. [37]
in extruded snacks, where the RS content generated during extrusion was very low (1.01%). At this
point, it is important to empathize that drying and grinding of tortillas were additional steps to obtain
corn tortilla flours, then these additional unitary operations exposed remaining native corn starch to
gelatinization, increasing starch retrogradation. On the other hand, lower RS content in commercial
corn tortilla flours can be related to the presence of hydrocolloids and gums added to commercial
nixtamalized corn flours. It is well known that these compounds are added in tortilla processing
to enhance the textural properties of tortillas (flexibility and strength) and reduce stickiness during
processing and packaging [38,39]. However, it has been reported that hydrocolloids retard the starch
retrogradation in refrigerated tortillas as these compounds avoid interactions between starch chains
solubilized during gelatinization and consequently, RS content diminishes. In addition, it has been
reported that the resistant starch content has a negative correlation with the hardness [40], which agrees
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with the data observed in this study (see Table 1), where corn tortillas that showed less resistance to
fracture showcased the highest resistant starch content in flours.

3.3. Physicochemical Properties of Traditional and Commercial Tortilla Corn Flours

Degree of lightness, which is associated with the L values, was significantly different (p ≤ 0.05) in
corn tortilla flours prepared with different methods. This means that corn tortilla flours obtained by the
industrial method (commercial flours) had the lightest color, while the corn tortilla flours obtained by
the traditional method showed the least light color; therefore these flours were darker when compared
to commercial tortilla corn flours (see Table 3). The color exhibited by the flours was yellow and the
degree of yellowish color was light. This was supported by very low a values (−1 to 1 units) and minor
b values (9–16 units).

Table 3. Color of traditional and industrial (commercial) nixtamalized corn flours and corn tortilla flours.

Sample L a b

TF 64.01 ± 0.16 b 0.10 ± 0.01 c 9.04 ± 0.05 d

CF 68.86 ± 0.46 a
−1.04 ± 0.02 d 10.73 ± 0.07 d

TFR0 55.62 ± 0.18 c 0.31 ± 0.01 b 12.12 ± 0.03 c

CFR0 64.60 ± 1.06 b 0.35 ± 0.03 a 13.85 ± 0.08 b

TFR7 56.42 ± 0.65 c 0.32 ± 0.03 b 13.75 ± 0.11 b

CFR7 66.74 ± 0.18 b 0.35 ± 0.05 a 14.21 ± 0.04 b

TFR15 54.04 ± 0.55 c 0.30 ± 0.03 b 14.43 ± 0.06 b

CFR15 65.24 ± 0.11 b 0.36 ± 0.02 a 14.89 ± 0.06 b

TFR30 55.39 ± 0.15 c 0.31 ± 0.01 b 15.42 ± 0.09 a

CFR30 66.66 ± 0.12 b 0.36 ± 0.02 a 16.25 ± 0.11 a

The values represent the mean ± standard deviation (SD), n = 3. Means in columns with different letters differ
significantly (p ≤ 0.05). TF = Nixtamal flour made with the traditional method, CF = Nixtamalized corn flour made
with the industrial (commercial) method, TF0 = traditional corn tortilla flour without refrigerated storage, CF0 =
commercial corn tortilla flour without refrigerated storage, TFR(7, 15, 30) = traditional corn tortilla flours with
refrigerated storage (4 ◦C) during 7, 15, and 30 days, respectively, CFR(7, 15, 30) = commercial corn tortilla flours
with refrigerated storage (4 ◦C) during 7, 15, and 30 days, respectively.

The darker color of the traditional corn tortilla flours is attributed to bran, which means that
the more bran is removed, the lighter the flour produced [17]. Furthermore, the flour color has been
related to the ash content, which is an indicator of bran and germ contamination in milling [41].
In this regard, the removal of corn pericarp and germ during nixtamalization denotes the loss of fiber
and calcium [21,31]. This is supported by the lower content of crude fiber, ash, and calcium in corn
tortilla flours obtained by the industrial method with respect to the tortilla flours prepared with the
traditional method. Additional heat treatment to cook tortillas is responsible for lower L values in corn
tortilla flours in comparison to NF and CF due to Maillard reactions, which are accelerated at high
temperatures and pH [42].

The particle size distribution of the samples is shown in Figure 2. Figure 2a,b belong to the
granulometric analysis of flours from corn tortillas nixtamalized by the commercial and traditional
methods, respectively. The CF and TF samples showed greater homogeneity in terms of particle size
with respect to the rest of the experimental samples, where the highest percentage of the material was
retained in the sieve with an opening of 0.25 mm. The particle size distribution in these samples was
very similar to those previously reported for corn flours nixtamalized by the industrial and traditional
method [12,32]; however, the percentages of particle retained in this mesh were below the Mexican
Standard for nixtamalized corn flours (NMX-F-046-S-1980) [28], which establishes a minimum value
of 75%.
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Figure 2. Particle size distribution of (a) nixtamalized corn flour and corn tortilla flours obtained by
the industrial (commercial) method, (b) nixtamalized corn flour and corn tortilla flours obtained by
de traditional method without refrigeration and stored in refrigeration (4 ◦C) at different periods of
time. TF = Nixtamal flour made with the traditional method, CF = Nixtamalized corn flour made with
the industrial (commercial) method, TF0 = traditional corn tortilla flour without refrigerated storage,
CF0 = commercial corn tortilla flour without refrigerated storage, TFR(7, 15, 30) = traditional corn
tortilla flours with refrigerated storage (4 ◦C) during 7, 15, and 30 days, respectively, CFR(7, 15, 30) =

commercial corn tortilla flours with refrigerated storage (4 ◦C) during 7, 15, and 30 days, respectively.

It should be noted that the samples stored in refrigeration, the particle size distribution shifted
toward a greater content of coarse particles as the storage time increased as a bimodal particle size
distribution was detected in the TFR30, CFR7, and CFR30 samples. This behavior was also observed in
corn ground and distillers dried grains with solubles. It has been pointed out that there are several
factors to consider that determine the particle size distribution and these are responsible for variations
in this parameter, for example, mechanical, thermal, chemical, and biological stresses and shock on the
original corn particles. Therefore, all of them contribute to the agglomeration of particles promoting
particle size breakage, clumping, regrouping, and therefore redistribution, so that the net effect leads
to larger particle size [43]. Particle size distribution is a fundamental criterion for nixtamalized corn
flours, so that large particles are required for the textural characteristics of fried products (crispiness)
as coarse particles disrupt the dough network, reduce blistering, and decrease oil uptake during
frying. In contrast, small particles govern water absorption, viscosity, cohesiveness, plasticity, and
smoothness [44]. In addition, it has been reported that extrudates produced with corn meal of high
particle sizes expanded more than extrudates produced with small particle sizes [45]. This means that
corn tortilla flours may be used as an ingredient to promote crispiness and to improve expansion in
extruded products.
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In nixtamalized corn flours, WAI is related to the starch crystalline structure disruption during
thermo-alkaline treatment, so this parameter can be used as an index of gelatinization, since disrupted
starch granules bind more water. Although WSI determines the amount of polysaccharides (i.e., dextrins)
released from the granule that are water soluble, great values of WAI and WSI imply high starch granule
fragmentation and dextrinization [46–48]. Significant differences (p < 0.05) were detected in the WAI
values between traditional and commercial nixtamalized corn flours (TF and CF, respectively) as well
as in traditional and commercial corn tortilla flours, where the highest values belonged to commercial
corn tortilla flours (see Table 4). These results agreed with Campus-Baypoli et al. [49]. These authors
observed an increase of WAI in the transformation of corn dough to tortilla and attributed higher
WAI values in tortillas to the loss of the starch granules’ structure and integrity, which leads to starch
gelatinization. Likewise, high values in WAI observed in commercial flours can also be explained by
the presence of hydrocolloids, where hydroxyl groups in their structure allow for water interactions
through hydrogen bonding [39].

Table 4. Water absorption index (WAI) and water solubility index (WSI) of nixtamalized corn flours
and corn tortilla flours obtained by the traditional and industrial methods.

Sample WAI (%) WSI (%)

TF 3.71 ± 0.17 d 4.69 ± 0.20 a

CF 4.86 ± 0.15 c 4.62 ± 0.17 ab

TF0 5.26 ± 0.22 b 3.71 ± 0.15 bc

CF0 5.72 ± 0.10 a 3.60 ± 0.13 c

TFR7 5.12 ± 0.10 bc 3.67 ± 0.17 c

CFR7 5.44 ± 0.20 a 3.50 ± 0.15 c

TFR15 4.96 ± 0.25 c 3.51 ± 0.12 c

CFR15 5.31 ± 0.20 b 3.41 ± 0.12 c

TFR30 4.91 ± 0.20 c 3.40 ± 0.10 c

CFR30 5.21 ± 0.27 b 2.30 ± 0.13 d

The values represent the mean ± standard deviation (SD), n = 3. Means in columns with different letters differ
significantly (p ≤ 0.05). TF = Nixtamal flour made with the traditional method, CF = Nixtamalized corn flour
made with the industrial (commercial) method, TF0 = traditional corn tortilla flour without refrigerated storage,
CF0 = commercial corn tortilla flour without refrigerated storage, TFR(7, 15, 30) = traditional corn tortilla flours
with refrigerated storage (4 ◦C) during 7, 15 and 30 days, respectively, CFR(7, 15, 30) = commercial corn tortilla
flours with refrigerated storage (4 ◦C) during 7, 15 and 30 days, respectively.

Interestingly, it was observed that as the storage time at refrigeration increased, WAI and WSI
diminished significantly (p ≤ 0.05) with a relative decrease of 10.30 and 4.90%, respectively, in
traditional corn tortilla flours as well as 6.99 and 14.72%, respectively, in commercial corn tortilla flours.
Neder-Suárez et al. [50] reported a similar trend in cornstarch extrudates stored at 4 ◦C. This may
be explained by the formation of resistant starch (see Figure 1) due to re-association of amylose and
amylopectin chains, which facilitates recrystallization (retrogradation) and promotes the formation of
new compact molecular structures stabilized by hydrogen bonds, while avoiding the interaction of
hydroxyl groups with water [51,52].

The pasting profile of the experimental samples as a function of time is shown in Figure 3. It is
evident that CF exhibited a higher peak viscosity (5305.76 mPa.s) in comparison to that observed in
TF (3243.39 mPa.s). The highest peak viscosity in commercial flour may be due to the presence of
hydrocolloids such as xanthan, guar, arabic, etc., as was previously mentioned, in order to improve the
texture properties of the dough and tortilla, thereby favoring moisture retention and therefore making
the tortilla harden more slowly [39,53,54]. Regarding this, Calderón-Peralta et al. [55] reported that the
nixtamalized corn flours with the addition of xanthan gum and Hymenaea courbaril gum peak viscosity
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values were higher than those for the control. On the contrary, the peak viscosity in the commercial
corn tortilla flours was lower than the peak viscosity in CF. The peak viscosity in the traditional corn
tortilla flours was significantly higher (p ≤ 0.05) with respect to the peak viscosity observed in the
commercial corn tortilla flours, whose averages were 2302.94 ± 216.99 and 1789.16 ± 119.16 mPa*s,
respectively (see Figure 3a,b). This means that in commercial corn tortilla flours, fewer starch granules
are susceptible to gelatinization.
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Figure 3. Pasting profiles of nixtamalized corn flours and corn tortilla flours obtained by the (a) industrial
(commercial) and (b) traditional methods without refrigeration (TF, CF, TR0, CF0) and stored in
refrigeration (4 ◦C) at different periods of time (7, 15, and 30 days).

CF displayed a noticeable breakdown during the holding period at 90 ◦C, while TF showed a slight
breakdown and CF showed a higher setback upon cooling in comparison to TF. On the other hand,
traditional corn tortilla flours presented higher setback upon cooling than that exhibited by commercial
corn tortilla flours. This behavior has been related to a structural rearrangement and associations
of starch chains as well as changes of crystalline order in corn starch due to the nixtamalization
process [32,56,57]. The highest peak viscosity values in traditional corn tortilla flours can be explained
from two points of view: (1) the presence of ungelatinized starch, taking into account that during
the traditional nixtamalization process, a partial starch gelatinization takes place (proximately 20%
of starch) [58] and (2) the existence of negatively charged gums in commercial corn tortilla flours,
for example, carboxymethyl cellulose and xanthan gum as the polymers in starch suspensions delay
granule pasting/destruction and amylose leaching, thus delaying pasting and reducing the peak
viscosity [59]. Thus, the peak viscosity in CF is mainly attributed to gums. Regarding this, it is
important to mention that the viscosity of the gums is dependent on time, temperature, particle size,
concentration, and other factors. Therefore, it is possible that during the milling and storage of the
tortillas, the functional properties of the gums were modified [60].
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Figure 4 shows the x-ray diffraction patterns of experimental samples. The CF displayed an
A-type x-ray diffraction typical for cereal starches with defined peaks at 2θ angles of 15, 17, 18, and
23◦ and similar to those reported by Rojas-Molina et al. [58] and Sullivan et al. [61] for corn and
wheat native starches (Figure 4a). The TF exhibited a similar x-ray diffraction pattern observed in CF,
however, with undefined peaks. This indicates more pronounced damage in the crystalline structure
of native starch in the traditional nixtamalization process when compared with the industrial method
(Figure 4b). In the corn tortilla flours, an increase in the relative intensity of the peak at a 2θ angle of
≈20◦, accompanied by a better definition of it, was detected in both methods (traditional and industrial)
(see arrows in Figure 4a,b). There was also a loss in definition of the peaks located at 15, 17, and 23◦ in
the 2θ scale when the refrigeration storage time was extended, these data are associated with the total
relative crystallinities in the samples, which are discussed below. The peak located at ≈20◦ belongs
to the formation of a Type V amylose–lipid complex (resistant starch type 5 or RS5), which has been
identified in tortillas from an ecological nixtamalization process, tamales and corn snacks [7,24,62],
and consequently, this is reflected in an increase in the resistant starch content (see Figure 1). The loss
in definition of the peak at 15◦ from the transformation of corn flour to tortilla has been associated
with two phenomena: (1) modifications of side branches of amylopectin to form amylose helices that
lead to an increase of the amylose–lipid complex peak at 20◦ and (2) type of lipid, where the higher the
peak, the longer the fatty acid chain [63,64].
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Figure 4. X-ray diffraction pattern of corn flours and corn tortilla flours obtained by the (a) industrial
(commercial) and (b) traditional methods without refrigeration (TF, CF, TR0, CF0) and stored in
refrigeration (4 ◦C) at different periods of time (7, 15, and 30 days).

Total relative crystallinities of experimental samples are shown in Figure 5. Crystallinity in
CF (25.1 ± 0.46%) was significantly higher (p ≤ 0.05) than that observed in TF (22.1 ± 0.15%).
The transformation of CF and TF into tortillas decreased the crystallinity between 45 and 50%,
respectively. Similarly, Santiago-Ramos et al. [65] reported that nixtamal starch of intermediate and
soft grains showed a decrease in crystallinity (≈32%) when it is transformed into tortilla due to the
partial gelatinization that occurs during cooking. It is evident that there was a statistically significant
increase (p ≤ 0.05) in crystallinity when refrigeration storage time was extended in traditional corn
tortilla flours (≈168%) and industrial corn tortilla flours (≈101%). This increase can be explained by the
amylose–lipid complex Type V formation (see Figure 4). Our data agrees with Sullivan et al. [61], since
they reported a sharp increase in crystallinity of baker’s flour stored after eight days at 3.5 ◦C, which is
attributable to the RS formation.
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Figure 5. Total relative crystallinities of corn flours and corn tortilla flours obtained by the industrial
(commercial) and traditional methods without refrigeration (TF, CF, TR0, CF0) and stored in refrigeration
(4 ◦C) at different periods of time (7, 15, and 30 days). Different letters means differ significantly.

Scanning electron microscopy (SEM) images of corn flours and corn tortilla flours are shown in
Figure 6. Commercial nixtamalized corn flour showed granules with a regular polygonal shape with
no damage and covered with the protein matrix (Figure 6a). The traditional nixtamalized corn flour
exhibited starch granules with a polygonal shape (Figure 6e); nevertheless, some granules showed
cavities (see black circle) and the protein matrix was scarcely noticeable and less rough, which implies
a partial solubilization [66]. The morphological modifications were related with starch damage during
the nixtamalization process, as has been previously reported [12]. Most likely, the presence of gums
in commercial nixtamalized corn flours helps starch granules to retain their polyhedral morphology
as described by Calderón-Peralta et al. [55]. Figure 6b,f show the commercial and traditional corn
tortilla flours without refrigeration, respectively, where a gradual disaggregation of starch granules
is evident due to the milling process. Nevertheless, traditional corn tortilla flour exhibited starch
granules of larger size or collapsed (see arrow) and with a greater number of gaps between them
(Figure 6f) in comparison to the commercial corn tortilla flour (Figure 6b). In both samples, the gradual
loss of the polyhedral form of the starch granules was clearly visible, which implies a partial starch
gelatinization. The grinding of tortillas favored the gelatinization of the whole starch granules as milling
is a thermomechanical process, which promotes 15% of the gelatinization during the transformation of
corn into tortillas [67].

Figure 6c,g show commercial and traditional corn tortilla flours refrigerated at 4 ◦C for seven
days, respectively. Figure 6c shows starch granules with a smooth surface paste, while Figure 6g
shows dispersed starch granules embedded into the protein matrix (pm) and protein bodies (pb) on
the surface. It is clear that the size of the starch granules and the space between them were larger
with respect to those observed in Figure 6c. Regarding this, it has been reported that hydrocolloids
delay tortilla retrogradation due to less starch gelatinization, avoiding the leaching of amylose during
tortilla processing and storage [55]. This explains the lower values in peak viscosity and resistant
starch content in commercial corn tortilla flours than those detected in traditional corn tortilla flours
(see Figures 1 and 3). Figure 6d,h belong to commercial and traditional corn tortilla flours refrigerated
at 4 ◦C for 30 days, respectively. Both micrographs images show a different morphology in comparison
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to previous images, where angular shaped and partially damaged starch granules remain embedded
in a matrix. It is most likely that leached amylose chains from starch granules and subsequent
retrogradation are responsible for this new microstructural order [68].
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Figure 6. Scanning electron microscope (SEM) images of nixtamalized corn flours and corn tortilla
flours obtained by the industrial (a–d) and traditional methods (e–h). (a) Commercial nixtamalized
corn flour, (b) commercial corn tortilla flour without refrigeration, (c) commercial corn tortilla flour
stored at 4 ◦C for 7 days, (d) commercial corn tortilla flour stored at 4 ◦C for 30 days, (e) traditional
nixtamalized corn flour, (f) traditional corn tortilla flour without refrigeration, (g) traditional corn
tortilla flour stored at 4 ◦C for 7 days, (h) traditional corn tortilla flour stored at 4 ◦C for 30 days.
sg = starch granules, pm = protein matrix, pb = protein bodies.

Table 5 shows the thermal properties of nixtamalized corn flours and corn tortilla flours with and
without refrigeration. In all samples, three endothermic events were found. The first one belongs
to the corn starch gelatinization. There were significant differences (p < 0.05) in To, Tp, Tf, and
∆H of flours obtained by different nixtamalization methods. The To (70.23 ◦C), Tp (78.15 ◦C), and
Tf (80.17 ◦C) of TF were similar to values reported by Liu, Yuan, and Wang [66] for dry milling
corn flour. On the other hand, the To (65.19 ◦C), Tp (67.30 ◦C), and Tf (69.28 ◦C) of CF were
significantly lower (p < 0.05) than TF, which can be attributed to the granule size and distribution
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of starch [69]. Gelatinization enthalpy of CF (4.04 J/g) was significantly lower (p < 0.05) than that
detected in TF (5.30 J/g). These results coincide with those reported by Calderón-Peralta et al. [55] and
Aguirre-Cruz et al. [70], who mentioned that ∆H values diminish due to hydrocolloid–starch interaction
(which retains more water molecules) promoting higher mobility during heating, increasing kinetic
energy, and decreasing the enthalpy values. In general, both traditional and commercial corn tortilla
flours showed lower transition temperatures and enthalpy values as storage time increased. This may
be explained by the retrogradation phenomenon as retrograded starches show lower enthalpies and
transition temperatures than native starches because they have weaker starch crystallinity [71].

Table 5. Thermal properties of nixtamalized corn flours and corn tortilla flours obtained by the
traditional and industrial methods.

Sample
Endotherm 1 (Gelatinization) Endotherm 2 Endotherm 3

Togel
(◦C)

Tpgel
(◦C)

Tfgel
(◦C)

∆Hgel
(J/g)

ToRS5I
(◦C)

∆HRS5I
(J/g)

ToRS5II
(◦C)

∆HRS5II
(J/g)

TF 70.23 a 78.15 a 80.17 a 5.30 a 102.20 f 6.31 d 112.42 e 10.07 g

CF 65.19 b 67.30 b 69.28 b 4.04 b 100.20 f 5.19 e 107.18 f 8.69 h

TF0 64.14 b 65.98 c 69.28 b 4.19 b 103.66 e 7.50 c 124.17 d 12.63 f

CF0 63.22 b 64.64 c 67.02 c 3.19 c 102.30 f 5.84 d 126.47 d 12.87 f

TFR7 62.21 c 65.15 c 68.83 b 2.76 d 107.54 d 8.45 c 130.83 c 16.25 d

CFR7 58.89 d 60.19 e 63.08 c 2.14 d 104.65 e 6.20 d 128.34 d 14.64 e

TFR15 60.98 c 62.99 d 66.27 c 1.70 e 111.33 c 10.24 b 133.81 b 19.92 c

CFR15 57.68 d 59.15 e 61.18 d 1.38 e 110.79 c 7.66 c 130.19 c 17.43 d

TFR30 60.36 c 62.75d 64.20 c 0.84 f 116.04 a 11.32 a 136.97 a 23.87 a

CFR30 56.64 d 58.61e 60.34 d 0.73 f 114.25 b 9.34 b 135.91 a 21.84 b

The values represent the mean ± standard deviation (SD), n = 3. Means in columns with different letters
differ significantly (p ≤ 0.05). Togel = Onset gelatinization temperature, Tpgel = peak gelatinization temperature,
Tfgel = final gelatinization temperature, ∆Hgel = gelatinization enthalpy, ToRS5I = peak temperature of melting of the
amylose–lipid complexes Type I, ∆HRS5I = melting enthalpy of the amylose-lipid complexes Type I, ToRS5II = peak
temperature of melting of the amylose–lipid complexes Type II, ∆HRS5II = melting enthalpy of the amylose–lipid
complexes Type II.

The second and third endotherms in the samples were detected with two peak temperatures:
the first one in a range from 100.2 to 116.04 ◦C and the second one between 107.18 and 135.91 ◦C,
respectively. These transition temperatures have been associated with the melting of the amylose–lipid
complexes Types I and II, respectively. Nevertheless, it is important to denote that in TF, CF and corn
tortilla flours obtained with the traditional and commercial nixtamalization methods without storage,
the transition temperatures and enthalpy values for lipid complexes Types I and II agreed with the
values reported previously [65]. Nonetheless, the ToRS5I, ToRS5II, ∆HRS5I, and ∆HRS5II values in the
samples increased as a function of storage time. Enthalpy changes on the dissociation of amylose–lipid
complexes involve the breaking of intrahelical hydrogen-bonds (Type I) and interhelical hydrogen
bonds (Type II) [72]. It is likely that these bonds get stronger with storage time.

4. Conclusions

The search for simple technologies for increasing the content of nutraceutical ingredients in foods
and reduce the waste of raw materials is a challenge for the food industry.

In this study, the physicochemical properties and resistant starch content of corn tortilla flours
refrigerated at different storage times were investigated. The results showed that the storage time
in refrigeration promoted the friability of the dehydrated tortillas and therefore, less energy was
required during milling to obtain corn tortilla flours. However, the particle size distribution of these
flours allowed for a higher percentage of coarse particles to be obtained. The nixtamalization method
(traditional and industrial) to prepare tortillas modified the nutritional composition of the corn tortilla
flours, mainly in resistant starch content, which was significantly higher in the corn tortilla flours



Foods 2020, 9, 469 17 of 20

obtained by the traditional method, which increased with the storage time in refrigeration. This means
that during tortilla milling and subsequent storage in refrigeration, gelatinization and retrogradation
of the remaining native starch took place, which entailed the formation of lipid–starch complexes
(resistant starch Type V).

The WAI and WAS values in the commercial corn tortilla flours were higher than in the
traditional corn tortilla flours. Nevertheless, the apparent viscosity, temperature, and enthalpy
of starch gelatinization were lower than those detected in traditional corn flours.

The physicochemical characteristics and the resistant starch content of the corn tortilla flours
show their potential to be used as nutraceutical ingredients for future product development. However,
further studies are needed to determine physicochemical, sensory, quality attributes, and relationships
between such characteristics and the formulation of products with added corn tortilla flours.
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