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Recursive consensus clustering 
for novel subtype discovery from 
transcriptome data
pranali Sonpatki & nameeta Shah   ✉

Large-scale transcriptomic data is used by biologists for the discovery of new molecular patterns or cell 
subpopulations. clustering is one of the most popular methods for dimensionality reduction and data 
analysis for large scale datasets. the major problem while clustering the data is the selection of the 
optimal number of clusters (k) for each dataset and to discover new insights from it. We have developed 
Recursive consensus clustering (Rcc), an unsupervised clustering algorithm for novel subtype discovery 
from both bulk and single-cell datasets. Rcc is available as an R package and facilitates the generation 
of new biological insights through intuitive visualization of clustering results.

Recent advances in the field of RNA sequencing has resulted in a wealth of data which allows us to classify and 
study the transcriptomic subtypes/cell types in different biological systems. The clustering of transcriptomic data 
reduces the dimensionality of the data and allows a researcher to better analyze, visualize and interpret the data 
for biological insight. Clustering is an unsupervised technique that allows the grouping of similar objects and 
enables division of data. Though a widely used technique, researchers face the following challenges in performing 
clustering on transcriptomic data:

1. Clustering of datasets with an unknown number of clusters: Algorithmically identifying the optimal 
number of clusters in a dataset is a difficult mathematical problem especially for big datasets with a large 
number of clusters1. For example, algorithms like tSNE + k-means2 or hierarchical clustering require the 
user to input k for a given dataset which might not always be optimal. This also restricts the discovery of 
novel subtypes in a given dataset.

2. Finding novel subtypes with user-friendly tools: Subtypes that are not known beforehand are likely to 
be missed when applying popular clustering methods like k-means, hierarchical clustering, pam, mclust3, 
etc.4 As an example, consider large-scale TCGA pan-cancer dataset5 which includes samples from multiple 
cancer types (breast, prostate, brain, etc.) with each cancer type having distinct molecular subtypes. Two 
major publications that analyzed this transcriptome data were able to largely find clusters with tissue-specif-
ic cancers and not the subtypes within each cancer type with clinical relevance5,6. The novel subtypes were 
discovered only after using sophisticated integrated analysis of multi-omic data.

We have developed Recursive Consensus Clustering (RCC), a user-friendly R package that allows a 
researcher to find novel and biologically meaningful subtypes in transcriptomic datasets without requiring 
computational expertise (https://github.com/MSCTR/RecursiveConsensusClustering). The recursive cluster-
ing of the dataset reveals finer structures in the data leading to the identification of novel subtypes. RCC uses 
ConsensusClusterPlus7 (CCP) as the base algorithm for dividing the data. Most of the clustering algorithms are 
heuristic in nature and the clusters obtained using them depend on the initial seed value8. As a result, different 
runs of the same algorithm on the same dataset yield different clusterings. To deal with this issue the concept of 
consensus clustering was developed where you run the algorithm multiple times and take the consensus of clus-
ters from those runs as your final result. CCP, an R package for consensus clustering uses n iterations of any one 
of the clustering algorithms (e.g. k-means, hierarchical clustering, partitioning around medoids, etc.) to divide 
the data into various subgroups. For each of the n iterations, CCP repetitively takes a subset of samples/cells and a 
subset of genes/features to give a consensus of these repetitions, which results in a more robust clustering output 
relative to the clusters obtained through a single iteration.
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Results
Algorithm. RCC takes the entire data matrix in the first run and finds the optimal k for the data as a whole. 
The output from this first run is termed as level one. Based on the clustering in level one, RCC then subdivides 
the data into respective clusters and recursively clusters each subdivision. This subsequent clustering gives us 
multi-level subgroupings of the data. In the end, RCC combines the clustering information at each level to return 
the final number of clusters present in a given dataset (Fig. 1A).

The RCC algorithm is described in five steps as shown in Fig. 1B.

1. Data input: RCC takes a quantitative transcriptomic data matrix as input along with a configuration file 
(Methods). Annotation matrix file for samples/cells can be provided optionally.

2. Feature selection and data scaling: For every recursive run, RCC selects the top n% of variant genes in that 
particular subset of the original dataset which is used for further clustering. The top n% of genes/transcripts 
change for each recursive run. This helps in finding the finer hierarchical structure in a given dataset, e.g. 
in human tissue data9, the brain tissue samples are further divided into 13 subtypes which include different 
sections of brain like cortex, basal ganglia, cerebellum, amygdala, cerebellar hemisphere, substantia nigra, 
hippocampus, hypothalamus and spinal cord. When we take genes which are variable across all the tissue 
types, the clustering algorithms are not able to divide the data at these sub-tissue levels (Figure S1B). Hence 
it is essential to change the feature set for clustering based on each run (Figure S1).

3. Parallel processing of ConsensusClusterPlus: RCC uses the ConsensusClusterPlus package7 (CCP) in R for 
k-means clustering of the datasets. CCP uses three input parameters; seed, pItem (proportion of samples), 
and pFeature (proportion of genes/transcripts), that determines the final clustering outcome. Depending 
on the type of dataset, a user may need to change the pItem and pFeature. To reduce user input and increase 
robustness, we use eight combinations of pItem/pFeature (Table S1) and run CCP eight times in parallel 
with 100 repeats(with different random seeds) each. In order to compare our strategy to simply running 
CCP 800 times we ran the RCC algorithm in two different settings; a) RCC algorithm with eight parallel 
processes with changes in pItem and pFeature values and 100 repetitions per process, b) RCC algorithm 
with no parallel processes, default pItem and pFeature values and 800 repetitions. We observed that RCC 
with parallel processes and variant pItem and pFeature values showed higher ARI compared to the other 
process (Table S2). Running eight parallel processes with 100 repetitions each was also faster than running 
one process with 800 repetitions (Table S2).

4. Optimal k selection: Based on the cumulative distribution function (CDF) plots indicative of cluster sta-
bility, produced by CCP, RCC finds the best ks10 for each parallel run, in turn, giving multiple k values that 
satisfy the best k selection criteria (Methods). The k with maximum frequency is selected as the optimal k 
for the clustering (Figure S2).

5. Subdivision of data and recursive clustering: Once the k for a given dataset is selected, all k subsets are clus-
tered recursively till one of the termination criterion is met i.e.

 1.   optimal k = 0; i.e. the data does not show any significant variance in it or there are not enough differen-
tial genes present to indicate a true biological sub-classification.

 2.   the sample size of the subset data is lower than the specified minimum number of samples required for 
clustering

6. Output: RCC outputs final cluster information as well as cluster information at all levels in a csv format. It 
also outputs the clustered data in the form of tracking plot and cluster annotation plot for visualization of 
results facilitating biological interpretation (Results, Methods).

Figure 1. RCC workflow. (A) Recursive nature of RCC. As shown in the figure RCC recursively divides the 
datasets till the termination criteria are met. Due to the recursive nature of RCC, it produces multi-level cluster 
assignments, which are then concatenated to output the final number of clusters. RCC determines the optimal 
k for each run individually. As seen in the figure, the dataset is divided into seven clusters across three level of 
recursive clustering. (B) Overview of RCC workflow.
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We have used k-means as the underlying clustering algorithm for RCC as we found it works well for bulk tran-
scriptomic datasets of different sizes. In principle, any clustering algorithm can be substituted for k-means. As the 
result obtained from the k-means algorithm is highly dependent on initial seed value11, we run CCP eight times 
using a different random seed and different parameters for each run to get the most stable clusters (Methods).

To minimize user dependency and find appropriate values for all the parameters we tested this algorithm 
using various bulk and single-cell datasets (Table 1). All the selected datasets were annotated and their labels 
were obtained from original publications. RCC worked well on bulk as well as single-cell datasets. For most of the 
datasets, RCC was able to find biologically significant novel subtypes (Table 1). To check the stability of RCC, we 
ran the algorithm 1000 times on Ivy GAP12, Biase13, and Pollen14 datasets, 100 times on the Darmanis15,16 dataset 
and 10 times on Human tissue9, TCGA pan-cancer5, and Neftel17 datasets. We calculated the Adjusted Random 
Index (ARI) using the mclust3 package in R of each run with that of one randomly selected run. ARI calculates 
the concordance between two cluster assignments. The cluster assignment can be based on the annotation/labels 
from the annotated datasets or the clusters obtained through RCC and other algorithms. Higher ARI indicates 
better concordance between two cluster assignments with value 1 being the perfect concordance between two 
cluster assignments. We see highly consistent clustering results between RCC runs with ARI ranging from 0.5 to 
1 (Fig. 2A). The consistency of the results for Biase and Ivy GAP datasets can be seen in the consensus matrices 

Datasets k N

Subtype 
found 
By RCC

Clusters found by

RCC mclust SC3

Ivy GAP 4 98 Yes 6 6 NA

Human tissue 53 8739 Yes 144 NA NA

TCGA pan-cancer 32 10042 Yes 124 NA NA

Biase 5 56 No 6 NA 5

Pollen 11 300 Yes 13 NA 10

Darmanis 19 4055 Yes 43 NA 25

Neftel 31 7930 Yes 80 NA 61

Table 1. Datasets used to test RCC algorithm where N represents the number of cells/samples in a dataset, k 
represents the number of clusters identified by the authors in the original publications, fourth column states if 
RCC found biologically relevant novel subtypes in the respective dataset, RCC, mclust and SC3 columns state 
the number of clusters found by the respective algorithms.

Figure 2. Robustness of RCC. (A) Adjusted Random Index (ARI) of multiple runs (1000 runs for Ivy GAP, 
Biase and Pollen datasets, 100 runs for Darmanis dataset and 10 runs for Human tissue, TCGA pan-cancer and 
Neftel datasets) where ARI is calculated for each run with that of one randomly selected run (B) Consensus 
matrix of 1000 RCC runs for Biase and Ivy GAP datasets showing the robustness of the algorithm.
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(Fig. 2B). The consensus matrices for the rest of the datasets are provided in Supplementary data in the individual 
folders. One of the features of RCC is the automatic selection of the number of clusters for a given dataset. So 
to benchmark RCC, we chose mclust3 (for bulk dataset) and SC318 (for single-cell dataset) packages which also 
have the feature of selecting the optimal k. We have also compared our algorithm against tSNE + k-means2 and 
hierarchical clustering (hclust, base R package) by giving it the k based on known annotation from the original 
publications (Table S3). We were not able to run mclust on larger datasets (i.e. datasets having samples > 1000) 
on our system (system specifications in Methods). Overall, we found good concordance between the clusters 
found by RCC and labels suggested by the original authors (Tables S4, S5). In all but one case, RCC found novel 
subtypes, i.e. further subdivision of known attributes at the time of data generation as provided in the original 
study. (Table 1, Results).

We used the datasets mentioned in Table 1 for testing the algorithm. All the bulk datasets were normal-
ized using the DESeq19 package in R and single-cell data using Counts Per Million (CPM) and then log2 trans-
formed before running RCC. To benchmark RCC, we used the algorithms given in (Table S3) on the bulk as 
well as single-cell transcriptomic datasets. Due to the sparsity of single-cell data matrices, we included only the 
protein-coding genes for the clustering proposes. We used the default parameters for all algorithms and provided 
the number of clusters where needed. For the algorithms that did not have the optimal k selection feature, we 
provided the same number of clusters presented in the original publications. The optimal k and Adjusted Random 
Index (ARI) for each dataset across all the algorithms is shown in Table S4. Identification of novel subtypes results 
in lower ARI values. Since RCC results have a significant number of subtypes for larger datasets we see lower ARI 
values. To show that the novel subtypes are subsets of known attributes, we calculate cluster specificity score for 
each clustering result as the percentage of clusters that are composed of largely samples having the same attribute, 
i.e. dominant attribute type proportion > = 90%. RCC did a better job of finding novel subtypes as well as divid-
ing the datasets accurately based on the given annotations in the original publications (Table S5).

Along with clustering, RCC package also provides the user with visualization tools for better interpretation. In 
case of large-scale datasets, it becomes difficult to view the cluster assignments along with the attributes of each 
sample/cell in the data. To make it easier to view the clustered data, RCC package provides the users with tracking 
and cluster annotation plots. The tracking plot makes it easy for the user to view the clustered data and interpret 
it compared to other visualization tools (Figure S3). Columns in the tracking plot correspond to the samples/cells 
in the provided dataset. The first panel i is the marker panel which shows the number of marker genes identified 
for each cluster at a given level. The first row is markers for clusters found at level one, the second one for markers 
found at level two, and so on. The color-scale is from white to red with white indicating zero markers found and 
bright red indicating the highest number of markers found. Grey color indicates that the particular cluster is not 
further divided and hence no new markers are found which are distinct from the previous level. The second-panel 
j is the RCC clustering level panel. It shows the cluster information for samples at each level starting with level 
one. The third panel k is the annotation panel. The annotation panel shows the distribution of samples across 
all the clusters. Due to the two-dimensional nature of the plot, it becomes easier to view the cluster assignments 
along with its annotation. The cluster annotation plot allows the user to view the cluster assignment of each sam-
ple based on a particular attribute. It shows the proportions of samples based on attributes across all the clusters 
allowing the user to view the most dominant attribute or label in a given cluster.

The main objective of developing RCC was to find novel subtypes automatically with minimal user input that 
can help in generating novel biological insights. We demonstrate this utility of RCC by applying it to seven differ-
ent datasets of varied sizes and different complexities (Table 1).

Bulk RnA-Seq data. 

1. Ivy GAP dataset: The Ivy GAP12 dataset contains the RNA-Seq profiles of anatomic structures in glio-
blastoma, grade IV brain cancer. These anatomic structures include Leading Edge (LE), Cellular Tumor 
(CT), Microvascular Proliferation (MVP), and Pseudopalisading Cells around Necrosis (PAN) which are 
described in detail in the original paper. RCC clusters not only represent all the known classes but also find 
two subsets of CT and PAN samples each (Fig. 3A). These subtypes of CT and PAN samples were not found 
by any other algorithm (Fig. 3B). The gene markers plot shows that the subtypes of CT and PAN are distin-
guished by a distinct proneural signature20 (Fig. 3C).

2. Human tissue data: Human tissue data9 contains RNA-Seq data across 53 different tissues, lymphoblas-
toid cell lines, and transformed fibroblast cell lines. This dataset is challenging to cluster as certain tissue 
types like tissues from the female reproductive system, adipose and breast tissues, tissues from different 
parts of the brain, etc. are difficult to distinguish when global transcriptome similarity is considered using 
their grade of membership model. RCC is more sensitive in comparison to other algorithms in clustering 
these samples due to its recursive approach (Fig. 4A,B, and S4, Table S5, Supplementary file 2). RCC could 
find multiple biologically relevant subtypes across 13 tissues which other algorithms were not able to find 
(Supplementary file 2). As an example, lung tissue for which RCC found eight clusters, tSNE + k-means and 
hclust could find only two and one clusters respectively (Fig. 4B). On further analysis of these eight clusters, 
we found that cluster one shows enrichment of myeloid leukocyte activation and cell activation gene sets 
and patients with decreased pulmonary function, cluster two has gene sets with extracellular matrix compo-
nent and subjects who suffered fast deaths, cluster three shows enrichment of myeloid leukocyte migration 
and cell migration gene sets, cluster four shows genes involved in immunoglobulin receptor binding, pro-
tein activation cascade, cluster five shows up-regulation of genes involved in positive regulation of protein 
secretion, plasminogen activation, cluster six shows up-regulation of genes involved in cytokine activation, 
regulation of vasculature development, cluster seven shows up-regulation of genes involved in pulmonary 
embolism and complement activation and classical pathway and cluster eight has up-regulation of genes 
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which have cilium cellular component (Fig. 4C, Table S6). We correlated the significance of clinical parame-
ters like age, gender, and cause of death with the clusters formed. Out of 53 tissue subtypes, we found seven 
tissue subtype clusters that showed significant correlation with gender, nine showed significant correlation 
with age, and 26 showed significant correlation with the cause of death across 10 runs of RCC (Supplemen-
tary file 1). Figure 4D shows the distribution of age, cause of death, and gender across the muscle, heart and 
breast samples respectively.

3. TCGA pan-cancer data: TCGA pan-cancer5 dataset includes RNA-Seq data of 32 different cancer types. RCC 
divided the data up to four levels and was able to find 124 clusters in this dataset resulting in novel cancer 
subtypes (Fig. 5A,B). As seen in Fig. 5A, RCC divides the data into 10 clusters at level one, which are more 
tissue specific. In further levels of RCC, it divides the samples into its individual cancer types and then further 
finds the subtypes within each cancer type. As an example, we show subtypes of melanoma (SKCM) in Fig. 5C. 
RCC divides the SKCM samples at level one in two distinct clusters. Then further at level four, RCC is able to 
find three more subtypes of the SKCM samples. In total RCC found four subtypes in the SKCM cancer sam-
ples highlighted in Fig. 5A, with significantly distinct marker genes and survival profiles (Fig. 5C, Table S7). 
Similar molecular profiles were previously found and discussed21. SKCM subtypes were not found by tSNE + 
k-means, whereas, hclust found four subtypes of SKCM but showed survival profile overlap between two clus-
ters (Supplementary data, Table S8). Chen et al.6 and Hoadley et al.5 previously analyzed the TCGA pan-cancer 
data using various sophisticated techniques. They found ten and 28 clusters respectively to divide data based 
on the multi-omic analysis using the cluster of clusters approach. We performed Kaplan-Meier analysis for 

Figure 3. Ivy GAP data. (A) Tracking plot for the Ivy GAP dataset showing the multi-level clustering 
information. (B) Cluster annotation plots for RCC, t-SNE + k-means, hclust, and mclust algorithms. Each 
plot shows the overlap between the annotations and clusters found. Along the x-axis are the clusters found by 
each algorithm and along the y-axis are the anatomical features of Ivy GAP data. Red indicates a 100% overlap 
between the annotated class and the cluster and white indicates no overlap. (C) Gene marker plots for Ivy GAP 
data. In RCC clustering, CT and PAN samples subdivide into two clusters each. The rows represent genes and 
columns represent samples. The annotation bar shows the demarcation between two clusters. RCC finds a 
subset of CT and PAN samples that have a proneural subtype.
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Figure 4. Human tissue data. (A) Tracking plot for human tissue data showing the multi-level clustering 
information. The lung tissue samples are highlighted with a blue box. (B) Cluster annotation plots for RCC, 
t-SNE + k-means, and hclust algorithms. Each plot shows the overlap between the annotations and clusters 
found. Along the x-axis is the clusters found by each algorithm and along the y-axis are the tissue annotations. 
Red indicates a 100% overlap between the annotated class and the cluster and white indicates no overlap. The 
lung tissue clusters are highlighted in the blue box. RCC divides the lung tissue samples into eight clusters, 
whereas tSNE + k-means found two clusters and hclust found none. (C) Gene marker plot for Lung samples 
from human tissue dataset (gene marker list available in Table S6). RCC divides the lung samples into eight 
clusters where cluster one shows enrichment of myeloid leukocyte activation and cell activation gene sets and 
patients with decreased pulmonary function, cluster two has gene sets with extracellular matrix component 
and subjects who suffered fast deaths, cluster three shows enrichment of myeloid leukocyte migration and 
cell migration gene sets, cluster four shows genes involved in immunoglobulin receptor binding and protein 
activation cascade, cluster five shows genes involved in positive regulation of protein secretion and plasminogen 
activation, cluster six shows up-regulation of genes involved in cytokine activation and regulation of vasculature 
development, cluster seven shows up-regulation of genes involved in Pulmonary embolism and complement 
activation and classical pathway and cluster eight has up-regulation of genes that have a cilium cellular 
component. (D) Attribute enrichment plots with RCC cluster assignments. RCC can find clusters with distinct 
clinical attributes. In muscle tissue data, RCC found a subset of samples with distinct gene markers and between 
in the age group of 40–49and 20–29. Similarly, in heart atrial appendage tissue type RCC was able to separate 
a set of samples where the subject was on a ventilator as well as subjects with sudden unexpected deaths. In 
the case of breast tissue samples, RCC can divide the data based on gender along with tissue subtype. The 
COD follows a Death classification based on the 4-point Hardy Scale: (1) Violent and fast death Deaths due to 
accident, blunt force trauma or suicide, terminal phase estimated at <10 min. (2) Fast death of natural causes 
Sudden unexpected deaths of people who had been reasonably healthy, after a terminal phase estimated at <1 hr 
(with sudden death from a myocardial infarction as a model cause of death for this category). (3) Intermediate 
death Death after a terminal phase of 1 to 24 hrs (not classifiable as 2 or 4); patients who were ill but death 
was unexpected. (4) Slow death Death after a long illness, with a terminal phase longer than 1 day (commonly 
cancer or chronic pulmonary disease); deaths that are not unexpected. (0) Ventilator Case - All cases on a 
ventilator immediately before death.
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Figure 5. TCGA pan-cancer data. (A) Tracking plot for TCGA pan-cancer data showing the multi-level 
clustering information. The SKCM samples are highlighted in the blue box. At level one the division of samples 
is more tissue-specific and then at further levels, it finds the novel subtypes. (B) Cluster annotation plots for 
RCC, t-SNE + k-means, and hclust algorithms. Each plot shows the overlap between the annotations and 
clusters found. Along the x-axis is the clusters found by each algorithm and along the y-axis are the cancer 
types. Red indicates a 100% overlap between the annotated class and the cluster and white indicates no overlap. 
The SKCM clusters are highlighted in the blue box. RCC and hclust divide the SKCM samples into four clusters 
whereas tSNE + k-means divides the data in two clusters. (C) Cluster specific markers of SKCM clusters showed 
that each of the clusters has distinct marker genes. Cluster one shows enrichment of genes involved in the 
regulation of cell differentiation and ECM organization, cluster two shows involvement in presynapse and an 
integral component of the plasma membrane, cluster three shows involvement in immune response, leukocyte 
and lymphocyte activation and antigen binding, and cluster four shows enrichment in skin development, 
epidermal cell differentiation, keratinization, hyperkeratosis, and epidermal thickening (gene marker list 
available in Table S7). (D) Survival profiles for SKCM samples based on their cluster assignment. All the four 
SKCM clusters show significantly distinct survival profiles with cluster three having the best prognosis and 
cluster four having the worst.
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RCC, tSNE + k-means, hclust cluster assignments along with cluster assignments by Chen et al. and Hoadley 
et al. to evaluate which of the clustering assignments are clinically relevant. We used patient survival data as a 
measure of clinical relevance. In our comparison, we found that using RCC assignments, there are 10 cancers 
with subtypes which show significantly distinct survival profiles with p-value <0.01 across 10 runs, for tSNE + 
k-means clusters there are three, five for hclust, three for Hoadley et al. and none for Chen et al.(Table S8). As 
shown in Table S8, RCC did a better job of finding cancer subtypes with significantly distinct survival profiles. 
The survival profiles of the top five cancers (KIRC, LGG, SARC, SKCM, and UCEC) are shown in Figure S5. 
An elaborate example of the same is SARC, which further divides into four clusters. All the four SARC clusters 
show significantly distinct survival profiles with cluster four having the best prognosis and cluster three having 
the worst. SSGSEA analysis with the cancer hallmarks gene set22 of SARC clusters showed that each of the clus-
ters have gene sets with distinct enrichment. Cluster one shows enrichment in glycolysis and DNA repair gene 
sets, cluster two shows enrichment in myogenesis gene set, cluster three shows enrichment of genes down-reg-
ulated in KRAS pathway and genes involved in Hedgehog signaling whereas cluster four shows enrichment in 
complement pathway and apoptosis gene sets (Figure S6, Table S9)

Single-cell RnA-Seq data. 

1. Biase dataset: Biase dataset13 consists of single-cell RNA-seq data of matched sister blastomeres. The sin-
gle-cell data was generated for zygotes, 2-cell, 4-cell mouse embryos and blastocytes. The original publica-
tion discussed 5 subtypes of the mentioned data. RCC consistently found all the five subtypes across 1000 
runs (Fig. 2B). Biase et al. found two subtypes of the mouse blastocytes namely inner cell mass (ICM) and 
trophectoderm (TE). Both tSNE + k-means and SC3 were not able to find distinct clusters of these sub-
groups whereas RCC was consistently able to divide these cells into two clusters at level 2, again highlighting 
the power of recursive clustering (Fig. 6A).

2. Pollen dataset: Pollen dataset14 includes single-cell data of 11 cell types which can be broadly divided into 
four subtypes namely: blood cells, dermal/ epidermal cells, neural cells, and pluripotent cells. All the cell 
types are grouped individually at level one itself. Further, at level two, it was observed that the BJ cell line 
which is pluripotent stem cells (hiPSCs) originally derived from neonatal male human foreskin fibroblasts 
are consistently getting subdivided into three clusters across multiple runs (Fig. 7B,C). These subgroups of 
BJ cells were not discovered by tSNE + k-means or SC3 algorithms (Fig. 7B). On further analysis we found 
that cluster two consisted of cells with expression of genes involved in RNA binding, structural constituent 
of ribosome and establishment of protein localization to the endoplasmic reticulum, cluster three showed 
enrichment of genes involved in post-embryonic development and post-transcriptional regulation of gene 
expression, whereas cluster one had cells which did not show enrichment of genes up-regulated in either of 
the clusters (Fig. 7D, Table S10).

3. Darmanis dataset: Darmanis et al.15,16 have generated two single-cell RNA-Seq datasets: One in 2015 using 
human adult cortical samples and another one in 2017 using four glioblastoma multiforme (GBM) patient 
samples. We combined both the datasets which include 4055 cells and 15 known cell types in total. RCC 
found 43 clusters across these cell types (Fig. 8A). RCC divided the non-malignant cells based on their 
individual cell types irrespective of their source tissue whereas the malignant cells showed to be divided by 
the patient types as one would expect. RCC also divided the oligodendrocytes (2015 and 2017 combined) 
into three subtypes (Fig. 8B). The oligodendrocyte clusters showed enrichment of kinase binding and 
mRNA splicing genes in cluster one, regulation of protein polymerization, myelin sheath and ferric ion 
binding genes in cluster two and ganglioside GT1b binding, membrane raft polarization and myelination 
genes enrichment in cluster three (Fig. 8C, Table S11). Though tSNE + k-means and SC3 can differentiate 
between the oligodendrocyte cells from adult cortical samples and GBM samples, they do not subdivide the 

Figure 6. Biase data. (A) Tracking plot for Biase data showing the multi-level clustering information. (B) 
Cluster annotation plots for RCC, t-SNE + k-means, and SC3 algorithms. Each plot shows the overlap between 
the annotations and clusters found. Along the x-axis is the clusters found by each algorithm and along the y-axis 
are the cell-types. Red indicates a 100% overlap between the annotated class and the cluster and white indicates 
no overlap.
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GBM oligodendrocytes. Similarly, RCC also divides endothelial and fetal quiescent cells into three clusters 
each (Fig. 8D,E, Tables S12 and S13). In endothelial cells, cluster one shows genes involved in the blood 
vessel and vascular development processes, cluster two shows cell adhesion specific gene markers involved 
in blood vessel morphogenesis process and, cluster three markers showed to be playing a part in extracel-
lular matrix formation (Table S12). tSNE + k-means divides the endothelial cells in two clusters, whereas 
SC3 forms only a single cluster of all the endothelial cells. In fetal quiescent cell types, cluster two shows 
enrichment of genes involved in axon guidance pathway and semaphorin receptor activity, cluster three 
shows enrichment of genes involved in kinase activity and neurotrophin TRKC receptor binding whereas 
cluster one had cells which did not show enrichment of genes up-regulated in either of the two clusters (Ta-
ble S13). RCC clusters the fetal quiescent and fetal replicating cells together at level one, but at level two they 
are further subdivided into their individual clusters. tSNE + k-means and SC3 algorithms were not able to 
differentiate between these two cell types.

4. Neftel dataset: Neftel dataset17 includes single-cell RNA- sequencing of 28 glioblastoma tumors (pediatric 
and adult). The dataset we used has 7930 cells and 31 different known (three non-malignant and 28 patient 
wise malignant) cell types. Neftel et al. showed that the malignant GBM cells are majorly found in four 
cellular states which are determined by six meta modules based on the following gene signatures; Hypoxia 
independent (MES1like) and hypoxia dependent (MES2like) mesenchymal related gene sets, astrocytic 
(AClike) marker gene set, oligodendroglial (OPClike) lineage marker gene set, and stem and progenitor 
cell signatures (NPC1like and NPC2like) as well as two cell cycling modules namely G1S and G2M. They 

Figure 7. Pollen data. (A) Tracking plot for Pollen data showing the multi-level clustering information. 
The BJ cell line is highlighted in the blue box. At level one, RCC divides the cells based on their cell types. 
Further recursive clustering of data finds the subtypes of the BJ cell line. (B) Cluster annotation plots for RCC, 
t-SNE + k-means, and SC3 algorithms. Each plot shows the overlap between the annotations and clusters found. 
Along the x-axis is the clusters found by each algorithm and along the y-axis are the cell-types. Red indicates 
a 100% overlap between the annotated class and the cluster and white indicates no overlap. The BJ cell line 
clusters are highlighted in the blue box. RCC found three clusters of the BJ cell line with distinct gene markers. 
These clusters were not found by tSNE + k-means and SC3. (C) Consensus Cluster Matrix for 1000 runs of RCC 
showing consistent subgroups of BJ cell line highlighted by the blue box. (D) Gene marker plot of BJ cell-types 
where cluster two consisted of cells with expression of genes involved in RNA binding, structural constituent 
of ribosome and establishment of protein localization to the endoplasmic reticulum, cluster three showed 
enrichment of genes involved in post-embryonic development and posttranscriptional regulation of gene 
expression, whereas cluster one had cells which did not show enrichment of genes upregulated in either of the 
clusters (gene marker list is available in Table S10).

https://doi.org/10.1038/s41598-020-67016-3


1 0Scientific RepoRtS |        (2020) 10:11005  | https://doi.org/10.1038/s41598-020-67016-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

concluded after extensive analysis that there are largely four cellular states of glioblastoma cells (MES, AC, 
OPC, NPC) and each patient has varying proportions of these states, the proportions which are influenced 
by genetics and microenvironment. At the gene expression level, the cells are more similar to each other 
based on their cellular state rather than based on their parent tumor. Results of RCC recapitulates these 
findings as can be seen in the pie charts demonstrating cells from each tumor clustering based on their meta 
module score (Figs. 9C and S7). RCC divides the data in two clusters at level one where cluster one includes 
the immune cell types and cluster two includes the malignant cells (Fig. 9A). At level two of RCC clustering, 
it divides the malignant cell types based on the source tissue i.e patient types. Due to the recursive nature of 
RCC, it is also able to further divide the patient specific clusters to find the meta module specific subtypes. 
Based on the findings of the original paper if we take as to attribute the cellular state which is defined by the 
highest meta module score for each cell and label each cluster based on the highest average meta-module 
score for cells in that cluster, then we can see that RCC clusters cells with similar cellular state well (Fig. 9C). 
Figure 9C shows the concordance between the single-cell module assignment vs. the cluster module 
assignment. RCC clusters are more homogeneous with respect to the cellular states of cells as compared to 
the other algorithms. tSNE + k-means, as well as SC3, are not able to identify clusters of highly prolifer-
ating cells as determined by the overepxression of cell cycling genes (highlighted in Fig. 9C). We are also 

Figure 8. Darmanis data. (A) Tracking plot for Darmanis data showing the multi-level clustering information. 
The oligodendrocyte, endothelial, and fetal quiescent cell types are highlighted in the blue box. RCC divides 
the data into four clusters at level one. RCC then proceeds to recursively divide the cells into individual groups 
at further levels. (B) Cluster annotation plots for RCC, t-SNE + k-means, and SC3 algorithms. Each plot 
shows the overlap between the annotations and clusters found. Along the x-axis is the clusters found by each 
algorithm and along the y-axis are the cell-types. Red indicates a 100% overlap between the annotated class 
and the cluster and white indicates no overlap. The oligodendrocyte, endothelial, and fetal quiescent clusters 
are highlighted in the blue box. RCC divides oligodendrocytes, endothelial, and fetal quiescent cells into three 
clusters each. tSNE + k-means and SC3 are not able to find these novel cell types clusters. (C) Gene marker plot 
for oligodendrocytes, endothelial, and fetal quiescent cells in the Darmanis dataset (Gene marker list available 
in Tables S10, S11, S12). The clusters are formed irrespective of their origin (i.e. from the normal brain or 
tumor samples). The oligodendrocyte clusters show enrichment of kinase binding and mRNA splicing genes in 
cluster one, regulation of protein polymerization, myelin sheath, and ferric ion binding genes in cluster two and 
ganglioside GT1b binding, membrane raft polarization and myelination genes enrichment in cluster three. In 
Endothelial cells, cluster one shows genes involved in the blood vessel and vasculature development processes, 
cluster two shows cell adhesion specific gene markers involved in blood vessel morphogenesis process and, 
cluster three markers showed to be playing a part in an extracellular matrix formation. In Fetal Quiescent cells, 
cluster two shows enrichment of genes involved in axon guidance pathway and semaphorin receptor activity, 
cluster three shows enrichment of genes involved in kinase activity and neurotrophin TRKC receptor binding 
whereas cluster one had cells which did not show enrichment of genes up-regulated in either of the two clusters.
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able to find subtypes in non-malignant cells not described in the original study. At level two of clustering, 
the macrophage clusters reflect different cell populations which are either microglia like (brain resident) or 
macrophage-like (blood-derived)20 and are in different tumor microenvironment (PAN - hypoxic vs. LE - 
non-hypoxic) (Fig. 9D, Table S14).

Discussion
Large-scale transcriptomic data and especially single-cell sequencing have now become the mainstay tools for 
understanding molecular mechanisms in disease and developmental biology. With datasets ranging from a few 
hundred samples to thousands (millions in case of single-cell data), there is a significant challenge in analyzing 
these datasets to gain biological insights. Clustering is always used for such analyses but automatically identifying 

Figure 9. Neftel data: (A) Tracking plot for Neftel data showing the multi-level clustering information. The 
macrophage cells are highlighted in the blue box. RCC divides the data into two clusters at level one with cluster 
one having immune cells and cluster two having the malignant cells. RCC further recursively clusters these 
clusters into various sub-clusters where the malignant cells are divided based on the source tissue. (B) Cluster 
annotation plots for RCC, t-SNE + k-means, and SC3 algorithms. Each plot shows the overlap between the 
annotations and clusters found. Along the x-axis is the clusters found by each algorithm and along the y-axis 
are the cell-types. Red indicates 100% overlap between the annotated class and the cluster and white indicates 
no overlap. The macrophage clusters are highlighted in the blue box. RCC divides the macrophages into eight 
clusters whereas tSNE + k-means and SC3 divides the macrophages into three and nine clusters respectively. 
(C) Cluster annotation plots for RCC, tSNE + k-means and SC3 with cellular states on the x-axis and cluster 
label representing the dominant cellular state on the y-axis. (D) Markers for macrophage clusters and their 
enrichment across nine clusters. The annotation panel shows the SSGSEA score for tumor periphery (LE - 
leading edge), hypoxia (PAN - pseudopalisading cells around necrosis), microglia, and macrophage gene sets.
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the underlying number of clusters remains a challenge. A typical pipeline that is used involves taking known 
annotation of samples and then selection of clusters using manual identification through visualization. The prob-
lem with this approach is 1. reliance on known information when the objective is to unearth new information 2. 
Partial exploration of data and 3. An extensive amount of work requiring computational expertise. To address 
these limitations of current clustering methods, we introduce the concept of recursive clustering with an approach 
to automatically identify the optimal number of clusters in transcriptome datasets. We show that using our algo-
rithm, RCC, available as an R package, with just a few commands we can recapitulate findings obtained through 
multi-step complex analysis and also identify additional subtypes not described in the original studies. We can 
fully explore the datasets in just a few steps without the need for domain knowledge. We have compared our 
method to the most popular methods and shown that we are uniquely able to identify novel subtypes and inter-
pret results conveniently by visualization of intuitive output plots. Also, it works equally well for both bulk and 
single-cell data.

One of the limitations of our algorithm is computational time. This time is dependent on the underlying base 
algorithm which currently is consensus clustering with k-means. As new efficient clustering algorithms become 
available, k-means can be replaced by those for improved performance. To truly harness the power of single-cell 
transcriptomics for a better understanding of biology, the next step is the analysis of large integrated datasets with 
millions of cells. Our method, when combined with methods like scanorama for integration of multiple datasets23 
and geometric sketching for subsampling of data that preserves heterogeneity24, will be an essential approach to 
maximize the gain of biological insights from large-scale transcriptomic datasets.

In conclusion, RCC is a user-friendly data clustering algorithm that can be used on both bulk and single-cell 
transcriptomic datasets. RCC analysis facilitates novel subtype discovery in the transcriptomic data allowing the 
user to tease out the unknown finer structure in large datasets through intuitive visualization of clustering results.

Methods
Rcc algorithm. RCC algorithm has six major steps: 1) Data input 2) Feature selection and data scaling 3) 
Parallel processing of ConsensusClusterPlus 4) Optimal k selection 5) Recursive clustering and 6) Output. Each 
step is described in detail below.

1. Data input: RCC takes an expression matrix (X) and configuration file as input. The expression matrix is 
a csv file where the columns represent samples/cells and the rows represent expression values for genes/
transcripts. The input matrix should be normalized and log-transformed after adding a pseudo count of 1. 
Along with the expression matrix, the user also has the option of uploading a sample information file which 
contains clinical information or attributes for the samples/cells to be clustered. The configurable parameters 
with default values are discussed at the end of this section.

2. Feature selection and data scaling: The current clustering algorithms either use all the available genes 
or top variant genes or top principal components (PCA) or Single-cell Hierarchical Poisson Factorization 
(ScHPF)25 factors which are low dimensional representations of the datasets. These methods give us only 
a global view of a dataset and may not reveal the finer subgroups within the dataset. In RCC, initially all 
samples and top n% variant genes are selected, then normalized and clustered as described in steps 3–4. 
Based on the previous level of clustering, the feature set changes for subsequent recursive runs. We tested 
multiple datasets with different top n% variant genes and found that the top 1% of variant genes work well 
for the single-cell transcriptomic data, whereas the top 3–5% genes work well for bulk tissue data. This is 
a user-defined parameter in RCC where the user can select top n% of variant genes/features to be selected 
for further clustering. For a bulk-transcriptome dataset, a minimum of 500 genes/features are required for 
further clustering. If the top n% variant genes/features are <500, RCC by default takes the top 500 variant 
genes for further analysis. For single-cell transcriptomic data the number of genes detected per cell can be 
as low as 200 hence no minimum criteria is applied. After subsetting the top n% variant genes/features, data 
scaling is done using the following formula:

µ= −z X

 where X is the expression measure of a gene in a cell/sample, μ is the mean expression measure of a gene 
across all the cells/samples and σ is the standard deviation of expression measure of a gene across all the cells/
samples.

3. Parallel processing of ConsensusClusterPlus: The base algorithm used for RCC is ConsensusClusterPlus14 
(CCP) which performs k-means clustering on the dataset. CCP is run in parallel eight times with a different 
seed each time for increased robustness. We chose eight parallel runs of RCC, with each run implementing 
n iterations of CCP as it reduced the processing time and improved the robustness of algorithm. The output 
of CCP includes stability evidence for a given number of clusters (k) and their assignments. CCP is run each 
time with the following parameters:

•	 Maximum number of clusters: The maximum number of clusters (maxK) for each run is calculated by 
taking the minimum between 10 and 1/10th of the number of samples. maxK changes for each recursive 
run of RCC. We limit the maxK to 10 because based on our testing, the best k selection is not reliable for 
larger k.

•	 Number of repeats for each run: Each of the eight parallel processes has a repeat count of 100.
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•	 Proportion of items and features to sample (pItem and pFeature): As discussed earlier, RCC runs CCP 
in parallel eight times to get stable clusters. To enable selection of the most robust clusters, the pItem 
and pFeature values are changed for every run. The selected pItem values range from 0.6–0.9 whereas 
the pFeature values used are 0.8 and 1. Different combinations of the mentioned values are as shown 
in Table S1.

•	 Clustering algorithm: RCC uses k-means algorithm with Euclidean distance. K-means is applied on the 
z-scored data matrix with the Hartigan and Wong algorithm. By default, the number of centers is set to 10 
and the maximum number of iterations is set to 10^9 in the k-means function.

•	 Seed: The k-means clustering algorithm requires an initial seed number to generate clusters. The initial 
seed value is very crucial for the clustering of data as it effects the repeatability and reproducibility of the 
results. To find robust clusters RCC generates random seed values for all of the eight parallel runs of CCP.

4. Optimal k selection: Based on the cumulative distribution function (CDF) plots produced by CCP, RCC 
finds the best k10 (Simulated data in methods) for each parallel process as described below in turn giving 
eight k values. The k with maximum frequency is selected as the optimal k for that run of RCC. An example 
CDF plot of consensus matrices for k = 2:6 is shown in Figure S2. The consensus matrix of N samples for 
100 runs of clustering is an N x N matrix with each cell containing the number of times the row and column 
samples cluster together. For a given consensus matrix M, CDF is defined over the range of 0 to 1.

⩽
CDF c

M i j c

N N
( )

{ ( , ) }

( 1)/2
i j=

∑
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Consensus index c varies from 0 to 100. The perfect CDF plot for a given k (number of clusters), where for 
every run we get the same result, will have a CDF line with slope 0° starting at c = 0 and ending at c = 99. 
The perfect CDF value will be:
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Figure S2 shows an example of CDF plots for k = 2,3,4,5,6. Top panel shows the consensus matrices for each 
k and the bottom panel shows the CDF plot with slope and line length calculations. The dot- dash line shows 
the maximum CDF value for each k.

Line length and slope calculation. The clustering of real data typically does not result in perfect CDF value 
so we create an allowance of ±0.5. We take all CDF values in that range and fit a line through it. If the slope 
of the line is > minimum slope threshold, we trim the line till we get the slope below threshold or the line 
length is smaller than the minimum line length.

Intra cluster stability calculation. 

= ∈M i jIntra cluster stability where , same clusteri j,

Inter cluster overlap calculation. 

= ∈M i jInter cluster overlap where , different clustersi j,

Differentially expressed genes. K-means clustering algorithm tends to find stable clusters even when the sam-
ple distribution is random but asymmetric resulting in sub-classification without biological relevance22. This 
parameter helps in selecting only biologically meaningful clusters for a dataset. To find the clusters with bio-
logical significance, RCC calculates differentially expressed genes across all the clusters for a given run. The 
clustering is selected only if it has n% of genes up regulated with FDR <0.01 in at least one of the clusters.

Best k selection. We select the best k based on the following criteria:

 a) Line length is > minimum line length (default: 30)
 b) Line slope is < minimum slope threshold (default: 10°)
 c) Intra cluster stability > 0.8
 d) Inter cluster overlap < 0.2
 e)  Differentially expressed genes > minimum % of genes in at least one of the clusters (default: 20% for 

large dataset, 10% for small dataset)
 f)  If multiple k values are selected then we break the tie assigning weights to each k. We assign weights 

to each k if the slope of k is ≤ 5° and if line length ≥ 40. The k with maximum weight is selected as the 
best k (if multiple ks have equal weight all of them are selected as the best k).

In the example Figure S2, it can be seen that k = 2,3,4,5 satisfy the criteria a:d. All the ks also satisfied criteria 
e. Based on f, k = 3,4,5 is selected as the best k. We get similar values from the remaining eight runs which 
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in turn gives us an array of best ks. The optimal k is selected out of these best ks based on frequency distribu-
tion. The best k with the highest frequency is selected as the optimal k.

5. Recursive clustering: Once the optimal k for a particular level is selected, each of the subdivided datasets go 
on for further clustering. The samples/cells get recursively clustered until one of the following criteria is met:

•	 Number of samples/cells in the dataset is lesser than the minimum number of samples required for 
clustering

•	 Optimal k is zero; I.e no best k is selected in all the parallel runs of RCC.

6. Output: Upon submission of an expression matrix and their respective annotations, RCC gives the follow-
ing output:

•	 Cluster information file (ClusterInfo.csv): The basic output of RCC is the cluster information file which 
has the cluster assignment of all the samples in the submitted datasets at every level along with the final 
cluster assignment.

•	 Cluster annotation plot (atrribute_vs_algorithm.pdf): The cluster annotation plot allows the user to 
view the cluster assignment of each sample based on a particular attribute using the clusterAnnotation 
function. The Cluster annotation plot shows the distribution of all the attributes (e.g. cell types or tissue 
types) across all the clusters. The columns represent the attributes present in the dataset and the rows 
represent the clusters (Figure S3).

•	 Tracking plot (trackingPlot.pdf): The trackingPlot function is a visualization tool that allows the user 
to view the clustered data in an easy and interpretable manner (Figure S4). Columns in the tracking plot 
correspond to the samples/cells. The first panel i is the marker panel which shows the number of marker 
genes identified for each cluster at a given level. The first row is markers for clusters found at level one, 
the second one for markers found at level two, and so on. The color-scale is from white to red with white 
indicating zero markers found and bright red indicating the highest number of markers found. Grey color 
indicates that the particular cluster is not further divided and hence no new markers are found which are 
distinct from the previous level. The second-panel j is the RCC clustering level panel. It shows the cluster 
information for samples at each level starting with level one. The third- panel k is the annotation panel. 
The annotation panel shows the distribution of samples across all the clusters.

•	 Gene markers plot (Level_markers.pdf): The geneMarkers function in RCC calculates the specific genes 
which are significantly up regulated in the clusters at each level with FDR <0.01 and log2 fold change 
values> 1. These genes are the specific markers for their representative clusters. RCC calculates and plots 
the markers across the levels making it easier for the user to visualize the data clustering. In the marker 
plots, the columns represent the samples/cells and the rows represent the genes.

•	 SSGSEA analysis (ssgsea.pdf): To find the biological significance of the clusters, RCC allows the user to 
perform a single sample gene set enrichment analysis (SSGSEA)26 using the function ssgsea. This function 
allows the user to find the enrichment of particular gene sets in all the samples of the clusters. The user 
can input the gene sets of their importance in CSV format to perform the SSGSEA analysis. The SSG-
SEA heatmap shows the enrichment of all the gene sets across all the samples. In the plot, the columns 
represent the samples/cells and rows represent the gene sets. For example, Figure S6 shows the SSGSEA 
plot of sarcoma samples from the TCGA dataset which allows us to look into the enrichment of cancer 
hallmarks in each cluster.

•	 Cluster attribute enrichment analysis (atrribute_vs_algorithmFE.csv): When a sample information 
file that contains clinical information or attributes is provided the user can perform cluster attribute 
enrichment analysis using the function clusterAttr. This function implements Fisher’s exact test to find a 
significant correlation between the attributes (categorical variable) and clusters. This helps in understand-
ing the biological/clinical significance of the cluster.

•	 Kaplan–Meier analysis (survival.pdf): RCC allows the user to perform survival analysis for all the clus-
ters using the function clusterSurvival.

Output of RCC analysis described in this manuscript are available as Supplementary Data. All the gene enrich-
ment analysis was done using Toppfun27.

RCC configurable parameters. Along with the input matrices, RCC also requires an input configuration 
file. This file allows the user to adjust the clustering parameters or use the default ones based on their require-
ments. The configuration file is in the.csv format where the first column indicates the parameter name and second 
column indicates the parameter value. The configurable parameters are:

 1. Input expression matrix.
 2. Input annotation file: This is an optional parameter. If one does not have any annotation for the sample 

dataset this field can be left as NA.
 3. Minimum slope threshold: The default value is 10°. Lower the threshold tighter the clustering. Recom-

mended values are between 5–15°.
 4. Minimum number of samples required for clustering: This option allows the user to decide the minimum 

sample size that is sufficient for further sub grouping. The default value is 20. A smaller number will likely 
result in a larger number of clusters.
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 5. Minimum line length: The default value is 30. Perfect clustering will have a line length of 99. Higher the 
value tighter the clusters. Recommended values are between 30–60.

 6. Percentage of genes/features to be used for clustering: We use the top 3–5% of variant genes in bulk data 
and the top 1% of variant protein-coding genes in single-cell data for clustering. For bulk data, the recom-
mended values are between 2–5% and for single-cell data, it is 1–2%.

 7. Minimum percentage of genes that are differentially expressed: The default value for large datasets (i.e. 
datasets having more than 1000 cells/samples) is 20% and for small datasets, it is 10%.

 8. Type of dataset: RCC accepts both bulk as well as single-cell transcriptomic datasets. This parameter is 
used by RCC for determining feature selection criteria. If the data is bulk tissue, then a minimum of 500 or 
top n% genes/features (whichever is higher) are taken for clustering.

 9. Output directory: Absolute path to the folder where the user wants to output the results

Best k selection using simulated datasets. We generated simulated datasets using the CIDR28 package 
in R to check if RCC was able to select the best k. Two simulated matrices were generated where mat1 had five 
sub- groups and each subgroup had an exact number of samples in them, whereas mat2 had five subgroups with 
varying proportions of samples in them. The best k found by RCC is the same as true k in the simulated dataset 
(Figure S8).

cluster stability. To check for the stability of our algorithm we ran RCC 1000 times on Ivy GAP, Biase and 
Pollen datasets, 100 times on the Darmanis dataset and 10 times on Human tissue, TCGA pan-cancer, and Neftel 
datasets. We calculated ARI (Fig. 2A) and plotted the heatmap of the Consensus Clustering Matrix to see the 
consistency of clustering in dataset (Fig. 2B, Supplementary data).

Level cutoff. The novel feature of RCC is its recursive nature. RCC keeps dividing the data until there is no 
significant variance in it. Once RCC is run, the user can use the tracking plot generated by RCC to visualize the 
clustering of the dataset for sample attributes. The tracking plot provides an intuitive and convenient way to inter-
pret the results and derives biological insights. In case the user requires clustering up to a particular level as any 
further clustering might not be relevant for the user, they can use the cutoff function to allow RCC to cluster the 
data points only up to a particular level. This feature allows the user to control the subdivision of their data where 
needed. Figure S9 shows the before and after cutoff clustering for the TCGA pan-cancer data. Initially, RCC finds 
a total of 138 clusters with division up to four levels. After applying the cutoff function at level three, RCC finds a 
total of 118 clusters.

System configurations. All the algorithms were run on a computer with an Intel Intel® Xeon(R) CPU 
E5–2630 v4 processor running at 2.20 GHz × 40 using 251.8 GiB of RAM, running Ubuntu version 16.04.

Availability of data and materials
Project name: RecursiveConsensusClustering

Project homepage: https://github.com/MSCTR/RecursiveConsensusClustering
Operating system: Platform independent
Programming language: R
License: GPL

Any restrictions to use by non-academics: None
Datasets used: https://www.msctr.org/2019/05/30/recursive-consensus-clustering/
Datasets:
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