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Small molecule kinase inhibitors (SMKIs) are being approved at a fast pace
under expedited programs for anticancer treatment. In this study, we con-
struct a multi-domain dataset from a total of 4638 patients in the registrational
trials of 16 FDA-approved SMKIs and employ a machine-learning model to
examine the relationships between kinase targets and adverse events (AEs).
Internal and external (datasets from two independent SMKIs) validations have
been conducted to verify the usefulness of the established model. We sys-
tematically evaluate the potential associations between 442 kinases with 2145
AEs and made publicly accessible an interactive web application “Identification
of Kinase-Specific Signal” (https://gongj.shinyapps.io/ml4ki). The developed
model (1) provides a platform for experimentalists to identify and verify
undiscovered KI-AE pairs, (2) serves as a precision-medicine tool to mitigate
individual patient safety risks by forecasting clinical safety signals and (3) can

function as a modern drug development tool to screen and compare SMKI
target therapies from the safety perspective.

As more genetic drivers of disease progression are discovered, small
molecule kinase inhibitors (SMKIs) are becoming a rapidly expanding
class of oral drug products that have been demonstrated to be effi-
cacious in the targeted therapy for various malignancies". Imatinib
was the first SMKI introduced into clinical oncology in the early
2000s. Thereafter, the Food & Drug Administration (FDA) has
approved a total of 65 SMKIs including gefitinib, erlotinib, and
sorafenib by 2020. As SMKIs have become standard therapies for
many cancers and other life-threatening diseases, information on
treatment-emergent adverse events (TEAEs) becomes abundantly
available**. Early and prompt characterization of potential SMKI-
related adverse effects (AEs) in the drug development process can
critically improve research and development (R&D) efficiency and
reduce product attrition rate, especially for oncology products
through expedited programs.

Although SMKIs share similar mechanisms of action, they differ
in the spectrum of targeted kinases, pharmacokinetics (PK), and
substance-specific AE profiles. Both on-target and off-target
kinase inhibitions are potentially responsible for AEs. For example, all

approved SMKIs (e.g., pazopanib, sunitinib, and regorafenib) primarily
targeting vascular endothelial growth factor receptor 2 (VEGFR2) share
warnings of hypertension and bleeding® (i.e., “on-target” side effect);
however, these SMKIs also exhibit heterogenous kinase inhibition (KI)
profiles beyond VEGFR2 inhibition, resulting in a broad range of toxi-
city and side effects in a variety of tissues and organs (i.e., “off-target”
side effect). Empirical evidence from clinical practice tends to attribute
AEs to the targeted KI of an SMKI but underestimates the off-target
effects®. Various attempts have been made to discover other hidden
potential associations between KI and drug toxicity via conventional
statistical approaches including bioinformatics methods’° using uni-
dimensional input data at the genome level or molecular level. How-
ever, these practices considered AEs curated from literature or
databases such as FAERS (the FDA adverse event reporting system) at
the population level, and were limited by access to patient-level clinical
data in terms of drug exposure and clinical responses. In addition,
considerable interindividual variabilities in drug exposure are present
for SMKIs, and research has shown causal relationships between the
degree of drug exposure and AEs". Hence, previous KI-AE association
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studies did not consider individualized drug exposure-AE response
relationships, making it challenging to use the characterized KI-AE
relationships to predict personalized TEAEs of an SMKI based on
individual drug exposure and KiIs.

Time-to-event analysis (i.e., survival analysis) is commonly used in
the analysis of the time to occurrence of a specific event including
TEAEs". The regression-based survival method, the Cox proportional
hazard regression model, is a commonly used approach to estimate
the probability of an event occurrence at a certain time®. However, this
model relies on certain assumptions, i.e., the coefficients of the pre-
dictor variables are constant over time and their effects are additive on
one scale. Recently, a well-established survival analysis approach, the
random survival forest (RSF) method, was developed as a machine
learning (ML) approach'. Importantly, leveraging the data-adaptive
nature of ML approaches, the RSF method does not have prior
assumptions on the relationship to be characterized. It also offers
superior performance to analyze high-order, high-dimension, and
nonlinear relationship survival data. Our recent simulation study has
demonstrated that RSF adeptly accounts for nonlinearity, correlation,
and interaction of the predictor variables”. Therefore, RSF will be an
ideal method for the predictive analysis of time to AE data involving
both continuous and categorical data types as inputs and hetero-
genous relationships among all variables including potential kinase-
kinase interactions.

The 65 SMKIs approved by the FDA provide a wealth of data that
are untapped for a pooled analysis to unravel the undiscovered rela-
tionships behind KI and clinical AE. In addition, computational
advances allow us to use population PK models to derive SMKI sys-
temic exposures at the patient level. Consequently, we can construct a
multi-domain, heterogeneous, and high-dimensional dataset inte-
grating patient-level demographic, PK, and safety data, as well as non-
clinical information such as in vitro KI potency profiles of SMKIs. The
RSF-based ML approach allows the establishment of an actionable
model to predict individualized AEs de novo. The established
approach will provide significant insights into the safety evaluation
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Fig. 1| ML-based model was developed based on clinical and non-clinical data
of FDA-approved SMKIs to prospectively identify personalized kinase-specific
safety signals. a Small molecule kinase inhibitors (SMKIs) approved by the U.S.

FDA up to December 31, 2020. SMKIs were listed in the chronological order of their
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and prediction for both on-target and off-target effects of the FDA-
approved SMKIs, and illustrate a proof-of-concept to harness ML and
quantitative systems pharmacology for prospective identification of
personalized kinase-specific safety signals.

Results

Review of AEs following SMKI treatments

Out of the 65 SMKIs approved by the FDA up to December 31, 2020
(Fig. 1a), 16 of them in their registrational studies had patient-level PK
and AE data with available in vitro KI profiling data (the dissociation
constants K4'). A total of 4638 patients from the 16 pivotal studies
were included in the analysis (Supplementary Table 1). The associa-
tions between SMKIs and AEs were integrated for the 16 pivotal stu-
dies (“Methods”). Figure 1b showed an example of vandetanib,
afatinib, erlotinib, and nintedanib, four SMKIs all targeting EGFR. We
pooled the top ten AEs associated with each SMKI and computed their
reporting odds ratio (ROR) to indicate the relative risk of the AEs. The
four EGFR inhibitors shared a similar risk of on-target AEs of
decreased appetite, nausea, diarrhea, fatigue, and vomiting, but
exhibited overall heterogeneous AE profiles, suggesting varying off-
target effects.

ML modeling for KI-AE associations

The RSF-based ML method was implemented to predict clinically
observed AEs following SMKI treatments. The workflow of data inte-
gration and predictive modeling were illustrated in Fig. 1c (“Methods”).
We employed the ML model to identify pairs of KI-AE associations
based on the full integrated database. Subsequently, variable impor-
tance (VIMP) was applied to assess the impact of an input variable on
the model predictive performance. A large value indicates a strong
association between the interested KI and AE, whereas a small or
negative value indicates low or no association. The top 25 kinases for
each of the 5 representative AEs were shown based on their VIMP
values (Fig. 2a). Similar results were obtained using the minimal depth
approach (Supplementary Fig. 2).
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Fig. 2 | Potential association between kinase and AE as identified by ML mod-
eling. a Variable importance (VIMP) assessment of n =444 predictive variables for
five representative AEs. Bar length indicates the VIMP value of the variable, which
represents the difference in the out-of-bag model prediction errors with and
without this predictive variable being permuted®. The identified top 25 predictive
variables are listed for each AE. The blue-highlighted kinases are the representative
experimentally well-established KI-AE pairs®. The yellow-highlighted pairs are
validated by KI-AE pairs found in literature survey results for KI-AE pairs post the®
publication review (for references, see Supplementary Table 3). b Kaplan-Meier

survival (no hypertension) probability curves stratified by VEGFR2 (top) and JAK2
(bottom) inhibitions based on individual-level drug exposures. Each point on the
curve is the average of the ensemble survival function over all patients for a given
time, with the error bands showing 95% pointwise confidence intervals for all
patients together. The divergence between the two survival curves showed that the
patients with “higher inhibition” (>median) on VEGFR2 had earlier hypertension
onset than those with “lower inhibition” (<median), while the inhibition on

JAK2 showed the opposite outcome.

As part of model validation, our results show that based on the
computed VIMP values (Fig. 2a, blue highlight), the model-identified
KI-AE associations successfully covered the experimentally well-
established ones® including VEGFR-hypertension, EGFR/ERBB2-
diarrhea/dermatitis acneiform, EGFR-conjunctivitis, and VEGFR-
proteinuria. Of note, ref. 6 only summarized the reported findings by
2013. As such, we conducted an additional comprehensive survey for
literature published after 2013 on kinase-associated toxicities and
examined the findings against the mode-identified KI-AE pairs. The
literature survey process and results are described in the Supple-
mentary Information section “Literature survey on associations
between kinase targets and AEs.” More predicated KI-AE pairs were
found to be validated by the published experimental evidence
(Fig. 2a, yellow highlight). For instance, for diarrhea, besides its well-
established association with EGFR, the model has also identified its
reported association with other kinases such as FLT3, VEGFR2, and
AXLY. The VIMP results identified other potential associations
that will not be able to be confirmed until new clinical evidence is
published, e.g., the association between hypertension and JAK
family kinases including JAK2 and JAK3. For this case, we generated
Kaplan Meier survival probability curves with patients stratified
into higher and lower inhibition groups against VEGFR2 and JAK2
based on their drug exposures (Fig. 2b). The results showed that
patients with higher inhibition (>median) on VEGFR2 had earlier
hypertension onset than those with lower inhibition (<median),

consistent with the observation in clinical practice. Interestingly,
inhibition on JAK2 showed the opposite outcome. Of note, RSF-based
ML approach showed non-inferior prediction performance when
compared to other ML approaches (please see Supplementary Infor-
mation section “Evaluation of AE prediction performance using Dee-
pHit and ANN”).

Evaluation of AE prediction performance

To evaluate the predictive performance of the ML-based method on
the patient population level, bootstrapping cross-validation was
applied to the integrated patient population dataset. Five representa-
tive AEs that affect various organ systems were selected for the eva-
luation, including diarrhea (gastrointestinal disorders), dermatitis
acneiform (skin and subcutaneous tissue disorders), hypertension
(vascular disorders), conjunctivitis (ocular disorders) and proteinuria
(renal and urinary disorders). For each AE-type evaluation, 80% of the
dataset was bootstrap sampled as the training dataset, and the
remaining 20% of the dataset was used for model validation. The
predictive performance as measured by C-index and 90% confidence
interval are shown in Table 1. The results showed that the ML model
provided reasonably accurate prediction for AEs occurring either at a
lower frequency such as proteinuria (1.5%) or at a higher frequency
such as diarrhea (41.6%), as well as for AEs with either shorter onset
time such as dermatitis acneiform (14 days) or longer onset time such
as conjunctivitis (104 days).
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In the clinical settings, more concerns are given to severe AE with
grade >3 because they are often associated with a high rate of therapy
discontinuation or modification of dosing regimens. The most
common grade 4 AEs were thrombocytopenia, neutropenia, leuko-
penia, lymphopenia, and decreased hemoglobin. The C-index values
based on the bootstrapping cross-validation results were 0.908,
0.920, 0.887, 0.912, and 0.864 for the above five grade 4 AEs
(Table 2). Overall, a C-index of 0.776 was obtained in predicting grade

Table 1| Predictive performances of the machine learning
model on patient population data assessed by C-index

AE (patients Time to AE onset® C-index (90% confidence
affected, %) median interval)

[days] (range)
Diarrhea (41.6) 25 (1, 616) 0.712 (0.689, 0.735)
Dermatitis 14 (1,337) 0.852 (0.779, 0.912)
acneiform (2.4)
Hypertension (9.3) 57 (1, 663) 0.782 (0.751, 0.809)
Conjunctivitis (2.2) 104 (3, 672) 0.584 (0.510, 0.638)
Proteinuria (1.5) 58 (1, 591) 0.784 (0.696, 0.868)

“Distribution of time to event for each AE dataset is displayed in Supplementary Fig. 5.

Table 2 | Predictive accuracy for grade 4 life-threatening AEs

4 (life-threatening) AEs, and a C-index of 0.724 was obtained in pre-
dicting grade 5 AE (death).

In addition, as one application of the developed model is to
predict TEAEs of interested SMKIs with known KI profiles at patient
level, leave-one-out cross-validation method was applied to assess
the patient level predictive performance. Overall, a mean C-index
value of 0.701 was obtained with the leave-one-out cross-validation,
indicating that the ML model provided good prediction at the
individual level.

External validation on independent SMKI datasets

Data from 116 and 136 patients with breast cancer in two neratinib
monotherapy studies, as well as 349 patients with chronic mye-
logenous leukemia in an imatinib monotherapy study, were
selected as independent datasets for external model validation.
We applied the previously trained ML model to predict patient
level AE probabilities for these studies and averaged across the
study population. Using 10% incidence as a threshold (the
reported incidence in >10% subjects was used as criterion for
“frequently-reported TEAE” in the clinical study reports of ner-
atinib and imatinib), the model predicted AEs with high prob-
abilities cover all the frequently reported TEAEs in neratinib
studies, and the majority of frequently reported TEAEs in imatinib
study, indicating good model sensitivity. While there are model-
predicted AEs with >10% probability that was observed for <10%
of patients, the model specificity is not compromised considering

Top five grade 4 AE Patient affected (%) C-index (median)  thousands of AEs are true negatives with predicted probabilities
Thrombocytopenia 5.0 0.908 of <10%. Particularly, the specificity is above 95% for all three
Neutropenia 4.3 0.920 datasets. Figure 3 indicates that the most frequently reported (in
Leukopenia 12 0.887 >10% of patients) TEAEs are generally well captured by ML models
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Fig. 3 | External validation on independent SMKI datasets: relationships
between the model predicted AE probabilities and the observed AE incidences.
Columns a-c are results based on two neratinib and one imatinib studies,
respectively. The top panels show the scatterplots for the corresponding pre-
dicted probabilities vs all the frequently reported TEAEs (in >10% of study
subjects) and the bottom panels for the corresponding observed TEAEs vs all

AEs predicted to occur in >10% of study subjects. On each plot, the blue line
represents the fitted linear regression line, and the gray band represents the 95%
confidence interval; Pearson’s r (two-tailed) with p value is displayed. Yellow
points represent four frequently reported TEAEs with predicted probabilities

of <0.1; purple points AEs with both predicted probabilities and observed inci-
dences of 210%.
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marginally below the threshold 10%; for “dysgeusia” and “weight
increased”, it is noticed that event occurrence rates of these two
AEs are 5 and 2%, respectively, in the training dataset used for
building ML models. This level of sparsity in data could com-
promise the ML model performance, due to the high data
dependency of ML approaches. Overall, the model-predicted AE
probabilities are significantly correlated with the observed fre-
quencies for all three datasets. We also conducted analyses using
two higher threshold values (i.e., 15 and 20%) and consistent
results were observed (Supplementary Fig. 3).

As an additional validation, we compared the predictions from ML
models with AEs reported in the FDA Adverse Event Reporting System
(FAERS) regarding neratinib and imatinib. The validation process and
results are described in the Supplementary Information section
“Comparison of the predictions from ML models with AEs reported in
FAERS.” Overall, the majority of top FAERS-reported AEs were cap-
tured by the ML model with predicted high probability. Of note, there
are several AEs specific to pharmacovigilance or AE with preferred
terms not reported in clinical trials (e.g., “off label use” in Supple-
mentary Table 5)—since the predictive ML model was developed based
on data from clinical trials, there is no model and prediction for
those AEs.

Interactive web application for identification of personalized
kinase-specific safety signal

In this study, the validated ML method systematically evaluated the
potential associations for a total of 948,090 KI-AE pairs combining
442 kinases with 2145 AEs in customized preferred terms. To present
the daunting amount of learned information, we established a non-
commercial and interactive web application “Identification of Kinase-
Specific Signal” (https://gongj.shinyapps.io/ml4ki) that the users can
utilize to query, retrieve, analyze, and visualize kinase-AE or AE-kinase
associations. The web application can support (1) queries of model-
identified KI-AE associations by searching a particular AE or a parti-
cular kinase, (2) prediction of personalized TEAE for a compound of
interest based on the KI profiling and drug exposure level, where the
compound can be either an FDA-approved SMKI or a new compound
in development.

Discussion

In this study, leveraging patient-level demographic information and
drug exposure data, off-target and on-target AEs, we employed ML
method to prospectively identify personalized kinase-specific safety
signals. The credibility of the modeling results have been established
by its capability to (1) effectively identify the significant correlations
between Kls and AEs, some of which were validated by well-established
KI-AE associations in the clinic and/or literature; (2) predict grade 4
and 5 AE occurrences at the population level with a mean C-index of
0.776 and 0.724, respectively; (3) predict the AE occurrence at the
patient level with a mean C-index of 0.701; and (4) demonstrate a
significant correlation between the model predicted AE risk and the
observed safety profile of TEAE with independent datasets from two
external SMKIs.

The high attrition rate of drug development across the pharma-
ceutical industry has been well documented, and attributed to
undesired safety profiles”®. Leveraging big data methodologies repre-
sents not only one of the 21st century modernization initiatives for
drug R&D but also an important part of personalized medicine®. Big
data technology and data science can transform huge, heterogeneous,
and dynamic biological and clinical data into interpretable and
actionable models. Numerous computational methods have been
developed to predict AEs based on chemical structure, biological
activity and spectra, binding profiles of protein-ligand, and pheno-
typic information”®*?2, However, these methods have not taken
patient-level drug exposures into account”. In particular, Yang and

colleagues integrated the information of AE frequency for SMKIs and
SMKIs inhibition for KTs (kinase targets) in terms of Ky from literature
mining to generate an AE-KT association score matrix, where the
higher score value indicates the more prioritized AE-KT association®.
Our previous work** established a similar matrix of AE-kinase pairs
and applied disproportionality analyses to identify significant KI-AE
associations. Federer and colleagues focused on the identification of
the linkage between drug and AE rather than the kinase-AE pairs®. It is
worth noting that our current study integrated published in vitro
kinome data (Ky) similar to what was carried out by Yang®, although
with increased kinase targets and access to patient-level clinical data.
In general, the previous works cannot offer a framework to support AE
prediction at an individual subject level as in our current study. Spe-
cifically, the analysis data integrated multi-domain variables including
in vitro kinase inhibitory profiles of the tested substances, patient
demographics, and individual drug exposure to predict the time and
occurrence of AEs. The patient-level PK data make it feasible to
account for a portion of interindividual variability in clinical safety
response towards the same dose. The multi-domain information, from
the molecular level, patient demographic level, and individual PK level
as aresult of in vivo drug-human pharmacological interaction, has led
to satisfactory model performance in terms of positively capturing all
known KI-AE pairs and predicting individual AE occurrences with a
mean C-index of 0.701.

The ML-based model can be readily scaled up to incorporate more
information such as in vitro kinome and pharmacogenomic data to
improve its predictive performance. Upon the availability of more
relevant data, an upgraded version of the ML model can gain more
power in terms of predictive accuracy and precision at the patient level
and potentially serve as a reliable tool that can be clinically imple-
mented to support precision medicine. A caveat should be given to the
in vitro kinase inhibitory dataset used for model building'. This
dataset includes a mixture of wild-type kinase and mutant kinase that
are not strictly disease-associated. There has been recent in vitro
profiling of SMKIs against disease-associated mutant kinases”. How-
ever, most compounds covered in this dataset have not entered clin-
ical trials. The analysis dataset in this report was constructed with the
intent to include kinase inhibition data that can maximally cover the
approved SMKIs.

The choice of a ML method is contingent on an array of factors
including data type, data size, accuracy and precision, and computa-
tional efficiency. In addition to the RSF method, other ML techniques
including artificial neural network (ANN), support vector machine
(SVM), and deep learning methodology can be tuned to conduct time-
to-event analyses®*°, They are all poised to have a superior predictive
performance to the conventional regression-based approaches for
“unconventional” survival hazard-predictor relationships, such as ones
possessing high nonlinearity. Our simulation-based evaluation has
shown comparable performances for RSF and ANN*. We also eval-
uated the data with deep learning (particularly, DeepHit*> and ANN*®
(please see Supplementary Information section “Evaluation of AE
prediction performance using DeepHit and ANN”). The results are
similar to ones based on RSF but with much higher computational cost.

ML approaches are inherently non-mechanistic and non-
parametric. Consequently, the ML modeling outcomes can be less
advantageous than parametric approaches in terms of data inter-
pretation and result extrapolation. This disadvantage of ML approa-
ches could be partially compensated with covariate importance
evaluation techniques (e.g., VIMP), the connection weights approach,
the partial derivatives for ANN, etc. We adopted the VIMP to identify
predictive variables for the interested AEs. For example, hypertension
has been recognized as a classic on-target adverse effect as a result of
VEGF pathway inhibition®. This relationship is consistent with the
VIMP analysis results, where VEGFR family kinases including FLT1
(VEGFR1), VEGFR2, and FLT4 (VEGFR) have been identified as the top 1,
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2, and 15 kinases associated with hypertension (Fig. 2). Interestingly,
the VIMP analysis has also identified an association between JAK2 and
hypertension, which is in line with a recent experimental finding that
the activation of JAK-STAT pathway plays an important role in the
development of Angiotensin Il-dependent hypertension®. Despite
interesting findings, as predictive analysis, the false discovery of KI-AE
associations from ML model prediction should be carefully examined,
especially given that ML model is a type of method that highly relies on
data sufficiency and quality. Conceptually, the determination of false
discovery of KI-AE associations requires abundant experimental evi-
dence to demonstrate a certain KI-AE association does not exist.
However, it is hard to collect information to determine which identi-
fied pair is a false discovery in practice, as most relevant literature
reports identified an association between KI and AE, rather than the
opposite. As such, our model validation strategy is to evaluate the
model-identified KI-AE associations against the ones confirmed in lit-
erature reports. The model-predicted KI-AE interaction pairs that have
not been experimentally verified can support hypothesis generation
for experimentalists and clinicians but still need further validation
using clinical/experimental evidence.

Taken together, the developed ML-based KI-AE model can criti-
cally serve the scientific community from three fronts. First, the sys-
tematically identified KI-AE pairs, as hosted on the interactive
application, provide a platform for experimentalists to identify and
verify undiscovered KI-AE pairs that can provide critical insight into
the origin of drug safety signals. The newly identified KI-AE pairs, yet
to be verified, assume reasonable credibility since they are discovered
from the same database using the same algorithm and with positive
controls of confirmed KI-AE pairs reported in the literature. Second, it
can be tuned to a precision-medicine tool to mitigate individual
patient safety risks by forecasting clinical safety signals using indivi-
dual demographic, medication, and drug exposure information. Third,
it holds promise as a modern drug development tool to screen and
compare SMKI target therapies from a safety perspective.

Methods

Data collection and extraction

All FDA-approved SMKIs up to December 31, 2020, were considered.
The clinical and non-clinical data of each SMKI were collected. The
in vitro kinase inhibitor profiling datasets were curated from the lit-
erature and open-access biochemistry databases. Clinical data
including PK data, AE records, and patient demographic information
were obtained from the clinical trials used to support marketing
approval, through FDA internal eCTD (electronic Common Technical
Document) software. The study is a meta-analysis across registrational
trials, and we did not generate any new clinical data that involves
human subjects; therefore no ethical approval was required.

In vitro kinase inhibitor profiling of SMKis. In vitro kinase inhibitor
profiling, which assesses the inhibition potency and selectivity of
SMKIs against kinase targets, has been developed on a variety of
platforms'®*253°, We selected the dataset’ that reported the dis-
sociation constants (Ky) of SMKIs against 442 kinases using a compe-
titive binding assay because the KI information of the dataset was
collected from the same research group and/or experiment and had
the maximum coverage of the approved SMKIs. This dataset includes
mutated forms of kinases (e.g., EGFR mutations L858R, G719S), which
we remained uncombined in our data analysis, considering different
mutants may exhibit different clinical therapeutic and safety
profiles*>*, We also evaluated another dataset®® that reported the
percent inhibition of SMKI against 314 kinases using an enzymatic
assay and reported the results in (Supplementary Table 6).

Definition of AEs. AE data were retrieved from the safety information
reported in the clinical trials of SMKIs. AEs were coded using the

Medical Dictionary for Regulatory Activities (MedDRA). AE severity
was mainly graded from grade 1 through 5 per the Common Termi-
nology Criteria for Adverse Events (CTCAE, Version 3.0) except
for nintedanib with AE severity being described by general categories
(i.e., mild, moderate, and severe). Preferred terms coded upon
different versions of MedDRA (ranging from 10.0 to 18.1) were nor-
malized and aggregated according to Version 21.0. In addition,
a subject expert panel created a customized set of preferred terms to
consolidate related AEs, using the similar practice applied for
the FDA review of marketing applications to routinely group pre-
ferred terms when tabulating AEs rates for the purposes of the
risk:benefit analysis as well as for concise labeling on the US Package
Insert for oncology drug products. For example, in the review
of vandetanib for the treatment of medullary thyroid cancer, Table 26
of the US FDA review notes that “rash” includes the terms “rash,
rash erythematous, generalized, macular, maculo-papular, papular,
pruritic, exfoliative, dermatitis, dermatitis bullous, generalized ery-
thema, and eczema” (Medical Review of application 022405 available
at Drugs@FDA). This grouping of terms is also reflected in the USPI
of vandetanib (trade name CAPRELSA, CAPRELSA USPI). We
used standard grouping categories employed by the respective
review divisions that approved the drug and associated labeling
for the matching of AE terms. Other examples of the customized
preferred terms include: “vomiting/nausea” encompassing both
“vomiting” and “nausea”; “stomatitis” encompassing preferred
terms of “mouth ulceration,” “oral mucosal eruption,” and “stomati-
tis”. Post data processing, we mapped a total of 3996 unique AE terms
as reported in the original safety datasets to 2145 customized
preferred terms.

ROR analysis. We applied ROR analysis to summarize how common an
AE was reported for patients taking a particular SMKI compared with
the frequency at which the same AE was reported in other SMKIs*2. A
ROR greater than one for a drug-AE combination indicates that the
drug of interest had a higher reported frequency of the AE than the rest
of the drugs in the comparison group.

Estimation of individual drug exposure using population PK
modeling

We estimated SMKI exposures at the patient level through population
PK modeling in consideration of dosing records, demographic infor-
mation, and other covariate data if applicable. We included all patients
who received at least one dose and had at least one evaluable PK
measurement. The population PK model was developed using a non-
linear mixed-effect modeling approach implemented in NONMEM
(Version 7.4, Icon Development Solutions, Ellicott City, MD). First-
order conditional estimation with interaction (FOCEI) was applied in
the modeling.

If a population PK study report was included in the New Drug
Application (NDA) package, the sponsor-supplied model was reviewed
and validated before implementation. Otherwise, self-built population
PK models were used to estimate patient-level drug exposures. In this
case, a base compartmental model was selected by assessing all con-
ventional model structures in combination via appropriate goodness-
of-fit measures as well as visual inspection of diagnostic scatter plots
(e.g., observed vs. predicted concentration and residuals/conditional
weighted residuals vs. predicted concentration or time plots), para-
meter estimate precisions, and the minimum objective function values
(OFVs). We also accommodated all statistically significant variables
that were predictive of individual drug exposures in the final popula-
tion PK model. Subsequently, individual drug exposures were com-
puted based on the Bayesian post hoc estimates of PK parameters
using the final model. In the analysis, we used the computed patient-
level average plasma concentration at a steady state (Cavess) as a
measure of individual drug exposure. A total of 16 population PK
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models were used for each of the SMKIs included in the final data
analyses.

Modeling safety signals using ML

The workflow of data integration and predictive modeling were
illustrated in Fig. 1c. The analyses were conducted using R (Ver-
sion 3.6.0).

Data integration. Clinical and non-clinical data were integrated as the
RSF model inputs. Patient demographic information (e.g., age and
sex), individual drug exposures, and in vitro Kl profiles of the SMKIs
were the predictor variables. The empirical measure of KI was com-
puted as Cave,ssij/kqj, Where Cave,ssij is the average plasma con-
centration of SMKI,j for subject i, and Kd; =(Kd;,Kd,, ...,Kdy,) is the
vector for the dissociation constants of SMKI j against m kinase targets
(the missing values in the in vitro kinase profile is imputed as Ky = 1e4),
rendering a unique but normalized KI profile for each individual across
all SMKIs. As a result, the drug name behind each SMKI becomes
irrelevant. Time from treatment start to the first occurrence of an AE
event was the response variable (output) of the ML-based survival
analysis model. Data censoring occurs when no AE occurred at the end
of the study.

Time-to-event analysis based on RSF. We implemented RSF* as a
ML-based approach to model AE occurrence. An RSF was computed
by an ensemble of binary decision trees. It can select the most
important variables that impact the interested AE events. Boot-
strapping and random node splitting were applied to grow an
ensemble of independent decision trees to form the RSF. Post the RSF
model establishment, variable importance (VIMP)** or minimal depth
measurement** were used to assess the impact of an input variable
(i.e., a specific kinase) on the model predictive performance. A large
VIMP indicates a strong association between the interested KI and AE;
a small or negative VIMP value indicates low or no association,
while a small minimal depth indicates a strong association. We also
applied a recently developed deep-learning-based survival analysis
method (i.e., DeepHit) and ANN to compare prediction performance
against RSF.

Performance evaluation of the predictive survival model. Con-
cordance index (C-index) was used to assess the performance of the
predictive survival model. C-index is related to the area under the
receiving operating characteristic (ROC) curve and is commonly used
in prediction error estimation. C-index theoretically ranges between O
and 1 with the value of 0.5 representing the performance of a random
model and 1 representing a perfect prediction. In addition, C-index
does not depend on a single fixed time for evaluation and accounts for
the presence of censoring.

Two evaluation approaches were used to examine the predictive
performance of an established model. To evaluate patient-level
AE predictive performance, we adopted the leave-one-out (LOO)
cross-validation approach, where one of the patient data was left out
as the testing data, and the rest of the data were used as training
data to establish the ML survival model. Each patient data was rotated
as the testing data so as to conduct predictions for all patients
based on the model developed from the corresponding training
datasets. To evaluate AE predictive performance on the patient
population level, a bootstrapping approach was applied with
500 iterations. In each iteration, the original data were split into a
bootstrap training dataset and a corresponding testing dataset.
Samples of bootstrap training dataset were drawn without replace-
ment from the original data. We first trained the predictive model
with the bootstrap training dataset, then predicted the outcomes
of the testing dataset. The predictive performance was subsequently
measured by the C-index. The bootstrapping estimate of the

prediction accuracy was calculated by averaging the values of C-index
from all the iterations.

External model validation on independent datasets. In addition to
the cross-validation, we undertook an external validation on clinical
datasets of two different SMKIs, neratinib and imatinib, apart from
the 16 SMKIs used for training the predictive ML model. These two
SMKIs are selected for the analysis because they have accessible KI
information (Kj), as well as patient-level exposure and safety data
available for certain clinical trials. Patient-level drug exposure data
were not collected for the pivotal studies but were available for other
Phase 1I/lll monotherapy studies for neratinib and imatinib*™*’. We
applied the previously trained ML model to predict AE probabilities for
patients in these studies, identified the AEs with high probability, and
compared them with the most frequently reported (reported for 10%
of subjects) TEAEs in the corresponding study report as an assessment
of model performance.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The data used in this study were derived from the third-party regis-
trational clinical trials data (including individual-level data), which
cannot be made publicly available due to confidentiality obligations
and regulation policies in FDA. The processed datasets may be avail-
able under restricted access for bona fide research. Specific requests
for de-identified population-level data should be sent to the corre-
sponding author upon ethical review. All requests will be promptly
reviewed within 15 working days. We have made secondary data and
information publicly accessible via the web application “Identification
of Kinase-Specific Signal” (https://gongj.shinyapps.io/ml4ki).

Code availability
The custom codes used in this manuscript are available on the GitHub
page https://github.com/xj-gong/ml4Kki.
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