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A B S T R A C T   

The COVID 19 pandemic led to lockdown and restrictions on anthropogenic activities not only in India but all 
over the world. This provided an opportunity to study positive effects on environment and subsequent impact on 
terrestrial ecosystems such as urban, peri-urban, forest and agriculture. A variety of studies presented so far 
mainly include improved air quality index, water quality, reduced pollutants etc. The present study focused on 
few novel parameters from both polar and geostationary satellites that are not studied in context to India, and 
also attempts deriving/quantifying benefits rather than merely indicating qualitative improvements. Due to lack 
of anthropogenic activities during complete lockdown-1 (21 days from 25 March 2020) in India nighttime 
cooling of land surface temperature (LST) of the order of 2–6 K was observed. Amongst 10 major cities, Bhopal 
showed highest nighttime cooling. The cooling effect in LST was evident in 80% of industrial units distinctly 
indicating cooling trend. Vegetation fires were analyzed in 10 fire-prone states of India. Compared to past four- 
years average number of occurrences, only 45% fire occurrences occurred during lockdown, indicating strong 
effect of lockdown. The study also revealed that, there is increase in gross primary production in forest ecosystem 
to the tune of maximum 38%, during this period. Though delay in rabi crop harvest date by 1–2 weeks in 
majority of north Indian states was observed rise in rabi crop productivity of the order of maximum 34% was 
observed which is attributed to favorable environmental conditions for net carbon uptake. About 18% reduction 
in volumetric agricultural water demand was estimated in Indo-Gangetic region, parts of Gujarat and Rajasthan. 
Apart from controlling the spread of the disease, the lockdown restrictions were thus also able to show positive 
effects on the environment and ecosystem which might influence to rethink on strategies for sustainable 
development.   

1. Introduction 

Majority of the countries of the world were grabbed by severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2) which was first re-
ported from China. A novel Corona Virus Disease that was originated in 
December 2019, was named as COVID-19 by the World Health Orga-
nization (WHO). In the second week of January 2020, first case outside 
China was reported (www.covid19.who.int, 2020). The disease started 
rapidly spreading/getting detected in various countries. While in India, 
first case was detected on January 30, 2020; the rate of spread went on 
increasing and spread across all metropolitan cities and the state capi-
tals. As a result, during third week of March, complete closure of places 
of mass gatherings (entertainment places, shopping malls, etc.) was 

imposed. The WHO declared this as ‘pandemic’ on 11 March 2020, 
following which a large number of countries announced complete 
closure of activities (except essential and emergency services), which is 
referred as ‘lockdown’. China was the first country to go into two and 
half month’s lockdown starting from January 23. To control the rate of 
spread and number of casualties within India, lockdown was imposed by 
the Government of India 25 March 2020 onwards-initially for a period of 
21 days and was later extended till 31st May in a phase-wise manner. 
Lockdown restrictions led to complete shutdown of all major industries, 
medium-scale enterprises (MSMEs), commercial hubs, construction ac-
tivities, closure of almost all market commodities except the essential 
ones, vehicular traffic etc. 

After the lockdown, significant changes in the environment 
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(primarily air quality and water quality) were noticed, studied and 
shared by large population in various parts of the world (Sharma et al., 
2020; Siddiqui et al., 2020; Garg et al., 2020). There was no significant 
human activity on otherwise densely populated cities/roads. The fact 
triggered wild animals coming out of its territory. Images and videos of 
wild animals for example-elephants in Kerala, lions in Gujarat and Civet 
cats in Karnataka-roaming inside towns, were populated by social media 
users. Apart from this, a large number of scientific studies reported 
significant improvement in environment. Lal et al. (2020) showed a 
comparison of pollutants (such as NO2, CO2, aerosol optical depth), 
highlighting reduced industrial pollution at global scale vis-à-vis spread 
of the infection. Improvement in air quality was also observed at 
regional level in China and Europe (Zambrano-Monserrate et al., 2020), 
Brazil (Nakada and Urban, 2020), United states (Bermen and Ebisu, 
2020) to name a few. All of the studies focused particularly on NO2 
and/or PM2.5 being primary indicators of pollution. In context to India, 
Sharma et al. (2020) reported reduced pollutant level and improvement 
in air quality index in 22 cities of India. Similar observations confirming 
improved air quality were reported by Lokhandwala and Gautam 
(2020), Mahato et al. (2020),Shehzad et al. (2020) Siddiqi et al. (2020), 
Singh and Chauhan (2020), Somani et al. (2020) and Srivastava et al. 
(2020) in major cities across India, many of them concentrating on 
Delhi, other metropolitan cities as well as densely populated 
Indo-Gangetic belt (Das et al. 2020, 2021). Significant reduction in 
forest fires was reported by Gupta et al. (2020) in parts of Western 
Himalayas, India. Not only in air quality, significant improvement was 
also reported in water quality in lake (Yunus et al., 2020), rivers (Garg 
et al., 2020) and ground water quality (Selvam et al., 2020) owing to 
minimal discharge of industrial wastes and slurry into rivers. These 
studies have merit of assessing environmental parameter(s) both quali-
tatively and/or quantitatively primarily for pollution aspects. But such 
lockdown might have left the other important imprints in the terrestrial 
ecosystem for rural and industrial sectors related to different economic 
activities which would enable decision makers to think on building new 
strategies for climate mitigation by taking short-term and long-term 
measures. Implications of such significantly reduced pollutants in 
environment over other ecosystems (such as urban, peri-urban, agri-
culture and forest etc.) though evident, were not quantifiably reported 
over India. Also, response of vegetation systems and feedback to envi-
ronment as well as perceptible gain for betterment of human beings (for 
example improvement in carbon sequestration) are some of the gap 
areas from published studies. This paper focused on tracing reduced 
imprints of anthropogenic activities and atmospheric forcings in rural 
and industrial sectors using multi-temporal satellite data or products 
from both LEO (Low Earth Orbiting) and GEO (Geostationary Earth 
Orbiting) platforms. Four new aspects have been covered to assess and 
quantify such as (i) night-time surface cooling especially in cities and 
industrial sectors, (ii) vegetation fires, (iii) impact on crop harvest and 
productivity and (iv) impact on agricultural water demand due to the 
lockdown effect. 

In tropical and sub-tropical climate such as in India and other Asian 
countries, night-time cooling is essential as it offers relief from heat 
wave, particularly during March to May and is very relevant in terms of 
electricity consumption, human comfort and even mortality. Night-time 
land surface temperature (LST) is, therefore, widely studied in urban 
environment (Holmes et al., 2013; Gao et al., 2005) to detect heat island 
and its variability. Throughout the day-time, urban surfaces absorb 
incident solar radiation. Particularly the dark surfaces (such as roads) 
absorb significantly more solar radiation and tend to warm faster. Ma-
terials commonly used in urban areas such as concrete and asphalt, have 
significantly different thermal bulk properties and surface radiative 
properties (such as albedo and emissivity) than the urban surroundings. 
Surfaces have differential emission characteristics for longwave infrared 
radiation (LWIR) in 8–14 μm, short-wave infrared radiation (SWIR) in 
1.2–2.5 μm and middle infrared (MWIR) radiation in 3–5 μm wavelength 
regions of electromagnetic spectrum. During daytime in presence of sun, 

the emission responses are a mix of LWIR, SWIR and MWIR, while 
during night time, only LWIR dominates the emission. In addition, 
thermal stability remains high during night-time due to lesser depth of 
nocturnal boundary layer and over near-neutral atmospheric stability 
conditions. This forms the basis of using night-time LST for quantifying 
heatwave and cold wave situation. The LST of urban and industrial 
landscape in peri-urban areas are influenced by presence of con-
crete/asphalt structures (buildings and roads), urban pollutants and 
anthropogenic aerosols in the atmosphere particularly due to burning of 
fossil fuels, and emissions from industries. Emission of pollutants is one 
of the most important aspects of human activities in urban and 
peri-urban industrial areas (McDonnell and MacGregor-Fors, 2016). The 
present study investigates the effect of reduced level of pollutants and 
emissions during lockdown phase on night-time LST. 

In rural India, majority of the vegetation fires are anthropogenic in 
origin. These fires can be classified as crop fires, where fields are burnt 
post-harvest for easy manure during the next crop; and forest fires, 
which are unintentional, occur due to negligence and ignorance of forest 
dwellers as well as recreation activities majority of which are anthro-
pogenic in origin (Satendra and Kaushik, 2014). Fires are typically seen 
to start at the end of January and rapid increase during the months of 
February to May. Vegetation fires are well-detected by the majority of 
the MWIR sensors using hot-spot detection technique and is provided as 
product to the user community (Joseph et al., 2009). 

Crop growth cycle in an agricultural season is influenced primarily 
by weather variables such as temperature, humidity, bright sunshine 
hours (Mathison et al., 2018) as well as planting and harvesting dates 
determining length of growing season. The fluctuations in weather 
variables in critical crop growth stages during vegetative and repro-
ductive phases can alter the occurrence and duration of phenological 
events. The lockdown period coincided with the maturity and harvesting 
periods of many rabi (post south-west monsoon corresponding to 
November to April) crops in northern India. In current study, we 
investigate the impact on rabi harvest in different north Indian states and 
crop productivity due to combined effects of restricted movement but 
with better environmental quality during COVID lockdown. Agricultural 
water demand is important aspect for water management and water 
savings (Shweta et al., 2018). We have also investigated impact of 
sudden change in weather and environmental conditions on agricultural 
water demand in different north Indian states through atmospheric 
evaporative demand in terms of reference evapotranspiration and crop 
coefficient. 

2. Study area and datasets 

2.1. Study area 

The study area is Indian landmass which comprises of 329 ha with 
population of nearly 1380 million (www.worldometers.info, 2020) and 
is situated in the tropical region with the geographical extent spanning 
from 8.06oN to 37.10oN and 68.11oE to 97.41oE. India has 58% total 
geographic area as cropland, 22% area under forests and 6% area under 
urban (NRSC, 2014). India ranks second in global population, accounts 
for 17% of global population, with its 31% population staying in urban 
areas. Majority of the urban areas are associated with medium to 
large-scale industrial zones of various nature and are typically located in 
the fringe areas of the cities otherwise called peri-urban patches. In-
dustrial and vehicular pollution are at very high levels in majority of the 
cities with average PM2.5 value for the country to be 58 μgm− 3, while 
ambient value in major cities including Delhi was found to be in the 
range of 130–170 μgm− 3. 

India is the hub of industries including pharmaceuticals, textiles, 
automobiles, consumer products and warehousing. Certain parts of the 
country such as regions surrounding Delhi (states of Haryana, towns 
such as Gurgaon, Noida), Maharashtra (cities like Pune, Nasik, Aur-
angabad), West Bengal (Asansol, Durgapur, Haldia), Gujarat (Sanand, 
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Dahej, Kalol, Mundra port), Tamilnadu (Sriperumbadur, Oragadam), are 
few such large industrial zones in India, with Tamilnadu having largest 
number of factories in India (Invest India, 2020). Apart from industries, 
large-scale information technology parks exist in cities like Noida, 
Hyderabad, Pune, Bengaluru and Chennai. The land use land cover map 
overlaid with distribution of large industrial areas more than 3 sq. km is 

shown in Fig. 1. 
Other than industries, agriculture is primary source of livelihoods for 

over 70% of population in India and rural India contributes approxi-
mately 17% in the country’s Gross Domestic Product (GDP). Rainfed and 
irrigated systems are commonly practiced in croplands of India, with 
rainfed system constituting 51% of country’s agriculture area (MoAFW, 

Fig. 1. Land use land cover map of India overlaid with locations of large-scale industrial units having areas more than 3 sq km across different states.  
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2017). 

2.2. Datasets 

2.2.1. Satellite datasets 
The study utilizes both sun-synchronous polar or low-earth orbiting 

(LEO) and geostationary (GEO) satellite observations from Indian and 
global missions. Among these, the LEO satellites are MODIS (Moderate 
Resolution Imaging Spectroradiometer), Suomi-NPP (Suomi-NPP 
(Suomi NPOESS Preparatory Project), SMAP (Soil Moisture Active Pas-
sive) and GEO satellite is INSAT (Indian National Satellite) 3D. The 
satellite data and the bio-geophysical products used from these LEO- 
GEO satellites in the present study, are given in Table 1. 

Among the LEO missions, MODIS (Moderate Resolution Imaging 
Spectroradiometer) instrument is operating over AQUA and TERRA 
platforms and has capability to sense the data over 36 spectral channels 
spanning across visible to longwave infrared bands (from 0.4 μm to 14.4 
μm) at varying spatial resolutions of 250 m, 500 m and 1000 m. This 
provides capabilities to map not only the land cover features (such as 
vegetation, water, open areas) but also atmospheric constituents like 
water, ozone and also land surface temperatures (LST). MODIS has 
ability to observe majority of the earth surface at daily interval and 
therefore is one of the most widely used instruments for a wide number 
of applications. Various products and datasets are provided to global 
user community via multiple data archival systems (e.g. www.earthexp 
lorer.gov). A large number of standard products for land, ocean, air and 
cryosphere are routinely generated using MODIS data and are distrib-
uted to global scientific community. 

MODIS land surface temperature (LST) is retrieved at 1 km spatial 
resolution based on day-night algorithm. In the present study, night- 
time LST of MODIS AQUA at 130 AM retrieved from 7 thermal 
infrared bands (Wan, 1999) were used. MODIS vegetation indices and 
canopy-related products are produced as 8-day composites. Normalized 
Difference Vegetation Index (NDVI) product is derived from atmo-
spherically corrected bi-directional surface reflectance. The product 
provides consistent spatial and temporal vegetation properties and are 
commonly used in ecosystem and climate change studies (Huete et al., 
1999). The MODIS TERRA eight-day product (MOD17A2H) on gross 
primary productivity (GPP) at 500 m spatial resolution was acquired for 
the period of November–May during successive rabi seasons 
(2018–2020). The data for the whole India were acquired from the EOS 
data gateway. The product is based on the radiation-use efficiency 
concept (Monteith, 1977). The inputs for GPP product are 
satellite-derived FAPAR (fraction absorbed photosynthetically active 
radiation), surface insolation from global meteorology, modelled 
ambient temperature and vapor pressure deficit from land surface 
temperature and radiation conversion efficiency factor (Running et al., 
2000). 

The NASA Suomi-NPP VIIRS (Suomi NPOESS Preparatory Project- 
Visible Infrared Imaging Radiometer Suite) sensor aboard NOAA satel-
lite has been providing vegetation fire product based on combination of 
visible and thermal infrared bands. Based on I1 to I5 high resolution 
spectral channels (0.640 μm, 0.865 μm, 1.610 μm, 3.740 μm and 11.45 
μm), complemented by M13 spectral channel (4.05 μm) from middle 
infrared region, VIIRS provides daily product of vegetation fires. In 
comparison to MODIS fire, VIIRS fire product is available at spatial 
resolution of 375 m and has better response for detecting vegetation 
fires of smaller area (Giglio et al., 2016). Under pristine observation 
conditions (though rare in reality) it can detect fires up to 50 sq m in size 
(www.earthdata.nasa.gov). 

A L-band radiometer aboard SMAP (Soil Moisture Active Passive) 
satellite is designed to detect presence of water in top layer (within ~ 
0.1 m depth) of the soil. The surface soil moisture was used to analyze 
soil moisture variability in the year 2020 to understand any events 
related to subsequent changes in soil moisture. 

INSAT 3D (Indian National Satellite) is the geostationary satellite 
over India region which provides frequent observations at 4 km spatial 
resolution over India and surrounding region. INSAT has 6 spectral 
channels (1 in visible region, 1 in shortwave infra-red region and 2 each 
from middle infra-red and longwave infra-red and data are distributed to 
research community through MOSDAC (Meteorology and Oceano-
graphic Satellite Data Archival Centre: www.mosdac.gov.in) (IMD, 
2014). Reference evapotranspiration (reference ET or ET0) product is 
generated based on a fusion approach using daily insolation product 
from INSAT 3D Imager and gridded short-range weather forecast of 
non-radiative variables from NWP model within FAO56 model frame-
work employing algorithm used by Vyas et al. (2016). Reference ET 
describes evaporative demand of the atmosphere for a given climatic 
region and basic input to compute crop water demand. 

2.2.2. Ancillary datasets 
Ancillary datasets comprise of shapefile of industrial layer which was 

acquired from OpenStreetMap (OpenStreetMap, 2020). Polygon layer of 
industries was used and polygons with area ≥3 sq km (indicating large 
industrial units) were used for analyzing night-time LST changes (ΔLST) 
and to extract mean values for each polygon of layer. National forest 
cover of India (year 2015) procured from Forest Survey of India (FSI, 
2015) was used to analyze fires belonging to forest areas. Further, pan 
evaporation data during April (1–30) and May (1–20) for year 2018, 
2019 and 2020 were acquired from limited number of 
agro-meteorological observatories viz. (i) Punjab Agricultural Univer-
sity, Ludhiana (30.90

◦

N and 75.80
◦

E) (ii) Rajendra Agricultural Uni-
versity, Samastipur, Bihar (25.85

◦

N and 85.78
◦

E), (iii) Rajasthan 
Agricultural Research Institute, Jaipur (26.84

◦

N and 75.79
◦

E) and (iv) 
Main Rice Research Station, Nawagam, Gujarat (22.79

◦

N and 72.57
◦

E) 
in this study. 

Table 1 
Details of data and bio-geophysical products from LEO-GEO satellites.  

Satellites Sensors Product name Product code/version Period Spatial 
resolution (m) 

Temporal 
resolution 

Source 

MODIS 
(LEO) 

AQUA 
TERRA 
TERRA 

LST 
NDVI 
GPP 

MYD11A1 version 6 
MOD13A2 version 6 
MOD17A2version 6 

1 January to 15 April 
2019 and 2020 
22 March to 6 April 
2019 and 2020 
05 March to 14 April 
2019 and 2020 

1 km 
500 m 
1 km 

Night-time 
(130 AM) 
Daily 
8-day 
composite 

www.earthexplor 
er.usgs.gov 

SUOMI-NPP 
(LEO) 

VIIRS Vegetation fire VNP 14 version 6 22 March to 14 April 
2016 to 2020 

375 m Daily www.firms.mod 
aps.eosdis.nasa. 
gov 

SMAP (LEO) L-band 
radiometer 

NASA-USDA-SMAP Global 
soil moisture 

NASA_USDA_HSL_soi_moisture March and April 
2019 and 2020 

27 km Daily Google earth 
engine 

INSAT 3D 
(GEO) 

Imager Reference 
Evapotranspiration (ET0) 

3D_IMG_L3C_PET_DLY. Version 
1. 

26 March to 10 April 
2018, 2019 and 
2020 

4 km Daily www.mosdac. 
gov.in  
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3. Methodology 

Satellite data and bio-geophysical product variables from different 
satellites and available sources (hereafter referred as ‘inputs’) were 
processed using various ‘functions’ that include data processing algo-
rithms and value additions such as flexible time-compositing, maximum 
value compositing, trend analysis and anomaly detection. The ‘end 
outputs’ refer to spatio-temporal hot-spots or indicating drastic changes 
in specific variables. The flow chart of overall methodology is given in 
Fig. 2. 

The study adheres to existing operational satellite data and products 
following the lockdown limitations for ground data collections and 
impacts on various parameters are primarily studied by detecting 
anomaly in various products and analyzing spatio-temporal trends with 
respect to past years. The methodology has been elucidated here: 

3.1. Detection of night-time surface cooling 

MODIS–AQUA night-time (130AM) LST product was analyzed to find 
the difference for similar time periods between 2019 and 2020 during 
January, February, March and up to first fortnight of April. Difference of 
LST (denoted as ΔLSTnight, hereafter) was calculated as:  

ΔLSTnight = LSTnight(2019) – LSTnight(2020)                                                 

Positive ΔLSTnight indicates the cooling of land surfaces in the night- 
time. The ΔLSTnight was computed for 2 temporal steps: (i) Prior to 
lockdown i.e. during 1 March to 24 March and (ii) Post-lockdown i.e. 
during 25 March to 10 April. In addition, monthly night-time LST were 
also computed for January, February months for both 2019 and 2020. 
Maximum value compositing was made for the generation of monthly, 
pre-lockdown and post-lockdown LST. Anomaly detection of ΔLSTnight 
was analyzed over 6 prominent cities of India (viz. Delhi, Lucknow, 
Allahabad, Bhopal, Pune and Hyderabad). Other metro cities of India 
(such as Mumbai, Chennai and Kolkata) experience strong maritime 
weather and also experience frequent rainfall being situated in coastal 
areas. Changes in LST can be better studied at places that have conti-
nental climate and do not receive frequent rainfall in the summer sea-
son. In addition to such urban areas, ΔLSTnight was analyzed over 
prominent industrial zones of the country-that are typically located in 
peri-urban regions. In view of coarser spatial resolution (~1 km) of 
MODIS LST data, smaller industrial units were not considered for the 
study, and moderate and large units with polygon areas ≥ 3 sq km were 
analyzed. Magnitude of ΔLSTnight anomaly over city and industrial 

locations were studied. 

3.2. Counting anomaly in vegetation fires 

The fire product of Suomi NPP-VIIRS were analyzed for detecting 
number and occurrences of vegetation fires with ‘high confidence’ for 
lockdown period in the year 2020. Vegetation fires corresponding to the 
similar periods for past 4 years (2016 to 2019) were also averaged and 
compared with number of fires occurred during year 2020. Further, in 
order to understand the effect on activities and movements of native 
populations in remote areas (away from cities and towns), number of 
fire locations lying within and outside 3 km buffer distance of road were 
analyzed. Occurrences of fire in past years and anomaly in the 2020 
lockdown period were computed in nine fire-prone states of India viz. 
Jharkhand, Karnataka, Kerala, Madhya Pradesh, Maharashtra, Odisha, 
Rajasthan, Tamilnadu and Uttaranchal, respectively. 

3.3. Estimating agricultural water demand 

Daily reference evapotranspiration (ET0) product of INSAT 3D from 
March 15 to May 20, for three years (2018, 2019 and 2020) were ac-
quired from MOSDAC (www.mosdac.gov.in) and used in the present 
study. The daily MODIS NDVI data at 500 m were also used in this study 
for the aforementioned period. The daily MODIS NDVI data was sampled 
at parent resolution of ET0 (0.04◦) product (Nigam and Bhattacharya, 
2015; Vyas et al., 2016). In this study, agricultural mask was used 
(NRSC, 2014) and re-sampled at target spatial resolution (4 km) of ET0 
through linear aggregation. The district weighted crop specific area has 
been computed from statistics data published by Department of Agri-
cultural Co-operation for rabi and kharif seasons. Crop coefficient (Kc) is 
taken for particular crop type from Allen et al. (1998). The area 
weighted generalized agricultural Kc was computed. The MODIS NDVI 
was used to generate vegetation fraction (Fc) over agricultural area. The 
sigmoidal model between Fc and Kc (Choudhury and Bhattacharya, 
2018) for rabi (November to April) was used in the present study to 
generate crop evapotranspiration (ETc) under non-stressed conditions 
(Allen et al., 1998). The summation of ETc for 1–30 April and 1–20 May 
was made to generate agricultural water demand (AWD) for agricultural 
crops. 

3.4. Characterizing anomaly in harvest date and productivity of rabi 
crops 

The daily MODIS TERRA data were used to estimate harvest date of 

Fig. 2. Brief methodology for parameters analyzed towards assessing impact of lockdown.  
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rabi crop for agriculturally dominant states of India. From daily NDVI 
data, 5-day composite was prepared for March 10 to May 15, to generate 
time profile curve of NDVI for mean (2016–2019) and year 2020. To 
prepare composite of 5 days, maximum NDVI value was taken during 
those respective 5-days. This minimizes the cloud and atmospheric 
perturbations in NDVI data set. An additional lag period of 2 days is 
required for spectrally detecting the harvest from coarse resolution 
satellite. Thus, a compositing period of 5-days was optimized to detect 
harvest date crossing pre-determined NDVI threshold. In this study, 
standard agricultural mask from land use land cover (LULC) map (NRSC, 
2014) was used which was resampled at parent spatial resolution of 
MODIS (1 km × 1 km) through linear aggregation and was applied over 
each 5-day NDVI composite to retain over agricultural pixels only. Two 
stacks were prepared from March 10 to May 15, from 5-days’ NDVI 
composite and NDVI profiles were generated for each agricultural pixel 
for year 2020 and mean from year 2016–2019. Similarly, Vyas et al. 
(2013) and Sakamoto et al. (2005) also used NDVI profile to detect crop 
sowing date using INSAT3A CCD and MODIS data, respectively. On the 
basis of NDVI profile, following mathematical expression was applied to 
model the behavior of NDVI profile for each pixel and extract harvest 
date.  

IF (NDVIi < C1 & NDVIi-1- NDVIi > C2) & (NDVIi+1- NDVIi+2>C3) THEN 
Harvest date (HD) = i – 2                                                                       

Where, C1, C2 & C3 are thresholds (>0) and NDVIi-1, NDVIi, NDVIi+1 and 
NDVI1+2 are i - 1st, ith, i + 1th and i + 2nd 5-day temporal NDVI com-
posites, respectively. 

The model was applied to NDVI profile in such a way that it was able 
to pick the date of inflection point where NDVI dropped due to harvest of 
rabi crop and after that NDVI profile started decreasing with a persistent 
negative gradient due to harvest of rabi crop. The change in behaviour of 
NDVI profile was detected on the basis of change in NDVI minimum 
threshold value of 0.3 with persistent negative slope and harvest date 
was estimated for rabi crop in agriculturally dominant states by 
deducting 2 days from the day of inflection point. The NDVI profile of 

different agro-climatic zones under the study region in shown in Fig. 3. 
In-situ rabi harvest date observations over limited locations were 
collected in parts of Punjab and Rajasthan states for validation even in 
restricted movement during lock down. 

4. Results 

This section highlights the reduced anthropogenic impact due to 
lockdown-1 on key environmental factors of urban and rural ecosystem. 
Night-time surface cooling was assessed over dominant industrial zones 
in urban proximity (peri-urban region) while vegetation fires, anomaly 
in harvesting date and agricultural productivity and crop water demand 
during rabi-summer cropping season were assessed in selected 
agroecosystems. 

4.1. Night-time cooling pattern of urban and peri-urban industrial regions 

The deviation in night-time MODIS LST (ΔLSTnight) in 2020 from 
2019 before and after lockdown-1 periods revealed that a major part of 
India indicated cooling of land surfaces. Majority of the eastern and 
southern part of the country showed 0–2 K cooling during this period, 
while drastic large cooling was noticed in northern and central-western 
parts of the country such as Delhi, Gujarat, Madhya Pradesh, Mahara-
shtra, Rajasthan, Uttar Pradesh and Assam states (Fig. 4). Part of north 
Gujarat showed highest cooling (ΔLSTnight = 6–8 K). During pre- 
lockdown period (March 1 to March 24, 2020), the results indicated 
nominal cooling (ΔLSTnight = 0–2 K) only over part of southern India, 
Uttarakhand, southern Gujarat, part of West Bengal and negative cool-
ing in the rest part of the country. It may be noted that nominal cooling 
was associated with those regions where cloud persistence and occur-
rence of rainfall are more during this period than rest of the country. 
This could have led to nominal cooling in those few patches majority of 
which, however, witnessed sudden and larger shift towards more cool-
ing coinciding with lockdown period. A large part of northern India was 
in the grip of cooling of 2–4 K during lockdown. 

Among the six cities having continental climate, maximum ΔLSTnight 

Fig. 3. Example of temporal NDVI profile for mean (2016–19) and 2020 (a) Trans-gangetic plain region; (b) Gujrat plain and hill region; (c) Middle gangetic plain 
region and (d) Lower gangetic plain region. 
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of the order of 2.3 K was noticed in Bhopal (23.25
◦

N and 77.41
◦

E) while 
least cooling (0.4 K) was observed in Pune (18.52

◦

N and 73.85
◦

E). Other 
cities also showed night-time cooling close to 1 K (viz. Bengaluru 
(12.97

◦

N and 77.59
◦

E): 0.7 K, Lucknow (26.84
◦

N and 80.94
◦

E): 1 K, 
Delhi (28.70

◦

N and 77.10
◦

E) and Hyderabad (17.38
◦

N and 78.48
◦

E): 1.1 
K, and Allahabad (25.43

◦

N and 81.84
◦

E): 1.6 K). Analysis of surface soil 
moisture data from SMAP over major industrial clusters showed average 
decrease of 2.6% in monthly mean soil moisture from March to April 
indicating no influence of rainfall on reduction in LST. Metropolitan 
cities having maritime climate (such as Mumbai, Chennai and Kolkata) 
showed responses because of cloud and intermittent rainfall effect, 
therefore, not considered appropriate for present LST analysis. An 

increase in mean monthly soil moisture from 18 – 50% during month of 
March and April was noticed in these cities, indicating the influence of 
intermittent rains, which would eventually lead to cooling of LST. 

The ΔLSTnight over large industrial units in the country showed an 
overall trend of night-time cooling in majority of the cases. Amongst 315 
large-sized industrial units, 255 (80%) clearly indicated cooling effect 
(Fig. 5). Industries showing positive trend in cooling of LST indicated 
mean cooling of 1.4 K but varying in the range of 0.2–5 K. 

4.2. Vegetation fires and primary productivity 

The data on vegetation fire counts were analyzed for 24 March 2020 

Fig. 4. Night time LST deviation from 2019 with more cooling in year 2020 during pre-lockdown and lockdown-1.  

Fig. 5. Nighttime cooling (ΔLSTnight) observed over large industrial units due to lockdown.  
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to 14 April 2020. In order to have the scenario of normal fire pattern 
during this period, data from year 2016–2019 for the same period was 
used. This particular time duration (end of the month of March and 
beginning of April) also coincides with burning due to shifting cultiva-
tion practices, which are dominantly found in north-eastern states of 
India and were not considered during the study (Alam, 2016). We have 
focused the present study on nine fire-prone states such as Jharkhand, 
Karnataka, Kerala, Madhya Pradesh, Maharashtra, Odisha, Rajasthan, 
Tamilnadu and Uttarakhand. 

During 2016–19, average number of fire counts with ‘high’ confi-
dence flag were considered for accounting for each state and were 
compared with 2020 data of the same periods. The states such as 
Madhya Pradesh, Maharashtra and Odisha showed highest fire counts in 
the past four-years’ average. Each of these states reported, respectively 
57%, 75% and 65% lesser fire events during 2020 lockdown-1. Amongst 
other states, Jharkhand, Rajasthan and Uttarakhand reported reduction 
of fires (58%, 5% and 75%, respectively). Karnataka and Tamilnadu 
indicated rise in fire counts with majority of the fires in cropland areas 
(that particularly occur post-harvest) and very limited fires were 
observed in forest areas. During the span of 22 days about 1092 fire 
events were reported from these 10 states, which was 45% less as 
compared to four-years’ average (2376) of fire counts. 

Further, number of fires were analyzed with respect to zone of in-
fluence to compare number of events near the towns/settlements and 
away from settlements. Fire events lying outside the 3-km buffer region 
around settlement and roads were referred as events from remote areas. 
It was found that in Kerala and Uttarakhand, all the fire events during 
this period occurred in remote areas. None of the fire events was 
observed inside the 3 km buffer thus strongly indicating effect of lock-
down on human activities. Similarly, in Odisha and Jharkhand states, 
respectively 70% and 77%, of the total events in this duration occurred 
in remote areas. States such as Karnataka, Maharashtra, Rajasthan and 
Tamilnadu reported 56%, 44%, 44% and 42% events in remote areas, 
respectively. A further analysis in these 4 states (Karnataka, Mahara-
shtra, Rajasthan and Tamilnadu) by overlaying fire events on land use 
land cover map indicated that majority of fires occurred in non-forest 
areas (or farm fires), indicating possible burning of crops residues 
after harvest. State-wise details are provided in Table 2, values with 
>70% are indicated in bold. 

MODIS-GPP product for 2019 and 2020 was studied in order to 
analyze impact of reduced fires on primary productivity, particularly in 
forest ecosystem. Non-forest areas were masked from GPP product and 
productivity amongst only forest pixels were considered. In addition to 
forests fires, productivity indicates overall effect of other factors as well, 
that includes forest logging and lopping, which are other anthropogenic 
activities, though beyond the scope of the present study. Comparison of 
Gross Primary Productivity (GPP) product for 2019 and 2020 indicates 
higher rates of forest productivity in the year 2020. Maximum value 
composite of 8-day MODIS GPP Product showed 18.6 T g C/8-day (Terra 
gram Carbon) in 2019 while 25.1 T g C/8-day was found in 2020. This 
clearly suggests that due to better environmental conditions and much 

reduced anthropogenic pressures (including fire, lopping, logging etc) a 
total of 6.5 T g C/8-day of gross primary production was additionally 
fixed during this particular period. Ten selected states accounted for 7.8 
G g C/8-day during this period in 2019, while it accounted for 10.8 G g 
C/8-day, indicating 38% increase in gross primary production. These 
estimates thus suggest that there is an improvement in carbon fixation 
potential by primary producers and emission saving during lockdown 
period. 

4.3. Impact on rabi harvest and agricultural productivity 

The model for harvest date detection was applied to mean (2016–19) 
and 2020 NDVI temporal profiles to diagnose delay or early harvest for 
agricultural patches at 1 km spatial resolution primarily over selected 11 
states of northern India. The rabi crop sowing is generally done at 
different time periods in those states of northern India (Fig. 6) due to 
differences in crop types, management practices and agro-climatic 
characteristics. These led to a large variation in harvest dates. The 
developed model was able to pick up the spatial pattern of harvest date 
in all the eleven states. General variation of harvest date as reported in 
various literatures is between first week of March to second week of May 
(https://nfsm.gov.in). 

The comparison of estimated rabi harvest date for two states was 
made with observed date for year 2020. At 18 locations, ground 
observed data distributed over north and north-western states of Punjab 
and Rajasthan, respectively was compared with satellite estimated 
harvest date for rabi crops. The estimated harvest date for year 2020 
showed RMSE of 4.2 (n = 18) days with R2 of 0.88 with observed dates 
as shown in Fig. 7. 

Spatial patterns of mean and 2020 rabi harvest estimated from sat-
ellite observations are shown in Fig. 6 (a) and 6 (b) alongwith histogram 
in Fig. 6 (c). The difference in rabi harvest date between mean and 2020 
is shown in Fig. 8. The mean harvest date in Punjab and Haryana states 
was found to be within 1–20 April. But, in 2020, it was extended by 5–20 
days. In this region, rice-wheat, cotton-mustard and cotton-wheat crop 
rotations are dominant (Anonymous, 2019; Sharma and Singh, 2014; 
Lata, 2014; Pinki et al., 2013). These different cropping patterns have 
different length of growing seasons. The mustard dominated regions of 
north-west part of Haryana and adjacent region of Punjab state showed 
difference of 5–15 days while wheat growing region showed a difference 
up to 20 days (Fig. 8). 

The north-west and western parts of India covering Rajasthan and 
Gujarat states showed variation in estimated harvest dates from 25 
March to 15 April. In this part of India, Pearl millet-cumin/isabgol, 
pulses-wheat and soybean/groundnut-wheat, cotton-wheat/fodder are 
dominant crop rotations (Jangid et al., 2018; Meena et al., 2017). This 
covers both irrigated as well as rainfed agricultural regions (Jaglan, and 
Qureshi, 1996). The northern part having canal command area showed 
delay in rabi harvest by 5–10 days in the year 2020 as compared to 
mean. Different time of maturity of rabi crop along with irrigation fa-
cility was the reason for different dates of sowing of rabi in many parts of 
this region. In central region, 15–20 days delay was observed in harvest 
date in 2020. Few crop patches across Rajasthan and Gujarat states, 
dominated by cumin and isabgol crop, showed early harvest by 5–10 
days in the year 2020. 

The states of Uttar Pradesh and Bihar showed wide range (25 March 
to 25 April) of mean harvest dates. This could be due to diverse crop 
rotation and crop type in different agro-climatic zones. The majority of 
agricultural patches, showed delay of 5–20 days in 2020 as compared to 
mean. Very few scattered patches in the middle of this region showed 
early harvest of 5 days. In Son command region of south-west of Bihar 
state, rabi crop harvesting is generally done in the first fortnight of April. 
In the year 2020, this region showed 10–20 days delay in harvest. The 
histogram in Fig. 6 (c) clearly showed the delay of harvest date in 2020 
as compared to mean. 

In Madhya Pradesh and Chhattisgarh states, the estimated rabi crop 

Table 2 
State-wise number of vegetation fires.  

States Average of 
2016–2019 

2020 % deviation from 
mean fire counts 

% events away 
from towns 

Jharkhand 43 18 − 58 77.8 
Karnataka 51 94 83 56.4 
Kerala 22 5 − 78 100 
Madhya 

Pradesh 
1321 569 − 57 58.0 

Maharashtra 439 111 − 75 44.1 
Odisha 320 111 − 65 70.3 
Rajasthan 88 83 − 5 44.6 
Tamil Nadu 81 98 22 41.8 
Uttarakhand 12 3 − 75 100  
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harvest date showed maximum diversity due to different crop types, 
sowing patterns and both irrigated and rainfed rabi crops. In the year 
2020, maximum agricultural patches showed 10–20 days delay as 
compared to past years, except few fragmented patches of north-eastern 
part that showed early harvest in 2020. In eastern part of India covering 
West Bengal, Odisha and Jharkhand states only, small pockets showed 
delay in harvest dates by 5–15 days as shown in Fig. 8. 

4.4. Impact on agriculture water demand (AWD) 

An assessment of AWD during lockdown periods was made over 

eleven (11) agriculturally enrich states of India. The mean AWD over 
agricultural patches was estimated from 2018 and 2019 for the periods 
1–30 April and 1–20 May. The difference of AWD (in mm depth of 
water) between mean and year 2020 was computed. The percentage 
change in AWD for 2020, compared to mean is shown in Fig. 9. During 
April, in the northern states of Punjab and Haryana known as food bowl 
of India, the AWD was found to decrease in the range of 10–50 mm, 
particularly in the southern part of those states while large agricultural 
patches showed reduction of 40–80 mm in central and northern parts of 
those states. Maximum reduction in AWD of the order 140 mm was also 
noticed in few agricultural areas. In May, few scattered patches at foot 
hills of Himachal Pradesh showed low AWD in 2020 for short duration 
summer crops and long duration or perennial crop such as sugarcane, 
fruit crops. Few scattered patches in central portion of both the states 
having short duration summer vegetable crops showed decrease in 
AWD. The reductions in volumetric AWD in April and May 2020 were 
8.6%, 11.1%, respectively in Punjab and 11.8%, 12.5%, respectively in 
Haryana (Fig. 10). The Uttar Pradesh state showed decrease of 4.4 and 
8.5%, respectively with more impact in May than April AWD. 

Substantial reductions in AWD were also noticed in north-west India 
(e.g. Rajasthan state) and central India (e.g. Madhya Pradesh state). The 
agricultural patches of Rajasthan, adjacent to Gujarat state growing 
summer vegetables and fodder crops, showed decrease in AWD in the 
range of 40–140 mm for both in April and May for year 2020 with 
overall reductions in volumetric AWD of 14.5% and 14%, respectively 
for those two periods. The reductions were 10.9%, 11.5% in Gujarat 
state and 13.9%–14.9% reduction in Madhya Pradesh state. In eastern 
India, reductions in volumetric AWD were also noticed in Bihar 
(10.7–13.2%), Jharkhand (12.3–15.1%), Chhattisgarh (13.2%) and 
Odisha (15.2%) states in the month of April which generally coincide 
with maturity of rabi crops. The crops such as rice and jute were at 

Fig. 6. Spatial distribution of (a) mean (2016–2019), (b) 2020 harvest date of rabi crops, (c) histogram of harvest dates.  

Fig. 7. Validation of satellite-based estimates of harvest date during 2020 over 
limited number of locations. 
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maturity and early vegetative stages, respectively in West Bengal state. 
A less reduction in AWD of 4–5% was observed during April–May which 
could be due to low radiation, temperature and vapor pressure deficit 
associated with clouds from norwesters and cyclone of ‘Amphan’ in the 
second week of May. 

In-situ AWD (in mm depth of water) was estimated from the 
measured pan evaporation data following FAO56 manual (Allen et al., 
1998) by applying pan evaporation coefficient (Kp) and crop coefficient 
(Kc) for respective crops. The mean in-situ AWD was computed for pe-
riods 1–30 April and 1–20 May using the data from 2018, 2019 and year 
2020. In all the four locations, AWD was found to decrease in 2020 as 
compared to mean from last two years. The in-situ data showed re-
ductions of 11–59 mm in April and 14–47 mm in May in 2020 at four 

agro-meteorological stations. 

5. Discussion 

With India under lockdown, the country’s electricity consumption 
has fallen by nearly 19% as recorded in the first week of April 2020 as 
compared to pre-lockdown phase. Coal-based power generation was 
reduced by 26% in the two weeks after the lockdown was announced as 
compared to two weeks before. The consumption of petroleum products 
in India was decreased by 18%. Anthropogenic emissions through 
biomass burning, fossil fuel consumption and coal-based power plant 
emissions are the major sources of NO2. Moreover, the NO2 emissions 
are always coupled with heat release. There is a reduction of 

Fig. 8. Spatial distribution of difference of mean and year 2020 harvest date for rabi crops.  

Fig. 9. Spatial distribution of deviation in agricultural water demand in with 2020 from mean of 2018 and 2019 during (a) 1–30 April and (b) 1–20 May  
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atmospheric NO2 concentration in the range up to 18% in the first 21 
days of lockdown (Pathakoti et al., 2020). It is quite obvious that there 
was a substantial reduction in the heat release as also evidenced through 
reduced power consumption. Though NO2 is not a green-house-gas 
(GHG) its spatio-temporal variability influences ozone cycle and sur-
face ozone concentration which acts as GHG (Ghorai et al., 2015). 
Therefore, likely reduction of surface ozone coupled with large-scale 
substantial reduction in NO2 might have also contributed to surface 
cooling. Temporary reductions in daily atmospheric CO2, an important 
GHG, was also reported at global scale during forced lockdown due to 
COVID-19 (Quere et al., 2020). All these are possible factors for surface 
cooling. In contrary, it may be noted that there was an increase in 
incident light energy of the order of 10–30% (Bhattacharya and Desai, 
2020) over Indian sub-continent with a range of 10–50% which suggests 
increased incident photosynthetically active radiation (IPAR) in 0.4–0.7 
μm and surface insolation in the shortwave range (0.3–3 μm) during 
daytime due to strong reduction in Aerosol Optical Depth (AOD) to the 
maximum of 25% over majority of the Indian region during nationwide 
lockdown (Pathakoti et al., 2020). The increased surface insolation 
might cause relative increase in daytime surface heating which generally 
follows an exponential decay since evening to midnight. The trade-off 
between thermal cooling and residual impact of increased daytime 
insolation on nighttime heating ultimately led to overall nighttime 
surface cooling. It is difficult to decouple effect of shortwave radiation 
and ground heat load sources on thermal emission during daytime 
which is beyond the scope this paper. In addition to above factors, 
analysis of surface soil moisture data in major industrial clusters also 
showed decrease mean soil moisture across March and April 2020, 
indicating no major rainfall event during the study period. Bhilai steel 
plant in the state of Chhattisgarh showed highest reduction (6%) in soil 
moisture within these two months. 

With reference to reduced vegetation fires, it is likely to be argued 
that the reduction in number of forest fires can also be due to possible 
rains during this period. Intermittent rains during summer season, tend 
to build soil moisture and thus reduce forest fires. Fires are unlikely to 
occur if the forest floor is wet (or having moisture). It is, therefore, 
pertinent to identify the root cause, whether reduction in vegetation 
fires is because of rains or as a result of reduced movement of people. To 
investigate possibility of rains, monthly mean soil moisture from NASA- 
SMAP data was analyzed for month of March and April (Fig. 11) that 
showed declined soil moisture trend in these two months, which suggest 
that no significant moisture built-up due to rainfall occurred in this 
period. Lower soil moisture levels in April 2020 than the previous month 
were noticed, indicating normal and natural drying trend in soil mois-
ture with progress of summer in all the states, except Karnataka and 
Kerala; indicating reduced number of vegetation fires is a result of 
reduced anthropogenic activities rather than natural factors. This clearly 

eliminates ‘rain’ as possible cause of reduced fires and strengthens that 
movements of people during lockdown were severely restricted, thereby 
reducing vegetation fire occurrences. 

The multi-year analysis for harvest date clearly indicated a sub-
stantial delay in harvesting dates of rabi crops in northern, north- 
western, central and parts of eastern India. In India, harvesting de-
pends on availability of workers after crop maturity. The temporary 
restrictions imposed during initial phase of lockdown due to COVID-19 
made the harvest operations little delayed which could be detected by 
multi-temporal satellite data and developed model. The validation of the 
model also resulted into high R2 with RMSE of the order of 4 days. This 
indicated that a net delay of 1–2 weeks in rabi harvest could be due to 
temporary lockdown. It is imperative to know whether this delay 
coupled with better quality of environment during lockdown had any 
positive or negative impact on rabi agricultural productivity. Further 
analysis with MODIS GPP product over agricultural area showed 
consistent increase in rabi agricultural productivity to the tune 20–32% 
(Fig. 12). It proved that delay in rabi harvest due to temporary re-
strictions in lockdown had practically no impact on agricultural pro-
ductivity rather facilitated in having better harvest which could be due 
to better environmental quality from reduced particulate matter or 
aerosol loading over Indian region (Pathakoti et al., 2020) allowing 
higher light energy (Bhattacharya and Desai, 2020) maximum up to 
50% for photosynthesis in daytime and lesser respiration due to 
large-area night-time cooling (section 4.1) during lockdown to result 
into higher net carbon uptake. 

As explained in previous section, substantial reduction in AWD was 

Fig. 10. Percent decrease in AWD in year 2020 as compared to mean of two previous years’ in selected states of India.  

Fig. 11. Soil moisture variations in March and April 2020 indicating normal 
and natural drying trend in soil moisture in majority of the states. 
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noticed in Centre and Central-Western states of the country. It may be 
noted that during the year 2020, no significant loss in agriculture was 
reported during January to May in northern and north-western parts of 
India due to any natural disasters such as hailstorm, unseasonal rainfall 
etc. Therefore, the reduced AWD was clearly due to environmental 
impact of lockdown especially over northern, north-west, central India 
and parts of eastern India which did not witness significant impact due 
to natural disasters. The environmental impact of lockdown on AWD 
was verified by comparing reduction in satellite-derived AWD with 
decrease in pan evaporation data in April and May at selected agro- 
meteorological station locations of north and north-west India. The 
reduction in satellite estimated AWD matches well with reductions in- 
situ AWD (Fig. 13). The comparison of in-situ and satellite-based esti-
mates showed a deviation of 18.8% from observed mean. 

The interaction of solar insolation and land surface govern the 
meteorological variables such as wind speed, air temperature, humidity 
and vapor pressure deficit and govern the land surface fluxes (Bas-
tiaanssen 1998; Zhang et al. 2012, 2016). These fluxes are responsible 
for energy and mass exchange in soil-atmosphere continuum (Betts 
et al., 1996). The evapotranspiration is a process which govern both 
energy and mass exchange. The reduction in mean daily temperatures 
due to cooling in night-time temperature leads to reduction in daily 
vapor pressure deficit, that further leads to reduction in reference 
evapotranspiration (Vyas et al., 2016). As losses in transpiration are 
reduced, there is a reduction in the demand of water for agriculture use 
(Allen et al., 1998; Allen, 1999). 

6. Conclusion 

The present study has been carried out to assess the effect of ‘lock-
down’ or restricted human activities due to the COVID-19 pandemic in 
India on several new aspects by analyzing satellite-based novel param-
eters which were not reported earlier. Overall, it brought out some 
positive spin-offs due to lockdown which can be taken into account for 
making future strategy on sustainable environment for achieving related 
Sustainable Development Goals (SDGs). The major conclusions from the 
above study are following:  

• Substantial night-time surface cooling of the order of 2–6 K was 
evident due to lockdown over several cities having continental 
climate and patches of large industrial congregations when there was 
no intermittent build-up of surface soil moisture. This is primarily 
attributed to temporary reduction of heat sources from combustion 
and partly due to reduction in GHG and pollutant gases.  

• A substantial reduction in vegetation fire counts in the order of 
5–75% was noticed from space-based data in majority of Indian 
states during fire-prone period, March–April, of 2020 as compared to 
mean from previous years’. Increase in primary productivity to the 
tune of maximum 38% was noticed over Indian forests.  

• Though a delay in rabi crop harvest for 1–2 weeks was noticed the 
overall agricultural productivity increased in north Indian states to a 
maximum of 34% which is attributed to favorable environmental 

conditions and increased net carbon assimilation owing to delayed 
harvest.  

• Agricultural water demand was found to show substantial reduction 
to the tune of 5–15% in majority of north Indian states. This can also 
help in meeting less water requirements either through irrigation or 
rainfall. In a way, it might have led to a substantial water saving for 
agriculture. 

These provide evidence of improvements in various metrics within 
peri-urban, urban, agriculture and forest ecosystems which are possible 
if the anthropogenic pressure can be rationally handled for better 
environment and subsequent impact on ecosystems in terms of better 
human comfort, low carbon footprint and emissions, reduced forest loss, 
higher agricultural productivity and water saving. 
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Fig. 12. Change in rabi agricultural productivity in 2020 as compared to mean from previous four years.  

Fig. 13. Comparison of AWD difference between mean (from 2018,2019) and 
2020 from in situ and satellite-based estimates at selected agrometeorological 
stations of north and north-west India. 
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