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Background: Stroke is a major disease with high morbidity and mortality

worldwide. Currently, there is no quantitative method to evaluate the short-

term prognosis and length of hospitalization of patients.

Purpose: We aimed to develop nomograms as prognosis predictors based

on imaging characteristics from non-contrast computed tomography (NCCT)

and CT perfusion (CTP) and clinical characteristics for predicting activity of

daily living (ADL) and hospitalization time of patients with ischemic stroke.

Materials and methods: A total of 476 patients were enrolled in the study

and divided into the training set (n = 381) and testing set (n = 95). Each of

them owned NCCT and CTP images. We propose to extract imaging features

representing as the Alberta stroke program early CT score (ASPECTS) values

from NCCT, ischemic lesion volumes from CBF, and TMAX maps from CTP.

Based on imaging features and clinical characteristics, we addressed two

main issues: (1) predicting prognosis according to the Barthel index (BI)–

binary logistic regression analysis was employed for feature selection, and

the resulting nomogram was assessed in terms of discrimination capability,

calibration, and clinical utility and (2) predicting the hospitalization time of

patients–the Cox proportional hazard model was used for this purpose. After

feature selection, another specific nomogram was established with calibration

curves and time-dependent ROC curves for evaluation.

Results: In the task of predicting binary prognosis outcome, a nomogram

was constructed with the area under the curve (AUC) value of 0.883 (95%

CI: 0.781–0.985), the accuracy of 0.853, and F1-scores of 0.909 in the

testing set. We further tried to predict discharge BI into four classes. Similar

performance was achieved as an AUC of 0.890 in the testing set. In the

task of predicting hospitalization time, the Cox proportional hazard model

was used. The concordance index of the model was 0.700 (SE = 0.019), and
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AUCs for predicting discharge at a specific week were higher than 0.80, which

demonstrated the superior performance of the model.

Conclusion: The novel non-invasive NCCT- and CTP-based nomograms

could predict short-term ADL and hospitalization time of patients with

ischemic stroke, thus allowing a personalized clinical outcome prediction and

showing great potential in improving clinical efficiency.

Summary: Combining NCCT- and CTP-based nomograms could accurately

predict short-term outcomes of patients with ischemic stroke, including

whose discharge BI and the length of hospital stay.

Key Results: Using a large dataset of 1,310 patients, we show a novel

nomogram with a good performance in predicting discharge BI class of

patients (AUCs > 0.850). The second nomogram owns an excellent ability to

predict the length of hospital stay (AUCs > 0.800).

KEYWORDS

CT, perfusion, prognosis, ischemic stroke, nomograms

Introduction

Stroke is classically characterized by neurological deficits
resulting from acute focal vascular-related damage to the central
nervous system (Sacco et al., 2013). Data from the Global
Burden of Diseases (GBD) suggested that, in 2019, stroke
remained the second-leading cause of death and the third-
leading cause of death and disability combined, with the
majority (80%) of cases attributed to an ischemic etiology (Go
et al., 2014). Over the last decade, along with deeper insights
into the disease, effective interventions for the major risk factors
and the application of more effective treatments have led to a
significant decline in stroke-related mortality. However, there
are still a number of patients with stroke suffering from long-
term disability, which increases the financial burden on both
individual and societal levels (Di Carlo et al., 1999).

The activities of daily living (ADLs) have been considered
one of the most basic indicators to evaluate the functional
status of patients with stroke, which is also the main treatment
objective for rehabilitation (Quinn et al., 2011). The Barthel
index (BI) is one of the most widely used and most widely
studied ADL evaluation methods, and it can not only be used

Abbreviations: NCCT, non-contrast CT; CTP, CT perfusion; ADL, activity
of daily living; GBD, Global Burden of Diseases; BI, Barthel index;
ASPECTS, Alberta stroke program early CT score; CBF, cerebral blood
flow; CBV, cerebral blood volume; MTT, mean transit time; TTP, time to
peak; LASSO, least absolute shrinkage and selection operator; BSR, best
subset regression; AIC, Akaike information criterion; CNN, convolutional
neural network; ANN, artificial neural networks; XGB, extreme gradient
boosting; GBM, gradient boosting machine; ROC, receiver operating
characteristics; AUC, area under the curve; C-index, concordance index;
OR, odds ratio; HR, hazard ratio; CI, confidence interval.

to assess the functional status before and after treatment but
can also be used to predict the outcomes of treatment, length
of hospital stay, and prognosis (Mahoney and Barthel, 1965;
Roberts and Counsell, 1998; Duncan et al., 2000; Sangha et al.,
2005; Quinn et al., 2009; Li et al., 2020).

Non-contrast computed tomography (NCCT) scan is
typically the first neuroimaging test performed in patients with
suspected stroke and has the advantages of rapid detection,
low cost, and few contraindications (Wardlaw et al., 2004;
Timpone et al., 2020). However, acute tissue changes are
difficult to be detected by NCCT in cases where ischemic
symptoms resolve within 24 h, with a detection rate of only
4% (Douglas et al., 2003; Foerster et al., 2012). Therefore,
other neuroimaging techniques such as brain CT perfusion
(CTP) are always indicated after the NCCT imaging given
its insensitivity. With the growing interest in the significance
of cerebral physiology changes over time in clinical decision-
making for ischemic stroke, CTP is always employed as a rapid
and practical examination technique to identify and differentiate
potentially salvable risk tissues (“penumbra”) and irreversibly
damaged tissues (infarct “core”) through a relative quantitative
measure of brain perfusion, thereby not only enhancing the
understanding of cerebral physiology processes of stroke but
also providing guidance on stroke management strategies
(e.g., endovascular procedures) (Krishnan et al., 2017). Despite
challenges in the standardization and accuracy of quantitative
assessment, CTP is evolving as a cornerstone for imaging-
based strategies in the rapid management of ischemic stroke
(Mendelson and Prabhakaran, 2021).

In the last decade, numerous advances have been made
in the field of feature selection methods, which can capture

Frontiers in Neuroscience 02 frontiersin.org

https://doi.org/10.3389/fnins.2022.912287
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-912287 July 20, 2022 Time: 10:59 # 3

Sui et al. 10.3389/fnins.2022.912287

features from target images, thereby providing more radiological
details to assist in clinical decision-making (Mayerhoefer et al.,
2020). Currently, feature selection methods like radiomics
technology have been applied in the field of stroke after
the evaluation and selection of independent features (Chen
et al., 2021; Wang et al., 2021), whose major applications
include infarction detection (Peter et al., 2017), thrombosis
characterization (Hasan et al., 2019; Qiu et al., 2019; Hofmeister
et al., 2020), identification of high-risk carotid plaque (Zhang
et al., 2021), and prediction of malignant middle cerebral artery
infarction (Wen et al., 2020). The above examinations are all
based on NCCT or CT angiography (CTA), whereas CTP is
still mainly employed for the diagnosis of stroke by providing
a relatively accurate estimation of the volume of infarction
and ischemic penumbra. Recently, machine learning has been
jointly employed in clinical practice to solve critical problems
regarding outcome prediction in ischemic stroke (Feng et al.,
2018). Certain cases employ magnetic resonance imaging (MRI)
consisting of two modalities: MR perfusion similar to CTP
and diffusion weighted imaging (DWI), whereas other studies
adopted CT data for clinical prediction of ischemic stroke
(Ho et al., 2017, 2019; Pinto et al., 2018). However, there has
been no relevant research on the application of CTP-based
radiomics technology regarding prognosis prediction in patients
with stroke yet.

Due to the relatively complex course of a stroke, prognosis
prediction of patients with stroke has always been a hot topic
that draws a great number of interests. Thus, we conducted this
retrospective study to determine whether nomograms based on
imaging and clinical features can predict ADL and length of

hospital stay in patients with ischemic stroke, with the aim of
providing appropriate therapeutic and management strategies.

Materials and methods

Patients

The current diagnostic study received approval from the
Institutional Ethics Committee of our hospital. The study
was performed in accordance with the 1964 Declaration of
Helsinki and its later amendments. From January 2017 to
May 2021, a cohort of 1,310 patients diagnosed with ischemic
stroke in our institution were included in this study. The
participants had abnormal cerebral perfusion and could live
independently before the infarction. NCCT and CTP scans
were acquired within 24 h following stroke onset. Cases with
other cerebrovascular diseases (Moyamoya disease, aneurysm,
etc.), cerebral hemorrhage, brain tumor, brain trauma, previous
neurological disorder, missing clinical or image data, and severe
CT artifacts were excluded. Finally, a total of 476 patients were
selected and divided into the training set (n = 381) and the
testing set (n = 95) by the stratified sampling method, in which
the discharge BI distribution of the training set was the same as
that of the testing set (Figure 1).

All patients underwent a whole-brain stroke CT protocol
using SOMATOM Force scanner (Siemens Healthineers AG,
Erlangen, Germany) and Revolution scanner [General Electric
Company (GE), Chicago, CA, United States], including thin-
slice NCCT (≤2 mm) and CTP. During follow-up, endovascular

FIGURE 1

Patient sample inclusion flowchart. NCCT, non-contrast CT; CTP, CT perfusion.

Frontiers in Neuroscience 03 frontiersin.org

https://doi.org/10.3389/fnins.2022.912287
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-912287 July 20, 2022 Time: 10:59 # 4

Sui et al. 10.3389/fnins.2022.912287

thrombolysis or mechanical thrombectomy was performed to
treat the ischemic stroke.

Clinical characteristics

The clinical information of samples was collected, including
the age, sex, BI of admission and discharge, risk factors for
cerebrovascular disease (dyslipidemia, stroke history, cerebral
infarction, atrial fibrillation, hyper-homocysteinemia, diabetes,
hypertension, and smoking), brain injury, complications
(hemorrhagic infarction, brain edema, epilepsy, dysphagia, and
deep venous thrombus), therapeutic modality, and time for
hospitalization. Importantly, the primary outcome in this study
was a good functional outcome, defined as the BI higher than 60
at the date of discharge representing the good performance in
ADL. The BI could be divided into four classes, in which scores
of 0–40 indicated “total dependency,” 41–60 indicated “severe
dependency,” 61–99 indicated “moderate dependency,” and 100
indicated “independent.”

Imaging characteristics

All images were processed using a research portal platform.1

(1) NCCT images analysis: For patients with ischemic stroke,
the Alberta stroke program early CT score (ASPECTS) could
be used to evaluate the early changes in middle cerebral artery
territory (MCAT) (Cao et al., 2022). Briefly, the brain was
segmented into 20 ASPECTS regions. An embedded deep
learning algorithm provides a 0 or 1 score as to whether
an infarct occurs in each region. As features, we obtained
ASPECTSs for the left brain, the right brain, and the whole
brain, respectively, ranging from 0 to 10. Meanwhile, the mean
CT intensity (unit: HU) was also collected for all regions. Note
that the ASPECTS values were evaluated automatically based
on our previous proposed deep learning algorithm (Cao et al.,
2022). (2) CTP images analysis: The raw CTP images were
calculated, and parameter maps were obtained. For features, we
collected the volumes in these parameter maps including relative
cerebral blood volume (CBV) (using threshold of <34, <38, and
<42%), relative cerebral blood flow (CBF) (using threshold of
<20, <30, <34, and <38%), time to top (Tmax; using threshold
of >4, >6, >8, and >10 s), mismatch, and mismatch ratio.

Binary clinical outcome prediction
(discharge BI > 60 vs. BI ≤ 60)

First, univariate and multivariate logistic regression analyses
were performed to evaluate the independent important factors

1 https://www.uii-ai.com/en/uai/scientific-research

for promoting a good outcome (discharge BI > 60) in the
training set. Considering multicollinearity among the imaging
variables, two variables were removed to get the best model.
Independent clinical factors and imaging characteristics from
the multivariate logistic regression model were integrated into
the nomogram for predicting the presence of a good outcome.

The performance of the constructed nomogram
was assessed in terms of three aspects: discrimination
capability, calibration, and clinical utility. Receiver operating
characteristics (ROC) curves and confusion matrixes were
plotted, and the area under the curve (AUC) was calculated
quantitatively. Then, calibration curves were also used to
confirm the discrimination capability and accuracy of the
proposed nomogram in both the training and testing sets.
Moreover, decision curve analyses and clinical impact curves
were conducted at different threshold probabilities for the
training and testing sets, showing clinical net benefit for
predicting outcomes.

Multivariate clinical outcome
prediction (four classes)

Four-class (BI: 0–40, 41–60, 61–99, and 100) classification
task was conducted. First, each feature underwent z-score
normalization. Then, feature selection was performed in the
training dataset. During the procedure of feature selection, two
operators were used orderly, as F-test’s p-value of 0.05 and
the least absolute shrinkage and selection operator (LASSO)
with α of 0.05. The output feature’s number was 47 and 9,
respectively. With the sequential execution of two algorithms,
the optimal features avoiding collinearity and overfitting could
be finally obtained. After the feature selection, the BOX-COX
transformation and the machine learning classifier (Bagging
decision tree) were applied to construct the model. The
predicted model was also tested and characterized by ROC
curves and confusion matrixes.

Hospitalization time prediction using
Cox proportional hazard model

In order to establish the Cox proportional hazard model, we
should ensure that the status was a good outcome (discharge
BI > 60), and the time was the duration in the hospital,
meaning that once the patient achieved a good outcome, he/she
could be discharged. To select the optimal features, three
methods were applied. The first one was the COX model, in
which univariate and multivariate Cox regression analyses were
performed to evaluate the independent important factors for
promoting the good outcome (discharge BI > 60) in the training
set. The second one was the best subset regression (BSR) model.
Considering of the maximum adjusted R2 and the minimum

Frontiers in Neuroscience 04 frontiersin.org

https://doi.org/10.3389/fnins.2022.912287
https://www.uii-ai.com/en/uai/scientific-research
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-912287 July 20, 2022 Time: 10:59 # 5

Sui et al. 10.3389/fnins.2022.912287

Akaike information criterion (AIC), the best feature subset was
selected to classify the four classes. The third one was the LASSO
model to reduce the dimensionality of input features. Based on
the three feature subsets, three Cox proportional hazard models
were established, named COX, BSR, and LASSO, respectively.

When comparing the performances of the three models,
LASSO was finally chosen in terms of the higher concordance
index (C-index) and fewer features. Then, the nomogram
was based on the proportional conversion of each regression
coefficient from the multivariate Cox regression to a 0- to
100-point scale, which could be used to predict the time of
hospitalization. Calibration curves and time-dependent ROC
curves for the nomogram were calculated in the training
and testing sets.

Statistical analysis

All variables were summarized by using descriptive
statistics, in which the counts and percentages were calculated
for categorical variables and median, 25% quantile, and
75% quantile were used for continuous variables. Significant
differences between the training set and testing set were
performed by the Mann–Whitney U-test for continuous
variables and the chi-square test for categorical variables,
and a p-value < 0.05 was considered statistically significant.
Univariate and multivariate binary logistic regression analyses
were used to identify important factors related to the discharge
BI. Univariate and multivariate Cox regression analyses were
used to determine features related to the time of patients to
achieve a good outcome. In univariate analyses, a p-value < 0.10
was included in the next multivariate analysis, whereas a
p-value < 0.05 was considered statistically significant in the
remaining data. Statistical analyses were performed with IBM
SPSS Statistics (version 26.0) and R software (version 4.1.2).
We used several tools within the R environment, including
“sampling,” “rms,” “foreign,” “rmda,” “ggplot2,” “survival,” “plyr,”
“MASS,” “leaps,” “glmnet,” “pec,” “riskRegression,” and “regplot.”

Results

Patient characteristics

A total of 476 patients were enrolled in the study and
captured with images of both NCCT and CTP. Table 1 shows
the clinical information of the overall patients. The median age
of the overall patients was 62 years, with women accounting
for 26.5% of the total number of patients. The proportion
of patients with admission BI less than or equal to 60 was
42.4%. After treatment with endovascular thrombolysis or
mechanical thrombectomy, the proportion of patients with
discharge BI less than or equal to 60 was decreased to 21.2%,

demonstrating the effectiveness of the intervention. The median
time for hospitalization was 9 days. Other clinical materials,
including dyslipidemia, cerebral infarction, atrial fibrillation,
hyper-homocysteinemia, diabetes, hypertension, brain injury,
smoking, and complication, were also shown in the statistical
table. All samples were divided into the training set (n = 381) and
the testing set (n = 95), in which the number of people with good
outcomes was 307 and 68, respectively. No significant difference
was found between the training set and the testing set for all
characteristics.

Predicting discharge Barthel index
rating of patients

Clinical outcome prediction (discharge BI > 60
vs. BI ≤ 60)

A total of six variables (BI_admission_score,
Overall_ASPECTS, R_M2_HU, L_L_HU, Tmax_8, and
cbf_38) were selected to establish the nomogram prediction
model, and the model shows a strong predictive ability under
the evaluation of the ROC curves, calibration curves, decision
curves, and clinical impact curves.

TABLE 1 Baseline characteristics in study sample (n = 476).

Clinical
characteristics

Overall
(n = 476)

Training set
(n = 381)

Testing set
(n = 95)

P

Age (year) 62 (55, 68) 62 (55, 68) 62 (56, 68) 0.719

Female sex 126 (26.5%) 107 (22.5%) 19 (4.0%) 0.317

Admission BI rating 0.696

Bad [1; 2] 202 (42.4%) 170 (35.7%) 32 (6.7%)

Good [3; 4] 274 (57.5%) 211 (44.3%) 63 (13.2%)

Dyslipidemia 120 (25.2%) 100 (21.0%) 20 (4.2%) 0.110

Stroke history 118 (24.8%) 95 (20.0%) 23 (4.8%) 0.515

Atrial fibrillation 18 (3.8%) 15 (3.2%) 3 (0.6%) 0.956

Hyper-
homocysteinemia

94 (19.7%) 80 (16.8%) 14 (2.9%) 0.426

Diabetes 145 (30.5%) 109 (22.9%) 36 (7.6%) 0.312

Hypertension 281 (59.0%) 221 (46.4%) 60 (12.6%) 0.251

Brain injury 2 (0.4%) 2 (0.4%) 0 (0.0%) 1.000

Smoking 212 (44.5%) 173 (36.3%) 39 (8.2%) 0.395

Complications 125 (26.3%) 105 (22.1%) 20 (4.2%) 0.593

Endovascular
thrombolysis

92 (19.3%) 74 (15.5%) 18 (3.8%) 0.853

Mechanical
thrombectomy

58 (12.2%) 41 (8.6%) 17 (3.6%) 0.427

Conservative
treatment

326 (68.5%) 266 (55.9%) 60 (12.6%) 0.525

Discharge BI rating 0.965

Bad [1; 2] 101 (21.2%) 77 (16.2%) 24 (5.0%)

Good [3; 4] 375 (78.8%) 307 (64.5%) 68 (14.3%)

Time for
hospitalization (day)

9 (6, 11) 8 (6, 11) 9 (7, 11) 0.296
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Univariable logistic analysis and multivariable logistic
analysis were made in turn by combining statistically different
variables into the regression equation and stepwise modality
was chosen to select the optimal variables associated with
the discharge BI. The initial regression model contained
eight variables (Supplementary Tables 1, 2), meeting the
requirement of the Hosmer–Lemeshow goodness-of-fit test
(p = 0.206 > 0.05). However, some continuous variables
showed strong collinearity (Supplementary Figure 1), which
may limit the predicted performance of the model. When
removing two covariant variables, the final regression model was
constructed, satisfying the Hosmer–Lemeshow goodness-of-fit
test (p = 0.078 > 0.05).

As seen in Table 2, BI_admission_score (BI of admission),
Overall_ASPECTS (minimum ASPECTS of left and right brain),
R_M2_HU (mean CT intensity of the right extrainsular cortex),
L_L_HU (mean CT intensity of the left lenticular nucleus),
Tmax_8 (Tmax with a threshold of >8 s), and cbf_38 (CBF
with a threshold of <38%) were finally selected to establish the
regression model, in which the crude odds ratio (OR) indicated
the univariable analysis result and the adjusted OR indicated
the multivariable analysis result. The adjusted OR also showed
by a forest map (Supplementary Figure 2) demonstrating that
Tmax_8 limited good outcomes, whereas the others promoted
good outcomes, which was consistent commonly. The higher
the Overall_ASPECTS and BI_admission score, the lower the
severity of the infarction.

Based on the six variables selected above, we constructed
a nomogram to predict clinical outcomes (Figure 2). For a
given patient, every variable corresponded to a point, and the
total point corresponded to the probability of a good outcome
(discharge BI > 60). To evaluate the performance of the
nomogram model, a range of parameters were performed in
both training and testing sets, including qualitative visualization
and quantitative analysis. For qualitative display, ROC curves,
calibration curves, decision curves, and clinical impact curves
of the training and testing sets are illustrated in Figure 3.
Meanwhile, confusion matrixes are also shown here. Moreover,
quantitative results that were performed and summarized are
shown in Table 3. As shown in Figures 3A–D and Table 3,
AUC values are 0.908 [95% confidence interval (CI): 0.865–
0.952] and 0.883 (95% CI: 0.781–0.985) in the training and
testing sets, respectively. The confusion matrixes showed the

accuracy of 0.887 and 0.853 in the training and testing sets,
respectively. F1-scores, combining the precision and recall of
the model, were higher than 0.9 both in the training and testing
sets. Figures 3E–G shows the calibration curve, the decision
curve, and the clinical impact curve for the model on the
training dataset. Figures 3H–J shows the corresponding curves
of the model on the testing dataset. Calibration curves were
used to check the quantile relationship between predictions
and the actual values, and it could be easily observed that
the predicted probability was similar to the actual probability.
Moreover, the discriminative property was quantified by the
following parameters, including D index, S/p, Brier, Emax,
and Eavg (Table 3). D indexes were 0.467 and 0.360 in the
training and testing sets, demonstrating outstanding and good
discrimination of the model. Other parameters also confirmed
that the model owned good discriminative ability. Decision
curves were estimates of the standardized net benefit by the
probability threshold used to categorize observations as “high
risk.” Both decision curves and clinical impact curves could be
used to measure the clinical utility of the nomogram model.

At a wide range of the high-risk threshold, the nomogram
model owned higher clinical net benefit, both in the training
and testing sets. All these results verified that the nomogram
model demonstrated superior predictive performance, which
would achieve high clinical benefit and help us make better
clinical decisions.

Clinical outcome prediction (discharge Barthel
index in four classes)

A model with nine features (BI_admission_score,
L_L_HU, L_M1, R_M5, CBF_20, L_M4, Tmax_10, L_M3,
and CBF_30) showed excellent classification accuracy under the
tests of ROC curves.

To predict discharge BI further accurately, we divided
discharge BI into four classes, in which 1 represented a BI
score of 0–40, 2 represented a score of 41–60, 3 represented
a score of 61–99, and 4 represented a score of 100. First, we
used two operators to select features sequentially, i.e., F-test’s
p-value of 0.05 and LASSO with α of 0.05. With the sequential
execution of these two algorithms, nine features obtained are
shown in Supplementary Figure 3. Considering these nine
features and the corresponding weight, we could obtain an
equation to compute the Rad_Score of each sample. As shown in

TABLE 2 Multivariable logistic analysis of clinical and imaging variables with clinical outcome (BI > 60 vs. BI ≤ 60).

Characteristics Crude OR (95% CI) Adjusted OR (95% CI) P (Wald’s test) P (LR-test)

BI_admission _score 1.08 (1.06–1.10) 1.07 (1.05–1.09) <0.001 <0.001

Overall _ASPECTS 1.59 (1.39–1.81) 1.26 (1.03–1.54) 0.027 0.027

R_M2_HU 1.18 (1.11–1.25) 1.01 (0.92–1.10) 0.862 0.862

L_L_HU 1.36 (1.24–1.48) 1.07 (0.94–1.21) 0.297 0.285

Tmax_8 0.99 (0.99–1.00) 0.99 (0.99–1.00) 0.019 0.025

cbf_38 0.98 (0.97–0.99) 1.01 (0.99–1.02) 0.378 0.402
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FIGURE 2

Nomogram for predicting the clinical outcome. Six variables are included in the nomogram model. For the given sample shown above in the
red line, each variable has a point, and the total point reflected the probability of a good outcome (discharge BI > 60).

Figures 4A,B, both in the training and testing sets, the average
Rad_Score of four groups are quite different, indicating that the
following classifier can achieve a good classification. It should
be noted that, after classifying by using the Bagging decision
tree, the AUCs were 0.934 and 0.890 for the training and
testing sets, respectively (Figures 4C,D). From the confusion
matrixes shown in Figures 4E,F, the accuracy can reach 0.792
and 0.802 in the training and testing sets. At the same time,
kappa indexes are 0.614 and 0.661 for the training and testing
sets. Importantly, we reported ROC curves for predicting
each discharge BI class (Supplementary Figure 4), and the
AUCs are also listed in Supplementary Table 3. It should be
noted that AUCs for classifying every discharge BI class were
higher than 0.850, confirming that nine features combined
with the Bagging decision tree classifier could achieve excellent
classification performance.

Estimating the time for hospitalization
of patients

After comparing the COX, BSR, and LASSO models, the
LASSO model was adopted for fewer data and a higher

consistency index. On this basis, the nomogram model we
established can accurately predict the length of hospital stay.

To predict the time for patients to achieve a good outcome,
that is, the time for hospitalization, we constructed and
compared three models to get the best predictive performance.
Based on the optimal model, we reported the hazard ratios
(HRs) and constructed a nomogram to predict the time for
hospitalization.

The first one was the COX model, in which the feature
selection was using univariate and multivariable Cox regression
analyses orderly. From Supplementary Table 4, a number
of variables showed statistical differences in univariate Cox
regression. Then, a multivariable Cox regression analysis
was performed; finally, 12 features (BI_admission_score,
atrial_fibrillation, therapy, Left_ASPECTS, L_M2, R_M1_HU,
L_M1_HU, Tmax_10, Tmax_8, Tmax_6, cbv_42, and
cbv_38) were selected for constructing the COX model.
The second one was the BSR model. On the basis of the
maximum adjusted R2 and the minimum AIC, 3 features
were finally selected (BI_admission_score, complication,
and Overall_ASPECTS) and used to establish the BSR
model. The third one was the LASSO model, in which
BI_admission_score, Overall_ASPECTS, and Tmax_10 were

Frontiers in Neuroscience 07 frontiersin.org

https://doi.org/10.3389/fnins.2022.912287
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-912287 July 20, 2022 Time: 10:59 # 8

Sui et al. 10.3389/fnins.2022.912287

FIGURE 3

Characterizations of the nomogram model. (A) ROC, (B) confusion matrix, (E) calibration curve, (F) decision curve, and (G) clinical impact curve
of the model on the training dataset. (C) ROC, (D) confusion matrix, (H) calibration curve, (I) decision curve, and (J) clinical impact curve of the
model on the testing dataset.

TABLE 3 Quantitative analysis of nomogrammodel both in the training and testing sets.

AUC [95% CI] Accuracy F1-score Kappa D S/p Brier Emax Eavg

Training set 0.908 [0.865, 0.952] 0.887 0.930 0.635 0.467 0.636 0.081 0.059 0.020

Testing set 0.883 [0.781, 0.985] 0.853 0.909 0.522 0.360 0.570 0.098 0.133 0.036

selected. The features selected from the three models underwent
the Cox regression analysis.

When comparing the performance of three models, the
C-index, AUC, and calibration curve are plotted in Figure 5.
All these results demonstrated that LASSO was the best model
due to its higher C-index and fewer features. As mentioned
above, the number of features in COX, BSR, and LASSO was
12, 3, and 3, respectively. Meanwhile, the C-index of these three
models were 0.704 (SE = 0.018), 0.682 (SE = 0.018), and 0.700
(SE = 0.019). It is important to note that there was no significant
difference between LASSO and COX. Thus, we chose the LASSO
model (BI_admission_score, Overall_ASPECTS, and Tmax_10)
to predict the time to achieve a good outcome. Based on LASSO

features, the detailed information of the final Cox proportional
hazard model is listed in Table 4.

On the basis of the selected Cox proportional hazard
model, we established a nomogram to predict the time for
hospitalization of patients and the probability of the patient
staying 1, 2, or 3 weeks in hospital (Figure 6A). With this
nomogram, we could easily obtain the time to realize a good
outcome (BI > 60). As shown in Figures 6B,C, AUC for
predicting discharge at specific times (7, 14, and 21 days)
are higher than 0.80, both in the training and testing sets,
demonstrating that the nomogram owned an excellent ability to
predict the length of hospital stay. Calibration curves are also
plotted several times and shown in Supplementary Figure 5.
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FIGURE 4

Combining Rad_Score and Bagging decision tree for predicting discharge BI with four classes. (A,B) Rad_Score distribution within four classes,
ROC curves (C,D), and confusion matrixes (E,F) in the training and testing sets.

FIGURE 5

Comparison of three Cox proportional hazard models. (A) C-index and (B) AUC of three models varied with time. (C) Calibration curves of three
Cox proportional hazard models.

High AUC values and good calibration capability demonstrated
that the final Cox proportional hazard model held great
potential in predicting the time for achieving a good outcome.

Discussion

In our study, predictive nomograms for the short-term
prognosis in patients with ischemic stroke was established by
NCCT- and CTP-based imaging features and clinical features.
The established nomograms were tested with both training
set and testing set, and the results showed that the models

were able to accurately classify a patient’s BI (the AUC criteria
for discharge suggestion were defined as 0.850) and predict
the time duration of hospital stay (discharge at a specific
time [7, 14, or 21 days] on the basis of defined AUC criteria
[0.800]). Thus, we believe that the proposed method can predict
the short-term prognosis of patients with stroke accurately,
thereby assisting physicians to optimize personalized medical
management strategies.

A total of 476 patients were included in this study. To our
knowledge, the amount of data included in this experiment is
the largest in the AI-assisted diagnosis of stroke experiments
in the past 10 years (Bentley et al., 2014; Lucas et al., 2018;
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TABLE 4 Cox proportional hazard model based on the features
selected by LASSO.

Characteristics Crude HR
(95% CI)

Adjusted HR
(95% CI)

z P

BI_admission_score 1.02 (1.02–1.03) 1.02 (1.02–1.03) 7.87 <0.001

Overall_ASPECTS 1.27 (1.16–1.38) 1.18 (1.07–1.29) 3.31 <0.001

Tmax_10 0.99 (0.99–1.00) 0.999 (0.996–1.002) −0.68 0.494

Ho et al., 2019; Kasasbeh et al., 2019; Xie et al., 2019; Bacchi
et al., 2020), which provided an adequate quantitative base for
model development, thus making the models more stable and
objective. The male-to-female ratio included in this study was
about 1:2.8, which is consistent with the incidence of stroke
in Northeast China, where the incidence of stroke in men is
significantly higher than in women. At this stage, there are
various measurement tools that could be employed to evaluate
the ADL of patients with stroke. Although the BI scale showed
no difference or improvement in results as compared with other
scales, the BI scale did present the advantages of high sensitivity,
comprehensive content, optimal operability, clear scoring, and
good reliability and validity in the application conditions of
both face-to-face interview and telephone visits. Other risk
factors related to stroke, such as diabetes, smoking status,
atrial fibrillation, and infarction history, were also evaluated
in our study (Pistoia et al., 2016; Boehme et al., 2017; Zhang
et al., 2020), which was crucial for the subsequent extraction

of clinical features, the combination of clinical features and
imaging features, and the objective expression of the nomogram.

According to the abovementioned experimental procedures,
we developed a nomogram based on independent clinical factors
and imaging characteristics of NCCT and CTP in patients
with ischemic stroke, which has been externally validated as a
predictive tool for visualized pretreatment prognosis prediction.
Compared with other studies, that paid more attention to
the evolution of stroke lesions, we focused on the prediction
regarding the behavioral abilities of patients, thereby indicating
functional outcomes in stroke trials. For example, Pinto et al.
(2018) predicted stroke lesion outcomes of 75 patients based on
MRI combined with clinical information. Ho et al. (2019) made
predictions on the possible physiological changes in ischemic
stroke tissues using a deep convolutional neural network
(CNN) on source magnetic resonance perfusion images. Lucas
et al. (2018) employed a dataset of 29 subjects to predict
ischemic stroke evolution based on acute CTP [CBV and
time to peak (TTP)] data by interpolating low-dimensional
shape presentations. Xie et al. (2019) built extreme gradient
boosting (XGB) and gradient boosting machine (GBM) models
to predict the modified Rankin scale (mRS) scores at 90 days
on the basis of NCCT and CTP images [mean transit time
(MTT) and CBV] for binary prediction of an mRS score, in
which XGB and GBM models presented AUC of 0.746 and
0.748, respectively. Tang et al. (2020) developed a radiomic
signature using perfusion-weighted imaging (CBF and Tmax)
as prognostic biomarkers to validate the radiomic nomogram

FIGURE 6

Nomogram for predicting the time for achieving a good outcome. (A) Three variables from Cox proportional hazard regression model are
included into the nomogram model. For a given sample, each variable has a point, and the total point reflected the time for discharge and the
probability of the patient staying 1, 2, or 3 weeks in hospital. Panels (B,C) show time-dependent ROC curves of the model for the training and
testing sets.
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for predicting clinical outcomes of thrombolysis in patients
with acute ischemic stroke. On the contrary, our nomogram
model focused on the more optimal performance in the binary
classification of the BI scale. In addition, a variety of parameters
were collected from CTP maps, including CBV, CBF, Tmax, and
mismatch, and mismatch ratio so as to extract more effective
parameters, which reflected the advantages of CTP through the
mismatch area. As compared with previous studies on radiomics
and machine learning conducted in stroke settings (Bentley
et al., 2014; Ho et al., 2017, 2019; Peter et al., 2017; Lucas et al.,
2018; Kasasbeh et al., 2019; Qiu et al., 2019; Xie et al., 2019;
Bacchi et al., 2020; Robben et al., 2020), we conducted a more
comprehensive evaluation to verify the developed predictive
tool by assessing the discrimination ability, calibration, and
clinical utility, after which a more refined nomogram model was
obtained. In addition, compared with previous experiments that
only took lesions as the research object, we focused on the entire
brain, that is, the extracted imaging features cover both the left
and right brains. Even if the lesion is located in the left brain,
some characteristics of the right brain will have a certain impact
on the clinical prognosis of the patient. This is also one of the
strengths of our experiment.

As far as we know, the prediction of the time duration
of hospitalization in patients with stroke is still a relatively
new research point. The practical application value can be
attributed to three points. First, prediction of the reasonable
length of hospitalization may assist the physicians to determine
the hospital stay of individuals by indicating that extended
hospital stay may have less benefit on the patient based on
the BI analyses, thereby improving the efficiency of allocation
of medical resources, especially in developing countries where
limited clinical resources are available. Second, this may
be helpful in prompting the patient to start rehabilitation
treatment, and in the case of remission, the rehabilitation
can be carried out as soon as possible, which is helpful
for the recovery of the patient’s daily behavior. Third, the
predicted hospital stay can provide rough estimates for disease
severity and hospitalization expenses, which may be referred
by the patient before hospitalization. In clinical practice, it
is quite common that certain families may be not able to
afford endovascular intervention and would prefer conservative
treatment due to economic considerations. According to our
analyses, no significant difference was discovered between
patients with ischemic stroke receiving the endovascular
intervention (thrombectomy, stenting, or balloon dilation) and
those receiving medicinal thrombolysis regarding the duration
of time for hospitalization, which may suggest that the choice
of treatment method for ischemia stroke had no significant
impact on short-term BI, while further studies are still indicated
to explore the impacts of selected treatments on long-term
prognosis and recovery of brain function.

Despite the optimal performance of the nomogram models
mentioned above, our study has limitations. First of all, since

the study design was a retrospective analysis, potential selection
bias was inevitable. Second, all the enrolled patients came from
a single stroke center. Nevertheless, data from two scanners
were utilized, which guaranteed the stability of the model
to a certain extent. Third, features were extracted based on
specific platforms and specific thresholds, which may have
an impact on the generalization of our models. However,
the nomogram showed promising performance, indicating
its potential application in a broader practice. Thus, further
multicenter trials with fine designs are warranted to verify
the encouraging results obtained from our study, thereby
promoting the model application in a diverse clinical practice.

Conclusion

In conclusion, our study suggested that signatures may have
the potential to predict the short-term prognosis of patients with
ischemic stroke. The results proved that nomograms based on
features from NCCT, and CTP images demonstrated an exciting
ability to make individualized predictions for clinical outcomes
in an ischemic stroke setting. Different from traditional imaging
evaluation and patient physical assessment, the methodology
provides a new direction to improve clinical diagnosis and
treatment efficiency in the future.

Nomogram models demonstrated superior personalized
clinical outcome predictive performance in patients’ ADL and
the length of hospital stay, which shows great potential in
improving the clinical efficiency and may assist the physicians
to optimize the long-term rehabilitation management programs
based on the expected recovery of the patients.
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SUPPLEMENTARY FIGURE 1

Correlation analysis of continuous variables in the initial regression
model. (A) The correlation coefficient between any two variables from
R_M2_HU, L_C_HU, L_L_HU, and L_M2_HU. Both scatter diagrams and
histograms represent the distribution of the variables. (B) The heat map
qualitatively shows the correlation, in which the correlation strength
was positively related to the intensity and the size.

SUPPLEMENTARY FIGURE 2

Forest map showing the adjusted OR of variables in the multivariable
regression model.

SUPPLEMENTARY FIGURE 3

Features selection by LASSO. (A) The changes of AUC and features’
number with −log(Alpha). (B) Coefficients of nine features vary with
−log(Alpha). (C) Coefficients of nine features at a designated
α = 0.05.

SUPPLEMENTARY FIGURE 4

Receiver operating characteristics (ROC) curves for predicting discharge
BI rating into four classes both in the training set (A) and the testing
set (B).

SUPPLEMENTARY FIGURE 5

Calibration curves for predicting the time to get a good
outcome (BI > 60).

SUPPLEMENTARY EQUATION 1

Rad_Score equation composed of nine features and corresponding
coefficients was used to classify the discharge BI into
four classes.

Rad_Score = 0.3858 ∗ BI_admission_score + 0.0074 ∗ L_L_HU

− 0.0061 ∗ L_M1 − 0.0092 ∗ R_M5 − 0.0210

∗ CBF_20"− 0.0314 ∗ L_M4 − 0.0509 ∗ Tmax_10

− 0.0541 ∗ L_M3 − 0.0684 ∗ CBF_30 + 1.8403"
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