

http://pubs.acs.org/journal/acsodf

→AgNPs

Amine-Functionalized Silane-Assisted Preparation of AgNP-Deposited α -Ni(OH)₂ Composite Materials and Their Application in Hg²⁺ lon Sensing

Manickam Sundarapandi, Raju Praveen, Sivakumar Shanmugam,* and Ramasamy Ramaraj*

photoelectron spectroscopy, K-ray diffraction, and attenuated total reflectance–Fourier transform infrared spectroscopy techniques were used to characterize the prepared α -Ni₁(OH)₂-Ag_{0.5-3} composite materials. High-angle annular dark-field scanning transmission electron microscopy–energy-dispersive X-ray spectroscopy mapping images and

scanning electron microscopy–energy-dispersive X-ray spectroscopy mapping images were recorded to understand the α -Ni₁(OH)₂-Ag composite sheet materials. The optical sensing property of α -Ni₁(OH)₂-Ag_{0.5-3} composite materials toward toxic Hg²⁺ ions were investigated using a UV–vis absorption spectroscopy technique. The α -Ni₁(OH)₂-Ag₂ composite material showed selective sensing behavior.

1. INTRODUCTION

The shape control of inorganic nanomaterials has attracted attention due to their unique functions in electrical, magnetic, optical, and catalytic properties.¹⁻⁴ Especially, Ni-containing nanomaterials have received significant attention among 3d transition metal series because of their earth-abundant nature.⁵ Among various forms of Ni-containing nanomaterials, such as NiO, Ni(OH)₂, NiOOH, NiS, and NiSe have attracted more attention due to their applications in various fields, such as batteries, fuel cells, catalysis, and sensors.^{6,7} Inspired by the potential use of Ni(OH)₂, the synthesis of Ni(OH)₂ with various morphologies such as flower-like forms,⁸ nanobelts,⁵ nanorods¹⁰ and microspheres¹¹ have been reported. Ni(OH)₂ shows hexagonal layered structures with two polymorphs, i.e., α -Ni(OH)₂ and β -Ni(OH)₂, with two different interlayer spaces (α : 7 Å and β : ~4.6 Å) and their arrangements.⁸ α -Ni(OH)₂ nanoparticles (NPs) shows good electrochemical properties than that of β -Ni(OH)₂ NPs,⁸ and hence, the synthesis of α -Ni(OH)₂ NPs is of utmost concern. The optical and catalytic properties of pristine α -Ni(OH)₂ and modified α - $Ni(OH)_2$ have been reported.¹²⁻¹⁵ However, a systematic investigation on the sensing behavior of the combination of α - $Ni(OH)_2$ and noble metal nanocatalysts using N-[3-(trimethoxysilyl)propyl]-diethylenetriamine (TPDT) silane was not reported. Especially, silver NP(AgNP)-based noble metal nanocatalysts show potential applications relative to surface Plasmon resonance (SPR), chemical/biological sensors, and surface-enhanced Raman spectroscopy and are employed in antibacterial and antiviral medicines.^{16–20} Generally, the colloidal phase synthesis of NPs are more advantageous since specified instruments are not needed and processing and assembling can easily be enforced.²¹

α-Ni (OH)₂-Ag

→α-Ni (OH), sheets

The recognition and sensing of mercury $(Hg^{2+} ions)$ are of significant current interest since a very small quantity of $Hg^{2+}ions$ can lead to severe damage to the central nervous and endocrine systems.²² The recommended contaminant level of $Hg^{2+}ions$ in food and drinking water is 0.002 mg L⁻¹ (0.01 M) by the United States Environmental Protection Agency (EPA). Hence, designing new methods for the sensitive and selective detection of $Hg^{2+}ions$ by a simple optical detection method will find application in both human health and environment aspects. Compared to conventional spectroscopic detection of $Hg^{2+}ions$, the colorimetric method is a simple method due to

Received:September 7, 2022Accepted:October 10, 2022Published:October 21, 2022

their simplicity (naked eye detection), low cost, and fast detection.²¹ The detection of Hg^{2+} ions using different nanomaterials with size-, shape-, and interparticle distance-dependent optical properties and high extinction coefficients have been reported.^{23–27} Hence, the preparation of metal NPs with different morphologies by a facile method for selective sensing of Hg^{2+} ions is necessity.

In the present work, a facile preparation method at room temperature for depositing Ag_xNPs (x = 0.5, 1, 2 and 3) on α -Ni₁(OH)₂sheets (α -Ni₁(OH)₂-Ag_{0.5-3}) in the presence of TPDT silane without using any external reducing agent is reported. Upon varying the concentration of Ag⁺ ions, the size of AgNPs also changed with the uniform deposition of AgNPs on the α -Ni₁(OH)₂ sheets. In the earlier reported methods, the α -Ni₁(OH)₂ sheets were prepared at higher temperature using a reducing agent and a stabilizing agent.^{5,6} Here, the TPDT aminosilane is known to act as both reducing agent and stabilizing agent.²⁸ The sensing property of the prepared α -Ni(OH)₂-Ag_{0.5-3} composite materials (CMs) toward the colorimetric sensing of toxic Hg²⁺ ions (Scheme 1) was

Scheme 1. Scheme Illustrating the Synthesis of α -Ni(OH)₂-Ag Composite Materials toward Hg²⁺ Ion Sensing

demonstrated based on the change in the SPR of AgNPs in the α -Ni(OH)₂-Ag_{0.5-3}CMs. Results revealed that the α -Ni₁(OH)₂-Ag₂ CM showed the selective sensing of Hg²⁺ ions than that of other CMs, pristine α -Ni(OH)₂/TPDT, and pristine AgNPs/TPDT.

2. EXPERIMENTAL SECTION

2.1. Materials. Nickel(II) chloride hexahydrate (NiCl₂· $6H_2O$) and all other chemicals were purchased from Merck. *N*-[3(Trimethoxysilyl)propyl]diethylenetriamine (TPDT) and mercury(II) chloride were purchased from Sigma-Aldrich. All chemicals were used as received, and double-distilled water was used to prepare all the solutions.

2.2. Synthesis of the α -Ni₁(OH)₂-Ag_{0.5-3} CMs. In the synthesis, 238 mg of NiCl₂·6H₂O was dissolved in 10 mL of double-distilled water in a round-bottom (RB) flask. The final concentration of Ni²⁺ was calculated from the above solution and taken as α -Ni₁(OH)₂ for convenience. To this RB flask, 20.25 μ L of 10 mM Ag⁺ was added and stirred for 10 min. To this solution, 0.5 mL of 50 mM TPDT silane was added and then stirred for 3 h to form AgNPs deposited on α -Ni₁(OH)₂ sheets (α -Ni₁(OH)₂-Ag_{0.5} CM). Using the same protocol, α -Ni₁(OH)₂-Ag₁, α -Ni₁(OH)₂-Ag₂, and α -Ni₁(OH)₂-Ag₃ CMs with different concentrations were prepared. The subscript numbers indicate the molar ratio between Ni₁²⁺ and Ag. For comparison, bare α -Ni₁(OH)₂/TPDT and AgNPs/TPDT were prepared.

2.3. Optical and Colorimetric Sensing of Hg^{2+} lons. Both optical and colorimetric sensing of Hg^{2+} ions were studied using spectrophotometric technique. For optical sensing, 5 μ L of an aqueous solution of Hg^{2+} ions were added to 2 mL of α -Ni₁(OH)₂-Ag_{0.5-3} or pristine α -Ni₁(OH)₂/TPDT or AgNPs/TPDT solution and shaken well. After that, the absorption spectra were recorded after 2 min of addition, and the absorbance changes were monitored. For colorimetric sensing, an optimal concentration of Hg²⁺ ions and other possible interfering metal ions were added to 2 mL of α -Ni₁(OH)₂-Ag₂ CMs and shaken well, and the color changes were noted with naked eye.

2.4. Characterization. UV-vis absorption spectra were recorded using an Agilent Technologies 8453 spectrophotometer using a 1 cm quartz cell. Transmission electron microscopy (TEM) images were obtained with an FEI Tecnai G² 20 S-TWIN instrument operated at 200 kV. High-angle annular dark-field scanning transmission electron microscopyenergy-dispersive X-ray spectroscopy (HAADF-STEM-EDS) images were obtained from an FEI Tecnai F20. Scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS) mapping images were obtained on TESCAN VEGA3 SBH. X-ray photoelectron spectra (XPS) were recorded from a PHI 5000 Versa Probe III scanning microprobe with an Al K_{α} radiation source (1486.6 eV). Xray diffraction (XRD) patterns were recorded with a XPERT-PRO diffractometer ($\lambda = 1.54060$ Å). Fourier transform infrared (FT-IR) spectra analyses were recorded using a Spectrum GX (PerkinElmer).

3. RESULTS AND DISCUSSION

3.1. Characterizations of the α -Ni₁(OH)₂-Ag_{0.5-3} CMs. Sheet-like nickel hydroxide-silver (α -Ni₁(OH)₂-Ag_{0.5-3}) CMs were synthesized by a facile method at room temperature in the presence of N-[3(trimethoxysilyl)propyl]diethylenetriamine (TPDT) silane without using any external reducing agent. The simultaneous formation of $Ni(OH)_2$ and reduction of Ag⁺ ions to AgNPs led to the formation of α -Ni(OH)₂-Ag CMs. The TPDT aminosilane acts both as a reducing agent and as stabilizing agent. The α -Ni₁(OH)₂-Ag_{0.5-3} CMs were successfully synthesized, and the formation was initially confirmed by recording the absorption spectra. The absorption spectrum of the pristine α -Ni₁(OH)₂ sheet colloidal solution showed the characteristic absorption bands at 364, 588, and 950 nm (Figure 1a).¹² The absorption bands observed for α -Ni(OH)₂ at 364, 588, and 950 nm are due to the ${}^{3}A_{2} \rightarrow {}^{3}T_{1}({}^{3}P)$, ${}^{3}A_{2} \rightarrow {}^{3}T_{1}({}^{3}F)$, and ${}^{3}A_{2} \rightarrow {}^{3}T_{2}({}^{3}F)$ transitions, respectively. These transitions are attributed on the

Figure 1. Normalized absorption spectra of (a) pristine α -Ni₁(OH)₂ sheets, (b) α -Ni₁(OH)₂-Ag_{0.5}, (c) α -Ni₁(OH)₂-Ag₁, (d) α -Ni₁(OH)₂-Ag₂, and (e) α -Ni₁(OH)₂-Ag₃ CMs (inset: enlarged view of UV–vis absorption spectra of α -Ni₁(OH)₂-Ag_{0.5-3} CMs).

basis of the d⁸ system of Ni²⁺ in octahedral symmetry.¹² As expected, an additional characteristic absorbance band was noticed for α -Ni₁(OH)₂-Ag_{0.5-3} CMs to the deposition of AgNPs. Upon the deposition of different concentrations of AgNPs on the pristine α -Ni₁(OH)₂ sheet, a new SPR band was observed at 423, 427, 429, and 431 nm with gradual increases of Ag_{0.5}NPs, Ag₁NPs, Ag₂NPs, and Ag₃NPs on the α -Ni₁(OH)₂ sheet (Figure 1b–e and inset), respectively, and the presence of AgNPs did not change the absorption spectra of α -Ni₁(OH)₂ sheets at 364, 588, and 950 nm. The gradual redshift observed in the absorption spectra of the AgNPs indicates the formation of different sizes of AgNPs in the α -Ni₁(OH)₂-Ag CMs.²⁹

Figure 2A-E shows the TEM images of pristine α - $Ni_1(OH)_2$ sheets and $Ag_{0.5-3}NPs$ deposited on α - $Ni_1(OH)_2$ sheets. In α -Ni₁(OH)₂-Ag_{0.5} CMs, a few number with smaller sizes of AgNPs are deposited on the α -Ni₁(OH)₂ sheets (Figure 2B). When the concentration of AgNPs increased from Ag_{0.5} to Ag₁ (Figure 2C), Ag₂ (Figure 2D), and Ag₃ (Figure 2E), the number and size of the AgNPs deposited on the α - $Ni_1(OH)_2$ sheets increased gradually with uniform deposition of AgNPs (Ag_{0.5-3}) on the α -Ni₁(OH)₂ sheets. The average size of AgNPs for the α -Ni₁(OH)₂-Ag_{0.5}, α -Ni₁(OH)₂-Ag₁, α - $Ni_1(OH)_2$ -Ag₂, and α -Ni₁(OH)₂-Ag₃ CMs were found to be 3.2, 4.4, 7.2, and 8.8 nm, respectively, and their corresponding histograms of particle size distribution are shown in Figure S1A-D. Figure 2 and Figure S1 show that the size of the AgNPs increased upon increasing the Ag concentration and that at higher Ag concentration, the AgNPs are closed deposited on α -Ni₁(OH)₂ sheets. The formation of AgNPs on the α -Ni₁(OH)₂ sheets (α -Ni₁(OH)₂-Ag₂ CMs) was further confirmed by recording the HAADF-STEM-EDS mapping images (Figure 3A-E). The presence and arrangement of nickel (yellow), silver (red), and oxygen (pink) are shown in Figure 3C-E, respectively, and the overlay of these atoms are shown in Figure 3B. These HAADF-TEM-EDS mapping images clearly shows the presence of AgNPs on the α - $Ni_1(OH)_2$ sheets. In addition, the SEM-EDS mapping images were also recorded for α -Ni₁(OH)₂-Ag₂ CMs to further confirm the deposition of AgNPs on the α -Ni₁(OH)₂ sheets (Figure S2A–E). The presence and arrangement of Ni (red), Ag (blue), and O (green) elements are shown in Figure S2B-D, respectively, and the corresponding overlay of these elements are shown in Figure S2E.

The XRD patterns of the α -Ni₁(OH)₂-Ag_{0.5-3} CMs samples recorded immediately after preparation (Figure 4) show that AgNPs with different concentrations are deposited on the α - $Ni_1(OH)_2$ sheets. The diffraction peaks observed at 12.3 and 23.6° was ascribed to the {003} and {006} planes of the α - $Ni_1(OH)_2$ sheets, respectively (JCPDS 38-0715). Further, the new characteristic diffraction peak observed at 38.6° corresponds to the {111} plane of Ag for AgNPs (JCPDS 04-0784) on α -Ni₁(OH)₂ sheets, and the other diffraction peaks observed in Figure 4 was assigned to the SiO₂ glass plate (JCPDS 89-7499). Upon increasing the concentration of Ag from Ag_{0.5} to Ag₃ on the α -Ni₁(OH)₂ sheets (Figure 4B–E), the intensity of diffraction peaks corresponding to the AgNPs increased, whereas the intensity of α -Ni₁(OH)₂ was not changed. The XRD patterns of all the samples were recorded after 1 month of preparation (Figure S3) and compared with the XRD patterns recorded immediately after preparation. The diffraction patterns recorded after 1 month matched well with the earlier recorded XRD patterns of the α -Ni(OH)₂-AgNP

Figure 2. TEM images of (A) pristine α -Ni₁(OH)₂ sheets, (B) α -Ni₁(OH)₂-Ag_{0.5}, (C) α -Ni₁(OH)₂-Ag₁, (D) α -Ni₁(OH)₂-Ag₂, and (E) α -Ni₁(OH)₂-Ag₃ CMs and (F–J) their corresponding SAED patterns.

samples. This observation shows that the samples were stable for more than a month. Figure 5A shows the XPS survey spectrum recorded for α -Ni(OH)₂-Ag₂ CMs confirming the presence of Ni, O, and Ag. The high-resolution XPS spectrum (Figure 5B) shows the binding energy peaks at 855.4 and 872.8 eV corresponding to Ni 2p_{3/2} and Ni 2p_{1/2}, respectively, which are characteristic to α -Ni(OH)₂ and in good arrangement with the reported XPS.³⁰Figure 5C shows the highresolution spectrum with peaks at 367.4 and 373.6 eV corresponding to Ag 3d_{5/2} and Ag 3d_{3/2}, respectively.³¹ In addition, the O 1s peak was observed at 531.5 eV (Figure 5D) for the α -Ni(OH)₂-Ag₂ CMs. ATR-FTIR spectra were recorded to further confirm the existence of Ni(OH)₂/ TPDT silane (Figure S4). The IR absorption band observed

Figure 3. (A–E) HAADF-STEM-EDS mapping images of α -Ni₁(OH)₂-Ag₂ CMs [(B) Ni, Ag, and O; (C) Ni, yellow; (D) Ag, red; and (E) O, pink].

Figure 4. XRD patterns of the (A) pristine α -Ni₁(OH)₂ sheets, (B) α -Ni₁(OH)₂-Ag_{0.5}, (C) α -Ni₁(OH)₂-Ag₁, (D) α -Ni₁(OH)₂-Ag₂, and (E) α -Ni₁(OH)₂-Ag₃ CMs.

at 463 cm⁻¹ corresponds to the Ni–OH stretching mode,⁶ and the other band observed at 1064 cm⁻¹corresponds to the stretching vibration of Si–O–Si bond in TPDT silane.³²

3.2. Optical Sensing of Hg²⁺ lons. The absorption spectral changes observed for the α -Ni₁(OH)₂-Ag_{0.5} (Figure 6A), α -Ni₁(OH)₂-Ag₁ (Figure 6B), α -Ni₁(OH)₂-Ag₂ (Figure 6C), and α -Ni₁(OH)₂-Ag₃CMs (Figure 6D) upon the addition of 25 μ M Hg²⁺ ions to the corresponding solution are shown in Figure 6. The spectral changes observed upon the addition of 25 μ M Hg²⁺ ions to other control samples, such as α -Ni1(OH)2/TPDT (Figure 6E) and AgNPs/TPDT (Figure 6F), and their corresponding intensity difference bar diagrams are shown in Figure 6G. The addition of 25 μ M Hg²⁺ ions to α -Ni₁(OH)₂/TPDT did not bring about any change in the absorbance intensity (Figure 6E). Meanwhile, the absorbance intensity of the AgNPs was significantly decreased for α - $Ni_1(OH)_2$ -Ag_{0.5-3} CMs (Figure 6A–D), which indicates the redox interaction between the Ag in the α -Ni₁(OH)₂-Ag_{0.5-3} CMs and Hg²⁺ ions that caused a change in the absorbance of the AgNPs.³³ This decrease in AgNP absorbance intensity was more pronounced when the concentration of Ag was increased from Ag_{0.5} to Ag₂ and decreased when increasing the Ag concentration to Ag_3 (Figure 6G). This can be attributed to the number and size of AgNPs on the α -Ni₁(OH)₂ sheets. In the α -Ni₁(OH)₂-Ag₂ CMs, the number and size of AgNPs with uniform deposition shows the best optical sensing of Hg²⁺ions (Figure 2D). The change in absorption intensity for pristine AgNPs/TPDT upon the addition of 25 μ M Hg²⁺ ions (Figure 6F) is lower when compared to α -Ni₁(OH)₂-Ag_{0.5-3} CMs (Figure 6A-D). From the absorption spectral changes of pristine α -Ni₁(OH)₂/TPDT, α -Ni₁(OH)₂-Ag_{0.5-3} CMs, and

Figure 5. (A) XPS survey spectrum of α -Ni₁(OH)₂-Ag₂ CMs and high-resolution XPS spectra of (B) Ni 2p, (C) Ag 3d, and (D) O 1s.

pristine AgNPs/TPDT, it is concluded that the combination of both α -Ni₁(OH)₂ and AgNPs with an optimum concentration of AgNPs on α -Ni₁(OH)₂ shows best optical sensing property of Hg²⁺ ions. The effective sensing of Hg²⁺ ions may be attributed to the charge transfer interaction between α -Ni(OH)₂ and AgNPs in the α -Ni(OH)₂-AgNPs and the synergistic effect of the AgNPs and α -Ni₁(OH)₂ sheets.^{34–36}

Figure 7A shows the enlarged view of the absorption spectral intensity changes recorded for the α -Ni₁(OH)₂-Ag₂CMs upon each addition of 5 μ M Hg²⁺ ions, and the inset figure shows the complete spectra of the same. The absorption intensity of AgNPs was linearly decreased while increasing the concentration of Hg²⁺ ions due to the redox interaction between the Ag in the α -Ni₁(OH)₂-Ag₂ CMs and Hg²⁺ ions.^{33,37}Figure 7B shows the corresponding plot of difference in AgNPs absorption intensity changes (I_d) at 422 nm against the concentration of Hg²⁺ ions (in the absence and presence of each addition of 5 μ M Hg²⁺ ions) for α -Ni₁(OH)₂-Ag₂ CMs. Figure 7B shows a linear range from 5 to 50 μ M for Hg²⁺ ions with an R^2 value of 0.9909 (a slope of 3.963×10^{-4}), and the limit of detection (LOD) was calculated to be 100.8 nM using the IUPAC-recommended formula.³⁸Figure S5 shows the bar diagram and photograph image (Figure S5, inset) of the selective colorimetric sensing of Hg²⁺ ions (25 μ M) in the presence of 100 μ M different environmentally applicable metal ion interference like MgCl₂, Na₂SO₄, CaCl₂, ZnCl₂, Ni(NO₃)₂, CuSO₄.5H₂O, CdCl₂, CoCl₂.6H₂O, KNO₃, PbCl₂, FeCl₂, KCl₂ KBr, and NaCl ions to α -Ni₁(OH)₂-Ag₂ CMs. The disappearance of color observed upon the Hg²⁺ ion addition to α -Ni₁(OH)₂-Ag₂ CMs showed the selective sensing of Hg²⁺ ions in the presence of interference metal ions of 100 μ M. The colorimetric detection limit was found to be 25 μ M Hg²⁺ ions.

3.3. AgHg Amalgam Formation. The formation of AgHg amalgam can be assigned to the difference in the electrochemical potentials of the Ag^+/Ag couple (0.80 V vs SHE) and Hg^{2+}/Hg couple (0.85 V vs SHE).³⁷ Hence, the Hg^{2+} ions possess enough electrochemical potential to oxidize Ag⁰ to Ag⁺ ions. The decrease in the absorption intensity observed for AgNPs at 422 nm upon the addition of Hg²⁺ ions to α - $Ni_1(OH)_2$ -Ag₂ CMs reveals that the Hg²⁺ ions interact with the deposited AgNPs on α -Ni₁(OH)₂ sheets with the formation of AgHg amalgam,³⁹ which leads to the size reduction of AgNPs (size reduced to ~3 nm) and some aggregation⁴⁰ (Figure 8A,B). During Hg²⁺ ions sensing, after each addition of Hg²⁺ ions to the α -Ni₁(OH)₂-Ag₂ CMs (Figure 7A), the absorbance intensity of Ag was considerably quenched due to the redox interaction of Hg²⁺ ions with Ag in the α -Ni₁(OH)₂-Ag₂ CMs with the formation of AgHg amalgam.³⁹ The absorption spectral changes (Figure 7A) and the TEM images (Figure 8A,B) observed for the α -Ni₁(OH)₂-Ag₂ CMs upon the addition of Hg²⁺ ions clearly supports the AgHg amalgam formation. The XRD pattern recorded for the α -Ni₁(OH)₂-Ag₂ CMs after the addition of 25 μ M Hg²⁺ ions (Figure S6) showed the disappearance of the XRD peak due to Ag, which confirms the AgHg amalgam formation. The SEM-EDS mapping images were also recorded for α -Ni₁(OH)₂-Ag₂ CMs after the addition of 25 μ M Hg²⁺ ions to further confirm the presence of Hg in the α -Ni₁(OH)₂-Ag₂ CMs (Figure S7). The presence and arrangement of Ni (red), Ag (green), O (blue), and Hg (cyan) elements are shown in Figure S7B-E, respectively, and the overlay of these elements are shown in Figure S7F.

3.4. Real Sample Analysis. To find out the practical applicability of the prepared α -Ni₁(OH)₂-Ag₂ CMs for the sensing of Hg²⁺ ions, three different water samples (borewell

Figure 6. UV–vis absorption spectral changes recorded upon the addition of 25 μ M Hg²⁺ ions to (A) α -Ni₁(OH)₂-Ag_{0.5}, (B) α -Ni₁(OH)₂-Ag₁, (C) α -Ni₁(OH)₂-Ag₂, (D) α -Ni₁(OH)₂-Ag₃ CMs, (E) pristine α -Ni₁(OH)₂/TPDT, (F) AgNPs/TPDT, and (G) the corresponding bar diagram.

water, pond water, and river water) were spiked with different concentrations of Hg^{2+} ions and analyzed. All the water samples were filtered using a filter paper before the experiment. From the observation, the recovery was calculated, and the results are summarized in Table S1. The results clearly suggests that the α -Ni₁(OH)₂-Ag₂ CMs can be used for the sensing of Hg²⁺ ions in real water samples.

4. CONCLUSIONS

In conclusion, the different concentrations of AgNPs (Ag_{0.5}, Ag₁, Ag₂, and Ag₃) deposited on pristine α -Ni₁(OH)₂ sheets

 $(\alpha$ -Ni₁(OH)₂-Ag_{0.5-3} CMs) were synthesized by a facile method at room temperature using *N*-[3(trimethoxysilyl)propyl]diethylenetriamine silane without using an external reducing agent, and aminosilane acts as both reducing and stabilizing agent. The α -Ni₁(OH)₂-Ag_{0.5-3} CMs were characterized using UV-vis absorption spectroscopy, TEM, XRD, XPS, and ATR-FTIR and confirmed the deposition of AgNPs on the α -Ni₁(OH)₂ sheets. The HAADF-STEM-EDS mapping images clearly revealed the deposition of AgNPs on the α -Ni₁(OH)₂ sheets. An optimum concentration of AgNPs on the α -Ni₁(OH)₂ sheets and the number and size of deposited

Figure 7. (A) Enlarged view of UV-vis absorption spectral changes recorded for α -Ni₁(OH)₂-Ag₂ CMs upon each addition of 5 μ M Hg²⁺ ions (inset: UV-vis absorption spectra of α -Ni₁(OH)₂-Ag₂ CMs upon each addition of 5 μ M Hg²⁺ ions) and (B) corresponding plot of the AgNP absorption intensity difference at 422 nm (I_d) in the absence and presence of each addition of 5 μ M Hg²⁺ ions against concentration of the Hg²⁺ ions ($R^2 = 0.991$).

Figure 8. (A and B) TEM images recorded at different scale bars for α -Ni₁(OH)₂-Ag₂ CMs after the addition of 25 μ M Hg²⁺ ions.

AgNPs are found to influence the sensing of α -Ni₁(OH)₂-Ag₂ CMs. The α -Ni₁(OH)₂-Ag₂ CMs showed the best optical and colorimetric sensing activity when compared to that of other CMs, pristine α -Ni₁(OH)₂sheets, and AgNPs/TPDT. To the best our knowledge, this is the first report where the facile synthesis of deposition of AgNPs on a α -Ni₁(OH)₂ sheet using amine-functionalized silane is developed without using an external reducing agent and its application in optical and colorimetric sensing of Hg²⁺ ions is determined.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsomega.2c05812.

(Figure S1) Histogram; (Figure S2) SEM-EDS mapping images; (Figure S3) XRD patterns; (Figure S4) ATR-FTIR; (Figure S5) photograph image; (Figure S6) XRD pattern; (Figure S7) SEM-EDS mapping images; (Table S1) real sample analysis table (PDF)

AUTHOR INFORMATION

Corresponding Authors

- Sivakumar Shanmugam Department of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, India; orcid.org/0000-0003-4087-7686; Email: shivazzen@mkuniversity.org
- Ramasamy Ramaraj School of Chemistry, Centre for Photoelectrochemistry, Madurai Kamaraj University, Madurai 625021, India; o orcid.org/0000-0003-2242-5483; Email: ramarajr@yahoo.com

Authors

- Manickam Sundarapandi School of Chemistry, Centre for Photoelectrochemistry, Madurai Kamaraj University, Madurai 625021, India
- Raju Praveen School of Chemistry, Centre for Photoelectrochemistry, Madurai Kamaraj University, Madurai 625021, India

Complete contact information is available at: https://pubs.acs.org/10.1021/acsomega.2c05812

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

R.R. acknowledges financial support from the Raja Ramanna Fellowship Scheme (no. 1005/2/1/2019/RRF(SCM)/R&D-II/9999), Department of Atomic Energy (DAE), Government of India. M.S. is the recipient of the CSIR-Senior Research Fellowship scheme (file no. 09/201(0429)/2020-EMR-I). The authors acknowledge the CIC, UPE, Madurai Kamaraj University, for HR-TEM analysis. HAADF-STEM-EDS mapping images were recorded at CSIR-CECRI, Karaikudi.

REFERENCES

(1) Hashimoto, Y.; Seniutinas, G.; Balčytis, A.; Juodkazis, S.; Nishijima, Y. Au-Ag-Cu Nano-Alloys: Tailoring of Permittivity. *Sci. Rep.* **2016**, *6*, 25010.

(2) Li, T. T.; He, C.; Zhang, W. X.; Cheng, M. Structural and Melting Properties of Cu-Ni Clusters: A Simulation Study. *J. Alloy. Compd.* **2018**, 752, 76–84.

(3) Albrecht, G.; Ubl, M.; Kaiser, S.; Giessen, H.; Hentschel, M. Comprehensive Study of Plasmonic Materials in the Visible and Near-Infrared: Linear, Refractory, and Nonlinear Optical Properties. *ACS Photonics* **2018**, *5*, 1058–1067.

(4) Xu, Z.; He, X.; Liang, M.; Sun, L.; Li, D.; Xie, K.; Liao, L. Catalytic Reduction of 4-Nitrophenol over Graphene Supported Cu@ Ni Bimetallic Nanowires. *Mater. Chem. Phys.* **2019**, *227*, 64–71.

(5) Gao, M.; Sheng, W.; Zhuang, Z.; Fang, Q.; Gu, S.; Jiang, J.; Yan, Y. Efficient Water Oxidation Using Nanostructured α -Nickel-Hydroxide as an Electrocatalyst. *J. Am. Chem. Soc.* **2014**, *136*, 7077–7084.

(6) Neiva, E. G. C.; Oliveira, M. M.; Bergamini, M. F.; Marcolino, L. H.; Zarbin, A. J. G. One Material, Multiple Functions: graphene/ $Ni(OH)_2$ Thin Films Applied in Batteries, Electrochromism and Sensors. *Sci. Rep.* **2016**, *6*, 33806.

(7) Lynch, B. B.; Kelliher, A. P.; Anderson, B. D.; Japit, A.; Spencer, M. A.; Rizvi, M. H.; Sarac, M. F.; Augustyn, V.; Tracy, J. B. Sulfidation and Selenidation of Nickel Nanoparticles. *Carbon Energy* 2021, *3*, 582.
(8) Xu, L.; Ding, Y.-S.; Chen, C.-H.; Zhao, L.; Rimkus, C.; Joesten,

R; Suib, S. L. 3D Flowerlike α -Nickel Hydroxide with Enhanced Electrochemical Activity Synthesized by Microwave-Assisted Hydrothermal Method. *Chem. Mater.* **2008**, *20*, 308–316.

(9) Dong, L.; Chu, Y.; Sun, W. Controllable Synthesis of Nickel Hydroxide and Porous Nickel Oxide Nanostructures with Different Morphologies. *Chem. – Eur. J.* **2008**, *14*, 5064–5072.

(10) Matsui, K.; Kyotani, T.; Tomita, A. Hydrothermal Synthesis of Single-Crystal $Ni(OH)_2$ Nanorods in a Carbon-Coated Anodic Alumina Film. *Adv. Mater.* **2002**, *14*, 1216–1219.

(11) Du, H.; Wang, Y.; Yuan, H.; Jiao, L. Facile Synthesis and High Capacitive Performance of 3D Hierarchical Ni(OH)₂ Microspheres. *Electrochim. Acta* **2016**, *196*, 84–91.

(12) Harvey, A.; He, X.; Godwin, I. J.; Backes, C.; McAteer, D.; Berner, N. C.; McEvoy, N.; Ferguson, A.; Shmeliov, A.; Lyons, M. E. G.; Nicolosi, V.; Duesberg, G. S.; Donegan, J. F.; Coleman, J. N. Production of Ni(OH)₂ Nanosheets by Liquid Phase Exfoliation: From Optical Properties to Electrochemical Applications. *J. Mater. Chem. A* **2016**, *4*, 11046–11059.

(13) Yan, J.; Kong, L.; Ji, Y.; White, J.; Li, Y.; Zhang, J.; An, P.; Liu, S.; Lee, S.-T.; Ma, T. Single Atom Tungsten Doped Ultrathin α -Ni(OH)₂ for Enhanced Electrocatalytic Water Oxidation. *Nat. Commun.* **2019**, *10*, 2149.

(14) Taniguchi, A.; Kubota, Y.; Matsushita, N.; Ishii, K.; Nguyen, T. K. N.; Uchikoshi, T.; Suzuki, Y. Sequenced Successive Ionic Layer Adsorption and Reaction for Rational Design of $Ni(OH)_2$ /FeOOH Heterostructures with Tailored Catalytic Properties. *ACS Appl. Energy Mater.* **2021**, *4*, 8252–8261.

(15) Zhang, L.; Wang, G.; Jin, Z. Growth of $Zn_{0.5}Cd_{0.5}S/\alpha$ -Ni(OH)₂ Heterojunction by a Facile Hydrothermal Transformation Efficiently Boosting Photocatalytic Hydrogen Production. *New J. Chem.* **2019**, 43, 6411–6421.

(16) Zhang, C.; Li, Z.; Jiang, S. Z.; Li, C. H.; Xu, S. C.; Yu, J.; Li, Z.; Wang, M. H.; Liu, A. H.; Man, B. Y. U-Bent Fiber Optic SPR Sensor Based on graphene/AgNPs. Sens. Actuators, B 2017, 251, 127–133.
(17) Li, W.; Teng, C.; Sun, Y.; Cai, L.; Xu, J.-L.; Sun, M.; Li, X.; Yang, X.; Xiang, L.; Xie, D.; Ren, T. Sprayed, Scalable, Wearable, and Portable NO₂ Sensor Array Using Fully Flexible AgNPs-All-Carbon Nanostructures. ACS Appl. Mater. Interfaces 2018, 10, 34485–34493.
(18) Yan, P.; Ding, Z.; Li, X.; Dong, Y.; Fu, T.; Wu, Y. Colorimetric Sensor Array Based on Wulff-Type Boronate Functionalized AgNPs at Various pH for Bacteria Identification. Anal. Chem. 2019, 91, 12134–

12137. (19) Srichan, C.; Ekpanyapong, M.; Horprathum, M.; Eiamchai, P.; Nuntawong, N.; Phokharatkul, D.; Danvirutai, P.; Bohez, E.; Wisitsoraat, A.; Tuantranont, A. Highly-Sensitive Surface-Enhanced Raman Spectroscopy (SERS)-Based Chemical Sensor Using 3D Graphene Foam Decorated with Silver Nanoparticles as SERS Substrate. *Sci. Rep.* **2016**, *6*, 23733.

(20) Mortazavi-Derazkola, S.; Ebrahimzadeh, M. A.; Amiri, O.; Goli, H. R.; Rafiei, A.; Kardan, M.; Salavati-Niasari, M. Facile Green Synthesis and Characterization of Crataegus Microphylla Extract-Capped Silver Nanoparticles (CME@Ag-NPs) and Its Potential Antibacterial and Anticancer Activities against AGS and MCF-7 Human Cancer Cells. J. Alloy. Compd. 2020, 820, No. 153186.

(21) Jeevika, A.; Shankaran, D. R. Functionalized Silver Nanoparticles Probe for Visual Colorimetric Sensing of Mercury. *Mater. Res. Bull.* **2016**, 83, 48–55.

(22) Liu, J.; Vellaisamy, K.; Yang, G.; Leung, C.-H.; Ma, D.-L. Luminescent Turn-on Detection of Hg(II) via the Quenching of an iridium(III) Complex by Hg(II)-Mediated Silver Nanoparticles. *Sci. Rep.* **2017**, *7*, 3620.

(23) Guo, N.; Xu, G.; Zhang, Q.; Song, P.; Xia, L. AgNPs Functionalized with Dithizone for the Detection of Hg²⁺ Based on Surface-Enhanced Raman Scattering Spectroscopy. *Plasmonics* **2022**, *17*, 1419–1426. (24) Chen, L.; Li, J.; Chen, L. Colorimetric Detection of Mercury Species Based on Functionalized Gold Nanoparticles. *ACS Appl. Mater. Interfaces* **2014**, *6*, 15897–15904.

(25) Chen, L.; Fu, X.; Lu, W.; Chen, L. Highly Sensitive and Selective Colorimetric Sensing of Hg²⁺ Based on the Morphology Transition of Silver Nanoprisms. *ACS Appl. Mater. Interfaces* **2013**, *5*, 284–290.

(26) Wang, G.; Chen, Z.; Wang, W.; Yan, B.; Chen, L. Chemical Redox-Regulated Mesoporous Silica-Coated Gold Nanorods for Colorimetric Probing of Hg^{2+} and S^{2-} . *Analyst* **2011**, *136*, 174–178.

(27) Jayabal, S.; Sathiyamurthi, R.; Ramaraj, R. Selective Sensing of Hg^{2+} Ions by Optical and Colorimetric Methods Using Gold Nanorods Embedded in a Functionalized Silicate Sol-gel Matrix. *J. Mater. Chem. A* **2014**, *2*, 8918–8925.

(28) Bharathi, S.; Fishelson, N.; Lev, O. Direct Synthesis and Characterization of Gold and Other Noble Metal Nanodispersions in Sol–Gel-Derived Organically Modified Silicates. *Langmuir* **1999**, *15*, 1929–1937.

(29) Bastús, N. G.; Piella, J.; Puntes, V. Quantifying the Sensitivity of Multipolar (Dipolar, Quadrupolar, and Octapolar) Surface Plasmon Resonances in Silver Nanoparticles: The Effect of Size, Composition, and Surface Coating. *Langmuir* **2016**, *32*, 290–300.

(30) Yan, J.; Fan, Z.; Sun, W.; Ning, G.; Wei, T.; Zhang, Q.; Zhang, R.; Zhi, L.; Wei, F. Advanced Asymmetric Supercapacitors Based on Ni(OH)₂/Graphene and Porous Graphene Electrodes with High Energy Density. *Adv. Funct. Mater.* **2012**, *22*, 2632–2641.

(31) Sharma, R.; Dhillon, A.; Kumar, D. Mentha-Stabilized Silver Nanoparticles for High-Performance Colorimetric Detection of Al(III) in Aqueous Systems. *Sci. Rep.* **2018**, *8*, 5189.

(32) Sundarapandi, M.; Shanmugam, S.; Ramaraj, R. Tuning Cu₂O Shell on Gold Nanocube Core Employing Amine-Functionalized Silane for Electrocatalytic Nitrite Detection. *ACS Appl. Nano Mater.* **2022**, *5*, 1674–1682.

(33) Rameshkumar, P.; Manivannan, S.; Ramaraj, R. Silver Nanoparticles Deposited on Amine-Functionalized Silica Spheres and Their Amalgamation-Based Spectral and Colorimetric Detection of Hg(II) Ions. J. Nanopart. Res. **2013**, *15*, 1639.

(34) Bao, F.; Tan, F.; Wang, W.; Qiao, X.; Chen, J. Facile Preparation of $Ag/Ni(OH)_2$ Composites with Enhanced Catalytic Activity for Reduction of 4-Nitrophenol. *RSC Adv.* **2017**, *7*, 14283–14289.

(35) Sheng, Q.; Liu, D.; Zheng, J. A Nonenzymatic Electrochemical Nitrite Sensor Based on Pt Nanoparticles Loaded Ni(OH)₂/multi-Walled Carbon Nanotubes Nanocomposites. *J. Electroanal. Chem.* **2017**, 796, 9–16.

(36) Cai, R.; Jin, H.; Yang, D.; Lin, K.-T.; Chan, K.; Sun, J.; Chen, Z.; Zhang, X.; Tan, W. Generalized Preparation of Au NP @ Ni(OH)₂ Yolk-Shell NPs and Their Enhanced Catalytic Activity. *Nano Energy* **2020**, *71*, No. 104542.

(37) Harika, V. K.; Kumar, V. B.; Gedanken, A. One-Pot Sonochemical Synthesis of Hg–Ag Alloy Microspheres from Liquid Mercury. *Ultrason. Sonochem.* **2018**, *40*, 157–165.

(38) Committee, A. M. Recommendations for the Definition, Estimation and Use of the Detection Limit. *Analyst* **1987**, *112*, 199–204.

(39) Zangeneh Kamali, K.; Pandikumar, A.; Jayabal, S.; Ramaraj, R.; Lim, H. N.; Ong, B. H.; Bien, C. S. D.; Kee, Y. Y.; Huang, N. M. Amalgamation Based Optical and Colorimetric Sensing of mercury-(II) Ions with Silver@graphene Oxide Nanocomposite Materials. *Microchim. Acta* **2016**, *183*, 369–377.

(40) Deng, L.; Ouyang, X.; Jin, J.; Ma, C.; Jiang, Y.; Zheng, J.; Li, J.; Li, Y.; Tan, W.; Yang, R. Exploiting the Higher Specificity of Silver Amalgamation: Selective Detection of Mercury(II) by Forming Ag/ Hg Amalgam. *Anal. Chem.* **2013**, *85*, 8594–8600.