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ABSTRACT: A facile synthetic methodology for the deposition of
different concentrations of Ag nanoparticles (AgNPs) on α-Ni(OH)2
sheets (α-Ni1(OH)2-Ag0.5, α-Ni1(OH)2-Ag1, α-Ni1(OH)2-Ag2, and α-
Ni1(OH)2-Ag3) is reported using N-[3-(trimethoxysilyl)propyl]-
diethylenetriamine (TPDT) silane. The TPDT aminosilane facilitates
the formation of α-Ni(OH)2 sheets and reduces the Ag+ precursor to
AgNPs, leading to the deposition of AgNPs on α-Ni(OH)2 sheets. UV−
vis absorption spectroscopy, transmission microscopy analyses, X-ray
photoelectron spectroscopy, X-ray diffraction, and attenuated total
reflectance−Fourier transform infrared spectroscopy techniques were
used to characterize the prepared α-Ni1(OH)2-Ag0.5−3 composite
materials. High-angle annular dark-field scanning transmission electron
microscopy−energy-dispersive X-ray spectroscopy mapping images and
scanning electron microscopy−energy-dispersive X-ray spectroscopy mapping images were recorded to understand the α-Ni1(OH)2-
Ag composite sheet materials. The optical sensing property of α-Ni1(OH)2-Ag0.5−3 composite materials toward toxic Hg2+ ions were
investigated using a UV−vis absorption spectroscopy technique. The α-Ni1(OH)2-Ag2 composite material showed selective sensing
behavior.

1. INTRODUCTION
The shape control of inorganic nanomaterials has attracted
attention due to their unique functions in electrical, magnetic,
optical, and catalytic properties.1−4 Especially, Ni-containing
nanomaterials have received significant attention among 3d
transition metal series because of their earth-abundant nature.5

Among various forms of Ni-containing nanomaterials, such as
NiO, Ni(OH)2, NiOOH, NiS, and NiSe have attracted more
attention due to their applications in various fields, such as
batteries, fuel cells, catalysis, and sensors.6,7 Inspired by the
potential use of Ni(OH)2, the synthesis of Ni(OH)2 with
various morphologies such as flower-like forms,8 nanobelts,9

nanorods10 and microspheres11 have been reported. Ni(OH)2
shows hexagonal layered structures with two polymorphs, i.e.,
α-Ni(OH)2 and β-Ni(OH)2, with two different interlayer
spaces (α: 7 Å and β: ∼4.6 Å) and their arrangements.8 α-
Ni(OH)2 nanoparticles (NPs) shows good electrochemical
properties than that of β-Ni(OH)2 NPs,8 and hence, the
synthesis of α-Ni(OH)2 NPs is of utmost concern. The optical
and catalytic properties of pristine α-Ni(OH)2 and modified α-
Ni(OH)2 have been reported.12−15 However, a systematic
investigation on the sensing behavior of the combination of α-
Ni(OH)2 and noble metal nanocatalysts using N-[3-
(trimethoxysilyl)propyl]-diethylenetriamine (TPDT) silane
was not reported. Especially, silver NP(AgNP)-based noble

metal nanocatalysts show potential applications relative to
surface Plasmon resonance (SPR), chemical/biological sensors,
and surface-enhanced Raman spectroscopy and are employed
in antibacterial and antiviral medicines.16−20 Generally, the
colloidal phase synthesis of NPs are more advantageous since
specified instruments are not needed and processing and
assembling can easily be enforced.21

The recognition and sensing of mercury (Hg2+ ions) are of
significant current interest since a very small quantity of
Hg2+ions can lead to severe damage to the central nervous and
endocrine systems.22 The recommended contaminant level of
Hg2+ ions in food and drinking water is 0.002 mg L−1 (0.01 M)
by the United States Environmental Protection Agency (EPA).
Hence, designing new methods for the sensitive and selective
detection of Hg2+ ions by a simple optical detection method
will find application in both human health and environment
aspects. Compared to conventional spectroscopic detection of
Hg2+ ions, the colorimetric method is a simple method due to
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their simplicity (naked eye detection), low cost, and fast
detection.21 The detection of Hg2+ ions using different
nanomaterials with size-, shape-, and interparticle distance-
dependent optical properties and high extinction coefficients
have been reported.23−27 Hence, the preparation of metal NPs
with different morphologies by a facile method for selective
sensing of Hg2+ ions is necessity.

In the present work, a facile preparation method at room
temperature for depositing AgxNPs (x = 0.5, 1, 2 and 3) on α-
Ni1(OH)2sheets (α-Ni1(OH)2-Ag0.5−3) in the presence of
TPDT silane without using any external reducing agent is
reported. Upon varying the concentration of Ag+ ions, the size
of AgNPs also changed with the uniform deposition of AgNPs
on the α-Ni1(OH)2 sheets. In the earlier reported methods, the
α-Ni1(OH)2 sheets were prepared at higher temperature using
a reducing agent and a stabilizing agent.5,6 Here, the TPDT
aminosilane is known to act as both reducing agent and
stabilizing agent.28 The sensing property of the prepared α-
Ni(OH)2-Ag0.5−3 composite materials (CMs) toward the
colorimetric sensing of toxic Hg2+ ions (Scheme 1) was

demonstrated based on the change in the SPR of AgNPs in the
α-Ni(OH)2-Ag0.5−3CMs. Results revealed that the α-
Ni1(OH)2-Ag2 CM showed the selective sensing of Hg2+

ions than that of other CMs, pristine α-Ni(OH)2/TPDT,
and pristine AgNPs/TPDT.

2. EXPERIMENTAL SECTION
2.1. Materials. Nickel(II) chloride hexahydrate (NiCl2·

6H2O) and all other chemicals were purchased from Merck. N-
[3(Trimethoxysilyl)propyl]diethylenetriamine (TPDT) and
mercury(II) chloride were purchased from Sigma-Aldrich. All
chemicals were used as received, and double-distilled water was
used to prepare all the solutions.
2.2. Synthesis of the α-Ni1(OH)2-Ag0.5−3 CMs. In the

synthesis, 238 mg of NiCl2·6H2O was dissolved in 10 mL of
double-distilled water in a round-bottom (RB) flask. The final
concentration of Ni2+ was calculated from the above solution
and taken as α-Ni1(OH)2 for convenience. To this RB flask,
20.25 μL of 10 mM Ag+ was added and stirred for 10 min. To
this solution, 0.5 mL of 50 mM TPDT silane was added and
then stirred for 3 h to form AgNPs deposited on α-Ni1(OH)2
sheets (α-Ni1(OH)2-Ag0.5 CM). Using the same protocol, α-
Ni1(OH)2-Ag1, α-Ni1(OH)2-Ag2, and α-Ni1(OH)2-Ag3 CMs
with different concentrations were prepared. The subscript
numbers indicate the molar ratio between Ni1

2+ and Ag. For
comparison, bare α-Ni1(OH)2/TPDT and AgNPs/TPDT
were prepared.
2.3. Optical and Colorimetric Sensing of Hg2+ Ions.

Both optical and colorimetric sensing of Hg2+ ions were
studied using spectrophotometric technique. For optical
sensing, 5 μL of an aqueous solution of Hg2+ ions were

added to 2 mL of α-Ni1(OH)2-Ag0.5−3 or pristine α-
Ni1(OH)2/TPDT or AgNPs/TPDT solution and shaken
well. After that, the absorption spectra were recorded after 2
min of addition, and the absorbance changes were monitored.
For colorimetric sensing, an optimal concentration of Hg2+

ions and other possible interfering metal ions were added to 2
mL of α-Ni1(OH)2-Ag2 CMs and shaken well, and the color
changes were noted with naked eye.
2.4. Characterization. UV−vis absorption spectra were

recorded using an Agilent Technologies 8453 spectropho-
tometer using a 1 cm quartz cell. Transmission electron
microscopy (TEM) images were obtained with an FEI Tecnai
G2 20 S-TWIN instrument operated at 200 kV. High-angle
annular dark-field scanning transmission electron microscopy−
energy-dispersive X-ray spectroscopy (HAADF-STEM-EDS)
images were obtained from an FEI Tecnai F20. Scanning
electron microscopy−energy dispersive X−ray spectroscopy
(SEM-EDS) mapping images were obtained on TESCAN
VEGA3 SBH. X-ray photoelectron spectra (XPS) were
recorded from a PHI 5000 Versa Probe III scanning
microprobe with an Al Kα radiation source (1486.6 eV). X-
ray diffraction (XRD) patterns were recorded with a XPERT-
PRO diffractometer (λ = 1.54060 Å). Fourier transform
infrared (FT-IR) spectra analyses were recorded using a
Spectrum GX (PerkinElmer).

3. RESULTS AND DISCUSSION
3.1. Characterizations of the α-Ni1(OH)2-Ag0.5−3 CMs.

Sheet-like nickel hydroxide-silver (α-Ni1(OH)2-Ag0.5−3) CMs
were synthesized by a facile method at room temperature in
t h e p r e s e n c e o f N - [ 3 ( t r i m e t h o x y s i l y l ) p r o p y l ] -
diethylenetriamine (TPDT) silane without using any external
reducing agent. The simultaneous formation of Ni(OH)2 and
reduction of Ag+ ions to AgNPs led to the formation of α-
Ni(OH)2-Ag CMs. The TPDT aminosilane acts both as a
reducing agent and as stabilizing agent. The α-Ni1(OH)2-
Ag0.5−3 CMs were successfully synthesized, and the formation
was initially confirmed by recording the absorption spectra.
The absorption spectrum of the pristine α-Ni1(OH)2 sheet
colloidal solution showed the characteristic absorption bands
at 364, 588, and 950 nm (Figure 1a).12 The absorption bands
observed for α-Ni(OH)2 at 364, 588, and 950 nm are due to
the 3A2 → 3T1(3P), 3A2 → 3T1(3F), and 3A2 → 3T2(3F)
transitions, respectively. These transitions are attributed on the

Scheme 1. Scheme Illustrating the Synthesis of α-Ni(OH)2-
Ag Composite Materials toward Hg2+ Ion Sensing

Figure 1. Normalized absorption spectra of (a) pristine α-Ni1(OH)2
sheets, (b) α-Ni1(OH)2-Ag0.5, (c) α-Ni1(OH)2-Ag1, (d) α-Ni1(OH)2-
Ag2, and (e) α-Ni1(OH)2-Ag3 CMs (inset: enlarged view of UV−vis
absorption spectra of α-Ni1(OH)2-Ag0.5−3 CMs).
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basis of the d8 system of Ni2+ in octahedral symmetry.12 As
expected, an additional characteristic absorbance band was
noticed for α-Ni1(OH)2-Ag0.5−3 CMs to the deposition of
AgNPs. Upon the deposition of different concentrations of
AgNPs on the pristine α-Ni1(OH)2 sheet, a new SPR band was
observed at 423, 427, 429, and 431 nm with gradual increases
of Ag0.5NPs, Ag1NPs, Ag2NPs, and Ag3NPs on the α-
Ni1(OH)2 sheet (Figure 1b−e and inset), respectively, and
the presence of AgNPs did not change the absorption spectra
of α-Ni1(OH)2 sheets at 364, 588, and 950 nm. The gradual
redshift observed in the absorption spectra of the AgNPs
indicates the formation of different sizes of AgNPs in the α-
Ni1(OH)2-Ag CMs.29

Figure 2A−E shows the TEM images of pristine α-
Ni1(OH)2 sheets and Ag0.5−3NPs deposited on α-Ni1(OH)2
sheets. In α-Ni1(OH)2-Ag0.5 CMs, a few number with smaller
sizes of AgNPs are deposited on the α-Ni1(OH)2 sheets
(Figure 2B). When the concentration of AgNPs increased from
Ag0.5 to Ag1 (Figure 2C), Ag2 (Figure 2D), and Ag3 (Figure
2E), the number and size of the AgNPs deposited on the α-
Ni1(OH)2 sheets increased gradually with uniform deposition
of AgNPs (Ag0.5−3) on the α-Ni1(OH)2 sheets. The average
size of AgNPs for the α-Ni1(OH)2-Ag0.5, α-Ni1(OH)2-Ag1, α-
Ni1(OH)2-Ag2, and α-Ni1(OH)2-Ag3 CMs were found to be
3.2, 4.4, 7.2, and 8.8 nm, respectively, and their corresponding
histograms of particle size distribution are shown in Figure
S1A−D. Figure 2 and Figure S1 show that the size of the
AgNPs increased upon increasing the Ag concentration and
that at higher Ag concentration, the AgNPs are closed
deposited on α-Ni1(OH)2 sheets. The formation of AgNPs
on the α-Ni1(OH)2 sheets (α-Ni1(OH)2-Ag2 CMs) was further
confirmed by recording the HAADF-STEM-EDS mapping
images (Figure 3A−E). The presence and arrangement of
nickel (yellow), silver (red), and oxygen (pink) are shown in
Figure 3C−E, respectively, and the overlay of these atoms are
shown in Figure 3B. These HAADF-TEM-EDS mapping
images clearly shows the presence of AgNPs on the α-
Ni1(OH)2 sheets. In addition, the SEM-EDS mapping images
were also recorded for α-Ni1(OH)2-Ag2 CMs to further
confirm the deposition of AgNPs on the α-Ni1(OH)2 sheets
(Figure S2A−E).The presence and arrangement of Ni (red),
Ag (blue), and O (green) elements are shown in Figure S2B−
D, respectively, and the corresponding overlay of these
elements are shown in Figure S2E.

The XRD patterns of the α-Ni1(OH)2-Ag0.5−3 CMs samples
recorded immediately after preparation (Figure 4) show that
AgNPs with different concentrations are deposited on the α-
Ni1(OH)2 sheets. The diffraction peaks observed at 12.3 and
23.6° was ascribed to the {003} and {006} planes of the α-
Ni1(OH)2 sheets, respectively (JCPDS 38-0715). Further, the
new characteristic diffraction peak observed at 38.6°
corresponds to the {111} plane of Ag for AgNPs (JCPDS
04-0784) on α-Ni1(OH)2 sheets, and the other diffraction
peaks observed in Figure 4 was assigned to the SiO2 glass plate
(JCPDS 89-7499). Upon increasing the concentration of Ag
from Ag0.5 to Ag3 on the α-Ni1(OH)2 sheets (Figure 4B−E),
the intensity of diffraction peaks corresponding to the AgNPs
increased, whereas the intensity of α-Ni1(OH)2 was not
changed. The XRD patterns of all the samples were recorded
after 1 month of preparation (Figure S3) and compared with
the XRD patterns recorded immediately after preparation. The
diffraction patterns recorded after 1 month matched well with
the earlier recorded XRD patterns of the α-Ni(OH)2-AgNP

samples. This observation shows that the samples were stable
for more than a month. Figure 5A shows the XPS survey
spectrum recorded for α-Ni(OH)2-Ag2 CMs confirming the
presence of Ni, O, and Ag. The high-resolution XPS spectrum
(Figure 5B) shows the binding energy peaks at 855.4 and
872.8 eV corresponding to Ni 2p3/2 and Ni 2p1/2, respectively,
which are characteristic to α-Ni(OH)2 and in good arrange-
ment with the reported XPS.30Figure 5C shows the high-
resolution spectrum with peaks at 367.4 and 373.6 eV
corresponding to Ag 3d5/2 and Ag 3d3/2, respectively.31 In
addition, the O 1s peak was observed at 531.5 eV (Figure 5D)
for the α-Ni(OH)2-Ag2 CMs. ATR-FTIR spectra were
recorded to further confirm the existence of Ni(OH)2/
TPDT silane (Figure S4). The IR absorption band observed

Figure 2. TEM images of (A) pristine α-Ni1(OH)2 sheets, (B) α-
Ni1(OH)2-Ag0.5, (C) α-Ni1(OH)2-Ag1, (D) α-Ni1(OH)2-Ag2, and (E)
α-Ni1(OH)2-Ag3 CMs and (F−J) their corresponding SAED patterns.
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at 463 cm−1 corresponds to the Ni−OH stretching mode,6 and
the other band observed at 1064 cm−1corresponds to the
stretching vibration of Si−O−Si bond in TPDT silane.32

3.2. Optical Sensing of Hg2+ Ions. The absorption
spectral changes observed for the α-Ni1(OH)2-Ag0.5 (Figure
6A), α-Ni1(OH)2-Ag1 (Figure 6B), α-Ni1(OH)2-Ag2 (Figure
6C), and α-Ni1(OH)2-Ag3CMs (Figure 6D) upon the addition
of 25 μM Hg2+ ions to the corresponding solution are shown in
Figure 6. The spectral changes observed upon the addition of
25 μM Hg2+ ions to other control samples, such as α-
Ni1(OH)2/TPDT (Figure 6E) and AgNPs/TPDT (Figure
6F), and their corresponding intensity difference bar diagrams
are shown in Figure 6G. The addition of 25 μM Hg2+ ions to
α-Ni1(OH)2/TPDT did not bring about any change in the
absorbance intensity (Figure 6E). Meanwhile, the absorbance
intensity of the AgNPs was significantly decreased for α-
Ni1(OH)2-Ag0.5−3 CMs (Figure 6A−D), which indicates the
redox interaction between the Ag in the α-Ni1(OH)2-Ag0.5−3
CMs and Hg2+ ions that caused a change in the absorbance of
the AgNPs.33 This decrease in AgNP absorbance intensity was
more pronounced when the concentration of Ag was increased
from Ag0.5 to Ag2 and decreased when increasing the Ag
concentration to Ag3 (Figure 6G).This can be attributed to the
number and size of AgNPs on the α-Ni1(OH)2 sheets. In the
α-Ni1(OH)2-Ag2 CMs, the number and size of AgNPs with
uniform deposition shows the best optical sensing of Hg2+ions
(Figure 2D). The change in absorption intensity for pristine
AgNPs/TPDT upon the addition of 25 μM Hg2+ ions (Figure
6F) is lower when compared to α-Ni1(OH)2-Ag0.5−3 CMs
(Figure 6A−D). From the absorption spectral changes of
pristine α-Ni1(OH)2/TPDT, α-Ni1(OH)2-Ag0.5−3 CMs, and

Figure 3. (A−E) HAADF-STEM-EDS mapping images of α-Ni1(OH)2-Ag2 CMs [(B) Ni, Ag, and O; (C) Ni, yellow; (D) Ag, red; and (E) O,
pink].

Figure 4. XRD patterns of the (A) pristine α-Ni1(OH)2 sheets, (B) α-
Ni1(OH)2-Ag0.5, (C) α-Ni1(OH)2-Ag1, (D) α-Ni1(OH)2-Ag2, and (E)
α-Ni1(OH)2-Ag3 CMs.
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pristine AgNPs/TPDT, it is concluded that the combination of
both α-Ni1(OH)2 and AgNPs with an optimum concentration
of AgNPs on α-Ni1(OH)2 shows best optical sensing property
of Hg2+ ions. The effective sensing of Hg2+ ions may be
attributed to the charge transfer interaction between α-
Ni(OH)2 and AgNPs in the α-Ni(OH)2-AgNPs and the
synergistic effect of the AgNPs and α-Ni1(OH)2 sheets.34−36

Figure 7A shows the enlarged view of the absorption spectral
intensity changes recorded for the α-Ni1(OH)2-Ag2CMs upon
each addition of 5 μM Hg2+ ions, and the inset figure shows
the complete spectra of the same. The absorption intensity of
AgNPs was linearly decreased while increasing the concen-
tration of Hg2+ ions due to the redox interaction between the
Ag in the α-Ni1(OH)2-Ag2 CMs and Hg2+ ions.33,37Figure 7B
shows the corresponding plot of difference in AgNPs
absorption intensity changes (Id) at 422 nm against the
concentration of Hg2+ ions (in the absence and presence of
each addition of 5 μM Hg2+ ions) for α-Ni1(OH)2-Ag2 CMs.
Figure 7B shows a linear range from 5 to 50 μM for Hg2+ ions
with an R2 value of 0.9909 (a slope of 3.963 × 10−4), and the
limit of detection (LOD) was calculated to be 100.8 nM using
the IUPAC-recommended formula.38Figure S5 shows the bar
diagram and photograph image (Figure S5, inset) of the
selective colorimetric sensing of Hg2+ ions (25 μM) in the
presence of 100 μM different environmentally applicable metal
ion interference like MgCl2, Na2SO4, CaCl2, ZnCl2, Ni(NO3)2,
CuSO4.5H2O, CdCl2, CoCl2.6H2O, KNO3, PbCl2, FeCl2, KCl,
KBr, and NaCl ions to α -Ni1(OH)2-Ag2 CMs. The
disappearance of color observed upon the Hg2+ ion addition
to α-Ni1(OH)2-Ag2 CMs showed the selective sensing of Hg2+

ions in the presence of interference metal ions of 100 μM. The
colorimetric detection limit was found to be 25 μM Hg2+ ions.

3.3. AgHg Amalgam Formation. The formation of AgHg
amalgam can be assigned to the difference in the electro-
chemical potentials of the Ag+/Ag couple (0.80 V vs SHE) and
Hg2+/Hg couple (0.85 V vs SHE).37 Hence, the Hg2+ ions
possess enough electrochemical potential to oxidize Ag0 to Ag+

ions. The decrease in the absorption intensity observed for
AgNPs at 422 nm upon the addition of Hg2+ ions to α-
Ni1(OH)2-Ag2 CMs reveals that the Hg2+ ions interact with
the deposited AgNPs on α-Ni1(OH)2 sheets with the
formation of AgHg amalgam,39 which leads to the size
reduction of AgNPs (size reduced to ∼3 nm) and some
aggregation40 (Figure 8A,B). During Hg2+ ions sensing, after
each addition of Hg2+ ions to the α-Ni1(OH)2-Ag2 CMs
(Figure 7A), the absorbance intensity of Ag was considerably
quenched due to the redox interaction of Hg2+ ions with Ag in
the α-Ni1(OH)2-Ag2 CMs with the formation of AgHg
amalgam.39 The absorption spectral changes (Figure 7A) and
the TEM images (Figure 8A,B) observed for the α-Ni1(OH)2-
Ag2 CMs upon the addition of Hg2+ ions clearly supports the
AgHg amalgam formation. The XRD pattern recorded for the
α-Ni1(OH)2-Ag2 CMs after the addition of 25 μM Hg2+ ions
(Figure S6) showed the disappearance of the XRD peak due to
Ag, which confirms the AgHg amalgam formation. The SEM-
EDS mapping images were also recorded for α-Ni1(OH)2-Ag2
CMs after the addition of 25 μM Hg2+ ions to further confirm
the presence of Hg in the α-Ni1(OH)2-Ag2 CMs (Figure S7).
The presence and arrangement of Ni (red), Ag (green), O
(blue), and Hg (cyan) elements are shown in Figure S7B−E,
respectively, and the overlay of these elements are shown in
Figure S7F.
3.4. Real Sample Analysis. To find out the practical

applicability of the prepared α-Ni1(OH)2-Ag2 CMs for the
sensing of Hg2+ ions, three different water samples (borewell

Figure 5. (A) XPS survey spectrum of α-Ni1(OH)2-Ag2 CMs and high-resolution XPS spectra of (B) Ni 2p, (C) Ag 3d, and (D) O 1s.
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water, pond water, and river water) were spiked with different
concentrations of Hg2+ ions and analyzed. All the water
samples were filtered using a filter paper before the experiment.
From the observation, the recovery was calculated, and the
results are summarized in Table S1. The results clearly suggests
that the α-Ni1(OH)2-Ag2 CMs can be used for the sensing of
Hg2+ ions in real water samples.

4. CONCLUSIONS
In conclusion, the different concentrations of AgNPs (Ag0.5,
Ag1, Ag2, and Ag3) deposited on pristine α-Ni1(OH)2 sheets

(α-Ni1(OH)2-Ag0.5−3 CMs) were synthesized by a facile
method at room temperature using N-[3(trimethoxysilyl)-
propyl]diethylenetriamine silane without using an external
reducing agent, and aminosilane acts as both reducing and
stabilizing agent. The α-Ni1(OH)2-Ag0.5−3 CMs were charac-
terized using UV−vis absorption spectroscopy, TEM, XRD,
XPS, and ATR-FTIR and confirmed the deposition of AgNPs
on the α-Ni1(OH)2 sheets. The HAADF-STEM-EDS mapping
images clearly revealed the deposition of AgNPs on the α-
Ni1(OH)2 sheets. An optimum concentration of AgNPs on the
α-Ni1(OH)2 sheets and the number and size of deposited

Figure 6. UV−vis absorption spectral changes recorded upon the addition of 25 μM Hg2+ ions to (A) α-Ni1(OH)2-Ag0.5, (B) α-Ni1(OH)2-Ag1, (C)
α-Ni1(OH)2-Ag2, (D) α-Ni1(OH)2-Ag3 CMs, (E) pristine α-Ni1(OH)2/TPDT, (F) AgNPs/TPDT, and (G) the corresponding bar diagram.
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AgNPs are found to influence the sensing of α-Ni1(OH)2-Ag2
CMs. The α-Ni1(OH)2-Ag2 CMs showed the best optical and
colorimetric sensing activity when compared to that of other
CMs, pristine α-Ni1(OH)2sheets, and AgNPs/TPDT. To the
best our knowledge, this is the first report where the facile
synthesis of deposition of AgNPs on a α-Ni1(OH)2 sheet using
amine-functionalized silane is developed without using an
external reducing agent and its application in optical and
colorimetric sensing of Hg2+ ions is determined.
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