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Solid tumors metastasize very early in their development, and once the metastatic cell is
lodged in a remote organ, it can proliferate to generate a metastatic lesion or remain
dormant for long periods. Dormant cells represent a real risk for future tumor recurrence,
but because they are typically undetectable and insensitive to current modalities of
treatment, it is difficult to treat them in time. We describe the metastatic cascade,
which is the process that allows tumor cells to detach from the primary tumor, migrate
in the tissue, intravasate and extravasate the lymphatics or a blood vessel, adhere to a
remote tissue and eventually outgrow. We focus on the critical enabling role of the
interactions between tumor cells and immune cells, especially macrophages, in driving the
metastatic cascade, and on those stages that can potentially be targeted. In order to
prevent the metastatic cascade and tumor recurrence, we would need to target a
molecule that is involved in all of the steps of the process, and evidence is brought to
suggest that CD147/EMMPRIN is such a protein and that targeting it blocks metastasis
and prevents tumor recurrence.

Keywords: metastatic cascade, epithelial-to-mesenchymal transition (EMT), disseminated tumor cell (DTC),
dormancy, tumor-associated macrophages (TAMs), CD147/EMMPRIN
INTRODUCTION

Recurrence of cancer due to a metastatic spread to remote organs is responsible for the vast majority
of cancer-related deaths, despite successful treatment of the primary tumor (1). The metastatic cells
are plastic, shift between different states and are often more resistant to different modalities of
existing treatments (2), and therefore, present a great therapeutic challenge. Solid tumors can
metastasize to a regional lymph node or to a secondary organ via lymphatics or blood vessels very
early in their development, even before diagnosis of the primary tumor (3, 4). Metastasis is a multi-
step process that begins with a change in the epithelial phenotype of the cells, a process known as the
Epithelial-To-Mesenchymal Transition (EMT). EMT promotes the detachment of some tumor
cells, increases their motility and changes their phenotype into a mesenchymal, spindle-like
morphology (5). This increases their invasiveness and ability to resist different drugs (6, 7). The
increased motility allows a cell to pave its way through the extracellular matrix (ECM), intravasate
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into a lymphatic or blood vessel to become a circulating tumor
cell (CTC), and then extravasate in a regional lymph node or a
distant tissue as a disseminated tumor cell (DTC) (8). However,
while every metastasizing cell must undergo EMT, it is important
to remember that EMT is not a binary process, and cancer cells
are found in many hybrid forms along the epithelial/
mesenchymal axis (hybrid E/M cells), having both epithelial
and mesenchymal features that endow them with the plasticity to
adjust to different microenvironments (5, 9). The DTCs that are
lodged in the remote organ, either as single cells or as clusters of a
few cells, may remain in a latent or quiescent state for years or
decades (dormancy), undetected by imaging techniques, until
they suddenly start proliferating (colonization). At this stage they
undergo the inverse process to EMT - Mesenchymal to Epithelial
Transition (MET), that allows their rapid outgrowth (the
metastatic outbreak), ultimately generating the metastatic
lesion (10).

This multi-step process, known as the metastatic cascade (11),
is highly inefficient, and only few of the CTCs that embark on
this journey will eventually be implanted in a secondary organ
(about 0.01%) and become DTCs (12, 13). Dormant cells have
been reported in many types of cancer (e.g., melanoma, lung
cancer, glioblastoma, breast cancer, multiple myeloma, leukemia,
colorectal, prostate, skin and gastric cancer), and the
combination of their early dissemination and resistance to
common modalities of treatment increases the risk of tumor
recurrence (14, 15). Hence, a major therapeutic goal is to find
successful therapies directed against different steps of the
metastatic cascade, thus preventing recurrence and
metastatic outbreak.

The EMT process initiates the metastatic cascade, and renders
tumor cells more resistant to different therapies (16, 17), such as
chemotherapies (18) , targe ted therapies (19) and
immunotherapies (20). The EMT process has been linked to
resistance to therapy, and several mechanisms were described,
some of which are presented here. EMT depends on the
induction of the EMT transcription factors (EMT-TFs),
particularly members of the Snail, Twist1, and Zeb families. In
addition to regulating the epithelial or mesenchymal phenotypes,
these EMT-TFs also regulate the expression of ABC transporter
genes and genes involved in drug-induced apoptosis, thus
contributing to acquired drug resistance (17, 19). For example,
high Snail levels induce the activity of the Multidrug Resistance
Protein 1 (MDR1)/P-Glycoprotein, thus allowing better
transport of drugs outside the cells and improving cell
resistance (21), Twist1 suppresses the expression of the pro-
apoptotic protein BIM (BCL2L11) to mediate resistance to
tyrosine kinase inhibitor erlotinib (22), and Zeb1 enhanced the
expression of Ataxia-Telangiectasia Mutated (ATM) kinase that
promotes the DNA damage repair machinery and confer
resistance to agents such as epirubicin (23). The pan-resistance
in dormant cells, which inherently exhibit reduced metabolism
and arrested proliferation that endows them with some
resistance to therapy, is also partially attributed to low-level
expression of E-cadherin that upon ligation provides signals that
activate ERK and PI3K signaling pathways to ensure survival of
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DTCs. When these cells are exposed to chemotherapies these
signals are amplified leading to drug resistance (2, 15, 24). To
promote chemoresistance, extracellular vesicles (Evs) were
shown to directly sequester drugs, either by up-taking them
and secreting them outside the cells, or by exhibiting receptors or
decoy receptors that bind therapeutic antibodies (e.g., with
rituximab and CD20 or Herceptin and Her2). EVs can also
horizontally transfer proteins, mRNAs, miRNAs or LncRNAs
that express or regulate the expression of transporters and
transcription factors, from chemo-resistant cells to chemo-
sensitive cells or from stroma and immune cells to tumor cells
promoting acquired resistance [reviewed in (25)]. The EMT
process also promotes the recruitment of macrophages,
MDSCs and fibroblasts to the tumor microenvironment
(TME), and the tumor cells then interact with them and
reprogram them in situ (26) to become tumor-associated
macrophages (TAMs) and cancer-associated fibroblasts (CAFs)
that secrete pro-inflammatory and pro-angiogenic mediators
that affect drug resistance as well (16, 19). For example, IL-6
and Oncostatin-M have been implicated in the resistance to
cisplatin and gemcitabine, respectively (27, 28). The suppressive
microenvironment and increased IFNg secretion that leads to
increased PD-L1 expression on tumor cells and macrophages,
inhibit T cells and NK cells and promote immune evasion of the
DTCs (29, 30). Lastly, elevated deposition of ECM proteins and
expression of integrins, increasing density and stiffness, was
associated with increased drug resistance (31, 32).

Targeting the EMT process may enable us to reverse these
effects and reduce metastasis. Different approaches to targeting
EMT include inhibiting signals that promote it (e.g., TGFb,
HGF), targeting stromal cells that are needed to activate the
EMT program, targeting specific EMT transcription factors or
targeting the microRNAs that regulate them. Such approaches
are extensively reviewed elsewhere (33), but although they may
inhibit the metastatic cascade and reduce metastasis, it is not
clear how they might affect dormant DTCs that have already
disseminated to remote organs. However, dormant DTCs have
already undergone EMT and activated dormancy programs (see
below) that endow them with increased survival and pan-
resistance to different therapies (34), suggesting that
eradicating these dormant cells will prove challenging. Another
option of targeting CTCs on route to the metastatic site was
proposed. CTCs may be detected using liquid biopsies, but their
presence after successful treatment or primary tumor resection,
might indicate that an already existing dormant tumor sheds its
cells (35), and therefore, they are not an obvious target.

There are three strategies to inhibit the outgrowth of dormant
DTCs: a) kill DTCs directly, b) awaken dormant cells and
simultaneously target them with therapies designed against
proliferating cells (e.g., chemotherapies), or c) impose and
maintain their dormant state indefinitely, or at least for a long
time (36). Killing dormant DTCs or awakening them are
strategies that should take into account their inherent
resistance to cytotoxic drugs, targeted therapies and even
immunotherapies (37, 38). Therefore, if any cells survive
treatment, they are likely to become even more aggressive, and
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promoting their exit from dormancy might expedite their
uncontrollable proliferation and enhance tumor relapse. The
option of maintaining dormancy for long periods allows tumor
cells to remain viable, and risks the possibility that eventually
they will escape dormancy, suggesting that treatment should be
given for life, thus increasing its potential toxicity and costs.
WHAT IS DORMANCY?

A closer look at dormancy shows that while most colonizing
DTCs undergo apoptosis and die, and a few immediately
proliferate to generate macro-metastases in a favorable pre-
metastatic niche, some DTCs activate survival programs and
enter the dormant state. These cells exhibit growth arrest and will
remain suspended in the G0 phase (cellular dormancy), allowing
them to re-enter cell cycle once conditions are more favorable (3,
12). Other DTCs form small cellular clusters that balance
proliferation and apoptosis, remaining dormant either because
pro-angiogenic signals are lacking (angiogenic dormancy) or
because of the pressure exerted by the immune system (immune-
mediated dormancy) drives apoptosis of the cells that is balanced
by their proliferation (3, 12). The triggers that DTCs encounter
in the metastatic microenvironment (MME) that determine their
entry into or escape from a dormant state can be divided into
cell-intrinsic and cell-extrinsic mechanisms, and both are not yet
fully elucidated.

Cell-intrinsic mechanisms include metabolic pathways,
autophagy, epigenetic mechanisms, and genetic mutations that
directly or indirectly regulate the cell cycle machinery and
proliferation. Experiments in vitro demonstrated that tumor
cells can enter dormancy to survive deprivation of glucose or
growth factors (e.g., IGF-2, PDGF) (37). This triggers arrest of
proliferation and reduced expression of proteins involved in the
regulation of cell cycle (e.g., c-Myc, Cyclin D1), or increased
expression of the Cyclin Dependent Kinases (CDKs) inhibitors
(e.g., p16, p21, p27) (39). Metabolic pathways respond to stress
signaling, and reduction in PI3K signaling or increased
autophagy has been linked to dormancy (40). An increase in
the ratio between phosphorylated p38 and ERK MAPKs,
reflecting stress-induced p38 activation, has often been used as
a marker of dormancy, as was the increased expression of the
orphan nuclear receptor (NR2F1) which induces SOX9 and
RARb, that in turn, elevate the CDK inhibitors p16 and p27
(3, 39, 41). Therapies that target specific elements in those
pathways could be employed to induce dormancy. For
example, genetic ablation of the FBXW7 protein that is part of
an E3 ligase complex, promotes degradation of Cyclin E and c-
Myc (42) , whereas inhib i tors of autophagy (e .g . ,
hydroxychloroquine) inhibit proliferation and reduce DTCs
survival (43). Such approaches are reviewed in (3, 39, 40).

Extrinsic factors in the MME can enforce DTCs dormancy.
High levels of quiescent signals can be secreted from organ cells
and resident immune cells, such as TGFb2 and BMP7 in the bone,
or BMP4 in the lung (12, 44–46). Thrombospondin-1 (Tsp-1)
secreted from quiescent endothelial cells promotes dormancy,
Frontiers in Immunology | www.frontiersin.org 3
whereas in sprouting endothelial cells, TGFb1 and Periostin
secreted from endothelial tip cells promote tumor cell outgrowth
(46). Low oxygen tensions (hypoxia) can impair the mTOR
metabolic pathway to induce dormancy (47), or induce the
expression of TGFb2 and dormancy marker genes (48, 49). The
composition of ECM proteins and the degree of tissue stiffness can
also induce dormancy or outgrowth (44, 50, 51). For example,
activation of b1-integrins promoted Src-FAK-ERK-MLCK
signaling and escape from dormancy (52), and crosslinking of
Collagen fibers by Zeb1-regulated Lysyl Oxidases that increase
stiffness, promotes metastasis (53). In mouse syngeneic or
xenograft models that were treated for oncogene inhibition
(anti-Her2 and anti-ER treatments), primary tumors regressed
leaving residual tumor cells locally or at remote sites, that
exhibited reduced proliferation and a gene signature with
reduced expression of Cyclins and CDKs, enhanced expression
of ECM proteins (e.g., Fibronectin) and dormancy genes, such as
Bhlhe41 (coding for DEC2), TGFb2 and its receptor TGFbRIII,
and Thsb1 (coding for Tsp-1). This gene signature was similar to
dormancy induced by microenvironmental cues, and was different
from genes expressed by primary tumor cells or recurrent
metastatic tumor cells (38).

The MME consists of many factors arriving from systemic
factors, extracellular vesicles (EVs) secreted from the primary
tumor, soluble factors secreted from the resident tissue or
immune cells, and from the DTCs themselves. These prepare
the pre-metastatic niche (‘soil’) to receive the metastatic cells
(‘seeds’) (54), determine organotropic metastasis (affinity of
DTCs to specific organs) (55–57), and promote tumor cell-
stroma interactions (56, 57) that eventually promote the escape
of the DTCs from dormancy. However, the mechanisms that
allow these myriad factors and pathways to interact and to
determine dormancy or escape from it are only now beginning
to be addressed. The reader is referred to some outstanding
reviews that discuss these mechanisms and potential approaches
to target them (3, 10, 34, 36, 39, 40, 45, 58, 59).
MACROPHAGES IN METASTASIS

The central role tumor-associated macrophages (TAMs) play in
promoting the primary tumor is now well recognized, but their
role in metastasis is only now beginning to unfold. TAMs can be
differently activated, and in the primary tumor they are often
found in a mixture of both M2-activated (pro-tumoral, pro-
angiogenic) and M1-activated (pro-inflammatory, anti-tumoral)
macrophages. In the primary tumor, TAMs and myeloid-derived
suppressor cells (MDSCs) secrete growth factors and pro-
angiogenic factors that promote tumor progression, and
express inhibitory receptors and cytokines that suppress
cytotoxic T cells or lead to their exhaustion, thus contributing
to evasion from immune recognition (60–64).

Crosstalk between specific TAMs subsets and tumor cells in
specific niches in the primary tumor also help promote
metastasis. Such interactions promote the EMT process and
increase the ability of tumor cells to migrate and invade (65–67).
March 2022 | Volume 13 | Article 855978
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Perivascular TAMs (identified as Tie2+VEGFA+MRC1+) promote
angiogenesis and vascular permeability by enhancing VEGF
secretion (68, 69), and assist in generating specialized temporal
structures (called tumor microenvironment of metastasis-TMEM)
that are based on direct cell-cell contacts with both tumor cells and
endothelial cells. These TMEMs become the gateways which
facilitate the intravasation of the metastatic cells (11, 70–72).
Another subset of TAMs co-migrate along with the metastatic
cells, secrete matrix metalloproteinases (MMPs) that degrade the
ECM, and thus pave the way for the metastatic cells (54). TAMs
can also utilize a myriad of mechanisms (e.g., secretion of IDO1,
TGFb1, PGE2 and IL-10 that promote Tregs, or expression of co-
inhibitory receptors as PD-L1 that lead to T cell exhaustion) that
provide local protection for the tumor cells against immune
recognition along the metastatic cascade (71).

Metastasis-associated macrophages (MAMs) in the distant
organs consist of either resident macrophages or blood
monocytes-derived macrophages (BMDM) that are recruited
into the site. The primary tumor can secrete soluble factors
and exosomes that reprogram resident macrophages in distant
organs to become MAMs that are predominantly M2-activated,
recruit BMDMs and help generate the pre-metastatic niche (73).
Soluble factors (e.g., VEGF, TGFb, TNFa, CXCL12) secreted
from the primary tumor can activate lung cells to express
S100A8/S100A9 and MMP-9 (74), and circulating CD11b+
myeloid cells are recruited to the lung in a VEGFR1-dependent
manner (75). These MAMs and recruited BMDMs secrete VEGF
and IL-1b, and help promote extravasation of DTCs at the
secondary organ and their seeding through cross-talk involving
CD44, integrins and endothelial cell adhesion molecules (13).
Different techniques used to deplete macrophages help exemplify
their important role during DTCs extravasation, survival,
seeding and initial growth in the lung or bone (76, 77).
However, the role that TAMs play during colonization of
DTCs and in the process of escape from dormancy and
metastatic outgrowth is still not fully understood.

Limited evidence suggests that the immune system,
particularly MAMs, is important during initiation of the MET
process and colonization, as well as in the regulation of
dormancy and the metastatic outbreak. The metastatic
outbreak is associated with inflammation, as patients with
chronic inflammatory diseases (e.g., obesity, asthma,
rheumatoid arthritis, psoriasis), increased serum levels of pro-
inflammatory cytokines (e.g. , IL-6) and presence of
inflammatory infiltrate have an increased risk of metastasis
(13). Similarly, surgical resection of the primary tumor, which
is followed by a healing response, can enhance the escape from
dormancy (13, 78). The presence of macrophages and the factors
they secrete (e.g., CCL2, CCL5, IL-8) could also promote the
escape from dormancy by activating the ERK signaling pathway
(79, 80). In addition, interactions mediated through the binding
of VCAM-1 to a4 integrins on DTCs induce Akt activation and
promote DTCs survival (81). TNFa-induced expression of the
IL-35 receptor IL12Rb2 already on 4T1 mammary cancer cells in
the primary tumor, rendered these cells more susceptible to the
effects of IL-35 secreted from MAMs upon arrival at the lung
Frontiers in Immunology | www.frontiersin.org 4
metastatic site. This induced the JAK2/STAT6/GATA3
signaling, initiated their MET process and enhanced their
colonization (82). In bone metastases, secreted pro-
inflammatory cytokines including Parathyroid hormone-
releasing peptide (PTHrP) stimulate osteoclasts to secrete
RANK-L to promote bone degradation, and this releases
dormant cells from the control of the bone microenvironment
and promotes their proliferation and escape from dormancy
(83). However, not all pro-inflammatory signals induce
metastatic outgrowth. For example, secretion of IFNb and
IFNg from TAMs and lymphocytes was shown to induce
dormancy in DTCs by activating the IDO1/AhR/p27-
dependent pathway (84, 85), and chemotherapy-induced
secretion of IFNb enhanced immune dormancy in an IRF7-
dependent manner, drastically reducing the presence of MDSCs
in the primary tumor and in the lungs of syngeneic mice (86).
Interactions between the Growth Arrest Specific 6 (GAS6) factor
produced by osteoblasts and the Axl tyrosine kinase receptor
expressed by disseminating prostate cancer cells, mediated the
TGFb2 signaling pathway and promoted dormancy of the tumor
cells in the bone marrow niche (87).

Different methods used to deplete macrophages demonstrated
the importance of TAMs and MAMs in metastasis. In mouse
models, removal of the spleen, which acts as a reservoir of
myeloid cells, reduces metastasis (88). A recent study showed
that TAMs are critical in a model of breast-cancer bone
metastasis, as their ablation or inhibition resulted in reduced
proliferation and metastasis (77). These TAMs originated mostly
frommonocyte-derived macrophages and not from bone resident
macrophages, and their activation depended on their high IL-4R
expression (77).

ECM composition and density could also play a role in
determining dormancy or escape from dormancy, and TAMs
and MAMS have been shown to take part in regulating this effect
(50). For example, depletion of myeloid cells prevented M-
MDSCs-induced deposition of Versican. Versican was shown
to attenuate Smad2 and Snail levels, thus inhibiting EMT and
promoting MET at the metastatic site (89). Collaboration
between TAMs and cancer-associated fibroblasts (CAFs) that
was initiated by systemic inflammatory signals, resulted in
production of high levels of ECM proteins, including collagen,
fibronectin and laminin, which increased ECM stiffness and
generated a fibrotic MME (24). These changes protected the
emerging DTCs from cytotoxic drugs and targeted therapies
(24, 32). Neutrophils (and some macrophages) are usually
associated with Neutrophil Extracellular Traps (NETs) that
contain among other proteins the Neutrophil Elastase and
MMP-9. These enzymes can degrade and remodel Laminin-
rich ECM, and the cleavage products activate the a3b1
integrin pathway to promote proliferation and escape from
dormancy (90).

Overall, the majority of evidence so far suggest that TAMs
and MAMs promote MET and the escape from dormancy, but
our mechanistic knowledge about the specific contribution of
TAMs to the final step of the metastatic outgrowth is still very
limited and merits more investigations.
March 2022 | Volume 13 | Article 855978
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TARGETING CD147 TO
INHIBIT METASTASIS

CD147 (also known as EMMPRIN or basigin) is a
multifunctional transmembrane glycoprotein, with two
extracellular Ig-like domains, that mediates interactions
between tumor and stromal cells (91), and those interactions
elevate the secretion of pro-angiogenic factors. CD147 is
overexpressed in many types of tumors (91), and is elevated on
metastatic cells (92–94) and in the serum of breast cancer
patients with lymph node metastasis (95). CD147 is best
known for its pro-angiogenic activity as an inducer of both
VEGF and MMPs through homophilic interactions between
tumor cells and stroma cells (mostly fibroblasts and
macrophages). This homophilic interaction is localized to the
N-terminus of the protein on the first of its two Ig-like domains
(96, 97). Recently, we have identified a specific short epitope in
the protein that is responsible for the induction of both VEGF
and MMP-9 (98), and showed that CD147 is an important
mediator of macrophage-tumor cell interactions, and its
expression is increased when these cells are co-cultured in vitro
(99). CD147 acts as a hub protein that binds to many protein
partners and promotes the assembly of protein complexes (100),
and therefore, is involved in mediating many functions
(Table 1). For example, CD147 acts as a chaperone of the
lactate transporters MCT-1 and MCT-4, to facilitate lactate
efflux (126), which is critical in maintaining viability of tumor
cells that rely mostly on glycolytic metabolism. CD147 also
regulates Hyaluronan synthesis and can bind to the
Hyaluronan receptor CD44, contributing to tumor cell
invasiveness and chemoresistance (119, 135). Extracellular
Cyclophilin, especially Cyclophilin A (CyPA) secreted by
tumor cells, binds to its receptor CD147 to enhance tumor cell
proliferation and survival and leukocyte chemotaxis and
adhesion (105, 136). It was also suggested that by binding to
CD147, CypA enhanced the localization of CD147 and CD44
complexes to lipid rafts and initiated a STAT3 signaling, thus
Frontiers in Immunology | www.frontiersin.org 5
activating Cyclin D1 and Survivin and promoting cell
proliferation and survival (118). Additionally, CD147 has been
linked to EMT, both as a mediator of TGFb1 signaling leading to
increased expression of the EMT transcription factors snail and
slug (130, 131), and as a destabilizer of the interactions between
E-cadherin and b-catenin (132). CD147 can also bind to the b1
integrins, especially a3b1 and a6b1 integrins, induce the FAK
signaling pathway and promote invasion, MMPs secretion and
metastasis (113, 137, 138). Invasiveness of malignant cells was
associated with the increased expression of another binding
partner - S100A9 (122, 139). Most importantly, CD147
activates the Wnt, the TGFb1-Smad4, and/or the ERK1/2
pathways to enhance cell proliferation (101, 105, 140, 141),
potentially implicating CD147 in the regulation of metastasis
and escape from dormancy. Collectively, these studies suggest
that CD147 acts as a scaffold protein that promotes the assembly
of many proteins into one or more signaling complexes that
enhances cell proliferation, metabolism, angiogenesis,
invasiveness, EMT and survival. All these processes are
necessary for tumor metastasis, and the increased proliferation
and angiogenic switch promote the escape from cellular and
angiogenic dormancy. These data place CD147 as an attractive
candidate for targeting.

Targeting CD147 by siRNA revealed much about the
functions of the protein. Reduced CD147 expression inhibited
the expression of MMP-9 and MMP-2 and markedly reduced the
invasion of PC-3 prostate cancer cell line (142) and in the HCC
cell line FHCC-98 (143). In the breast cancer MCF7 cell line it
reduced both MMP-9 and VEGF expression, as well as cell
proliferation, migration and invasion (93). Silencing CD147 in
the leukemic U937 cell line inhibited cell viability and
proliferation, and was associated with downregulation of
Cyclin D1 and Cyclin E, and with increased sensitivity to the
doxorubicin/Adriamycin (102). Silencing CD147 expression in
the human malignant melanoma cell line A375 resulted in
morphological changes, where adhesion to the collagen-coated
plates, but not to fibronectin-, fibrinogen- or laminin-coated
TABLE 1 | The multifunctional CD147 protein acts as a hub protein that binds many protein partners, thus promoting processes that could lead to escape from dormancy.

Process required for metastasis/
dormancy

CD147 Binding Protein Partner Signaling pathways activated or implicated, and
resulting products

References

Proliferation Mechanism unclear. Candidate partners:
Smad4, gasdermin D

Wnt/b-catenin, Notch1 and PI3K/Akt pathways, regulating
cell cycle proteins

(101–104)

Proliferation, cytokine secretion,
adhesion

Extracellular CyP A/B ERK, NF-kB, PI3K (105–108)

Angiogenic switch CD147 (homophilic interaction) ERK, PI3K signaling (96, 97)
VEGF, MMP-9 (109–112)

Adhesion to ECM proteins integrins (a3b1, a6b1) PI3K, FAK/paxillin, Ca+2 signaling, cytoskeletal
reorganization

(113–117)

Invasiveness Hyaluronan, CD44, CypA ERK, PI3K, STAT3 signaling (118–121)
Migration, pro-inflammatory cytokines Calprotectin (S100A8/S100A9) NF-kB (122, 123)
Drug resistance P-gp/ABCB1, CD44, ABCG2 ERK (120, 124,

125)
Metabolism, lactate efflux MCT-1/4, facilitates lactate efflux Not yet known (126–129)
EMT CD147 overexpression, affected by TGFb-

mediated signaling
TGFb, Wnt/b-catein pathway, Snail, Slug (130–134)
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plates, was decreased, and integrin b1 expression was re-localized
from the plasma membrane to the cytoplasm (114). In vivo,
tumors generated with the HCC Hepa1-6 cell line that was
silenced for CD147 expression, exhibited reduced tumor size
and increased T cell infiltration and were sensitized to their
cytotoxicity (144), suggesting that CD147 mediated escape from
immune surveillance. Xenografts of the human HNSCC cell line
FaDu cells demonstrated decreased tumor growth, reduced
proliferation and reduced levels of MMP-9 and VEGF after
CD147 was knocked down (145), and tumors generated with
the mouse CD147-KD P388D1 cells resulted in smaller tumors,
inhibited MMP-11 levels, and reduced ability to migrate to
lymph nodes (146). These results implicate CD147 in the
induction of MMPs, invasion, adhesion and proliferation,
which are all critical during different stages of metastasis.

Most antibodies that were developed against CD147
remained in the pre-clinical stages. For example, a chimeric
anti-CD147 antibody (CNTO3899) directed against the
extracellular domains of CD147 inhibited tumor growth in a
SCC-1 xenograft model of HNSCC, and even more so when
combined with radiotherapy (147). Another murine monoclonal
antibody (clone 1A6) that targeted human CD147 inhibited
tumor growth in orthotopic model of human pancreatic cancer
(148) and cutaneous squamous cell carcinoma (SCC) (149), and
demonstrated reduced proliferation and migration of the tumor
cell lines. Our group developed an antibody against the above-
mentioned epitope in CD147, and demonstrated reduced tumor
growth in two subcutaneous models of colon and renal cell
carcinomas, and reduced metastasis in an orthotopic model of
4T1 mammary gland cancer (98). We also showed that the
antibody reduced metastasis in a MDA-MB-231 orthotopic
model (unpublished data). Moreover, active vaccination with a
modified peptide against the same epitope resulted in inhibition
of tumor growth and lung metastases, and prevented recurrence
when challenged with repeated injections of the tumor cells
(150). We showed that targeting CD147 with the antibody
changed the TME by inducing a necroptotic death, which
released dsRNA to the TME and shifted macrophage activation
to promote anti-cancer immunity (151).

CD147 is highly expressed in hepatocellular carcinoma
(HCC), which is a malignancy characterized by rapid
progression, poor prognosis, and frequent tumor recurrence
despite surgical treatment modalities (152, 153). In order to
target CD147 in HCC, the anti-CD147 monoclonal antibody
HAb18 was generated in mice immunized with hepatocellular
carcinoma cells and cleaved with pepsin to remove the Fc
fragment. The resulting F(ab’)2 fragment that targets the EC-1
extracellular domain of CD147 was conjugated to iodine (131I)
and named Metuximab/Licartin (154, 155). In phase I/IIc clinical
trials, radioimmunotherapy with 131I-metuximab was directed
into the tumor and found to be safe and effective (154, 155), and
subsequently was approved for clinical therapy of primary HCC
by China State Food and Drug Administration. Overall, meta-
analysis demonstrated that 131I-metuximab in combination with
transcatheter arterial chemoembolization (TACE) or with
radiofrequency ablation (RFA) exhibited high specificity and
Frontiers in Immunology | www.frontiersin.org 6
efficiency in killing tumor cells and extending survival (156–158).
The use of Metuximab showed a decrease in recurrence and
increased survival rate of treated patients after resection followed
by orthotopic liver transplantation or in combination with
radiofrequency ablation (152, 157), suggesting that the
antibody can target residual metastatic cells. Mechanistically, it
was suggested that the two components of 131I-metuximab - the
radioactive moiety and the antibody fragment - synergize to kill
HCC cells, inhibit their proliferation and reverse the EMT
process (159). The same Chinese group later developed
another human-mouse chimeric antibody that recognized the
EC-2 domain of CD147 named metuzumab (160), and showed
that it was efficient in inhibiting tumor growth in xenograft
models of lung cancer human in SCID mice, and could sensitize
tumor cells to chemotherapy (161). However, metuzumab has
not yet reached clinical trials.
CONCLUSION

Cancer recurrence remains a major problem in cancer treatment,
and is attributed to the awakening of dormant DTCs in local or
remote organs. The development of metastasis is a complex,
multi-step process whose molecular mechanisms are not yet fully
elucidated, which is intimately associated with macrophages and
other immune cells. Therefore, finding proteins that are closely
implicated in the decision of DTCs to escape dormancy might
provide new therapeutic targets that will prevent tumor
recurrence, and it is reasonable to consider proteins that are
involved in these immune interactions.

CD147 had been implicated in driving the EMT process, and has
been shown to take part in the regulation of angiogenesis,
proliferation, migration, invasion, and chemoresistance, all of
which are processes critically required by the DTCs that escapes
dormancy. Evidence that directly place CD147 as a participant in the
METprocess arenotyet available, but its involvement inproliferation
certainly suggests that this is the case. CD147 is also a mediator of
tumor cell-macrophage interactions, so targeting it might disrupt
those interactions and delay or prevent the escape from dormancy.
Thus, targeting CD147, alone as a monotherapy or better yet in
combination with radiotherapy, chemotherapy, or other
immunotherapies, could potentially inhibit or prevent all processes
that are essential for the escape from dormancy simultaneously.
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