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Derivation of a nuclear heterogeneity image index to grade DCIS
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a b s t r a c t

Abnormalities in cell nuclear morphology are a hallmark of cancer. Histological assessment of cell nuclear
morphology is frequently used by pathologists to grade ductal carcinoma in situ (DCIS). Objective meth-
ods that allow standardization and reproducibility of cell nuclear morphology assessment have potential
to improve the criteria needed to predict DCIS progression and recurrence. Aggressive cancers are highly
heterogeneous. We asked whether cell nuclear morphology heterogeneity could be incorporated into a
metric to classify DCIS. We developed a nuclear heterogeneity image index to objectively, and quantita-
tively grade DCIS. A whole-tissue cell nuclear morphological analysis, that classified tumors by the worst
ten percent in a duct-by-duct manner, identified nuclear size ranges associated with each DCIS grade.
Digital image analysis further revealed increasing heterogeneity within ducts or between ducts in tissues
of worsening DCIS grade. The findings illustrate how digital image analysis comprises a supplemental
tool for pathologists to objectively classify DCIS and in the future, may provide a method to predict
patient outcome through analysis of nuclear heterogeneity.
� 2020 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Bio-

technology.

1. Introduction

Changes in cell nuclear morphology occur across a range of dis-
eases, including cancer. Pathologists assess these observable
changes in nuclear morphology to make a cancer diagnosis and
inform tumor grading [1]. Preinvasive breast cancer, ductal carci-
noma in situ (DCIS), is characterized by a proliferation of neoplastic
epithelial cells confined to the ductal-lobular structures that has
not invaded beyond the myoepithelial-basement membrane bar-
rier into the surrounding stroma. Pathological input into grading
DCIS has led to a number of classification systems based on nuclear
morphology, among other features, to broadly group DCIS into low
(1), intermediate (2) and high (3) grade [2]. Low grade DCIS is char-
acterized by evenly spaced small, regular cells with centrally
placed, round monotonous nuclei, and high grade DCIS is made

up of pleomorphic, irregularly spaced cells with large, irregular
nuclei. Intermediate grade DCIS show features between both
grades [2]. Though all DCIS is treated as potentially invasive, it is
established that not all DCIS lesions progress into invasive disease
within the patient’s lifetime [3,4]. Some studies suggest that all
grades have equal potential to progress however, high grade DCIS
is likely to progress more rapidly and lead to metastatic disease
and death [3–5].

Histological grading of DCIS is subjective, due to the limitations
of a categorical grading system to convey the heterogeneity that
exists within a tissue, and the inter-observer variability between
pathologists in assigning scores to features of the grading system
[6]. These issues are clinically important, since to be of value, such
classification systems need to be reproducible, and must account
for heterogeneity [7,8], which is likely to influence tumor progres-
sion and resistance to therapy [9]. To circumvent this subjectivity,
digital image analysis of nuclear morphology aims to provide
quantitative measurements of nuclear morphometric information
such as nuclear size and shape for classifying histopathology
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images. In this work, we demonstrate the value of image analysis
in classifying in situ breast cancer grade through quantification
of nuclear parameters, and show quantitative analysis of the
heterogeneity of nuclear grade that exists within ducts and
between ducts of individual cases of DCIS.

2. Materials and methods

2.1. Human breast samples

Breast tissue samples were obtained from women with DCIS
undergoing breast surgery at Duke University Medical Center,
USA or Barts Health NHS Trust London, UK between 1998 and
2016. Tissue samples and associated clinical data were analyzed
with deidentified labels to protect patient data in accordance with
the UCSF IRB protocol (#10-03832), the Duke University IRB proto-
col (Pro00054515) and Barts Cancer Institute Breast Tissue Bank
protocol (REC no: 15/EE/0192). 90 cases of DCIS (without evidence
of invasion) were included in the study (average, 1.2 blocks per
case). Formalin fixed and paraffin embedded (FFPE) tissue was
cut into 5 mm sections and stained with hematoxylin and eosin
(H&E) in a CLIA-certified laboratory as part of standard clinical
care, and not restained for the purposes of this study.

2.2. Conventional histological grading

DCIS tissues were reviewed for nuclear grade by two highly
experienced breast pathologists (JLJ and AH), and only cases with
a consensus grade to the clinical pathology report were included
for analysis. Briefly, the features and general scoring criteria
included (a) the degree of nuclear atypia or pleomorphism and
(b) the presence or absence of necrosis [10]. Tissues were assigned
to the highest grade present. DCIS tissues were then grouped for
analysis by grade as low (1), n = 12; intermediate (2), n = 34 and
high (3), n = 44 grade. Clinicopathologic details are provided in
Supplementary Table 1.

2.3. Tissue imaging and analysis

H&E-stained whole-slide images (WSI) were obtained using an
Aperio ScanScope slide scanner at 20x magnification with an image
resolution of 0.5 mm/pixel. Image analysis was performed in a
semi-automated manner using QuPath 0.2.3 open-source software
[11]. Tissues were analyzed on a duct-by-duct basis. Within each
sample, all ducts were numbered and identified as normal or DCIS
by a pathologist. A small number of ducts were excluded from the
analysis, these included benign or hyperplastic ducts, as well as
ducts presenting technical artefacts, such as; damage secondary
to surgical diathermy, extensively cross cut ducts and disrupted
ducts showing loss of epithelium. In each identified duct, the
epithelium was manually selected by an expert, and nuclear seg-
mentation was performed by automated-detection based on
hematoxylin optical density. A size filter of 50–500 pixels was
applied to exclude objects of extremely small or large size to
improve the specificity of nuclear detection. Nuclear morphology
features extracted from segmented nuclei included; cross-
sectional area, perimeter, major and minor axis. Features were
compared between tissues of different pathological groups, and
within a duct and between ducts of the same tissue.

2.4. Validation of DCIS analysis

Validation of DCIS annotation was assessed by both inter- and
intra-observer agreement, and evaluation of QuPath segmentation,
and were performed on 10% of tissues within the series, randomly

selected with at least 1 case of each pathological grade. For intra-
observer agreement, the number of ducts identified as DCIS in
two separate observations on the same slide at different times (un-
known to the pathologist) were compared. For inter-observer
agreement, the number of ducts identified as DCIS on the same
slide were compared between three independent pathologists.
The accuracy of QuPath segmentation was also compared in three
ways. (1) Ground truth annotations for nuclei were hand-marked
as a collective by an expert and two pathologists, and all DCIS ducts
in tissues were annotated in full. QuPath analysis was then per-
formed, and the number of nuclei detected were compared. (2)
QuPath analysis was also performed at two different times (on dif-
ferent days) on the same slides with the epithelium identically
selected, and the number of nuclei detected were compared. (3)
QuPath analysis was also performed on the same slides with the
epithelium selected separately by three independent experts, and
the number of nuclei detected were compared.

2.5. Public dataset for analysis

A public dataset of 100 breast biopsy H&E images of DCIS was
selected due to availability of DCIS grade and annotation of images
[12]. DCIS was graded as low (1), n = 24; intermediate (2), n = 43
and high (3), n = 33, based on the degree of nuclear atypia. If a case
was reported to be between two grades, we classified the case as
the higher grade. H&E-stained WSI were obtained using a Philips
Ultra Fast 1.6 slide scanner at 40x magnification with an image res-
olution of 0.25 mm/pixel. Diagnostic ROIs (1–4 per case) were avail-
able from the WSI. For each ROI, the epithelium was manually
selected by an expert, and nuclear segmentation was performed
as described previously.

2.6. Statistical analysis

For comparing whole-tissue averages between pathological
groups, statistical significance was determined by one-way
ANOVA. For comparing the equality of diversity between ducts of
the same tissue, the Browns-Forsythe test was used. For comparing
the diversity within a single duct, the Simpsons diversity index was

determined using: D ¼ 1� ð
P

n n�1ð Þ
N N�1ð Þ Þwhere n is the total number of

cells belonging to a grade category and N is the total number of
cells within the duct. This statistical analysis was performed using
the statistical software GraphPad Prism 9. For intra- and inter-
observer agreement, rater values for duct and cell identification
were converted to nominal outcomes based on quartile categories
of rater 1 (gold-standard used in analysis) and assessed using per-
cent agreement and weighted kappa (jw) statistic with Cicchetti-
Allison weights and exact tests. Level of agreement was defined as
0–0.20 (none), 0.21–0.39 (minimal), 0.40–0.59 (weak), 0.60–0.79
(moderate), 0.80–0.90 (strong) and above 0.90 (almost perfect).
For assessing over-scoring and under-scoring duct identification
between raters, the difference in raw values between rater 3 and
rater 1 was compared to the difference between rater 2 and rater
1 using a one-sided Wilcoxon rank-sum exact test. This statistical
analysis was performed using the statistical software SAS version
9.4. Statistical significance was indicated: *p < 0.05, **p < 0.01,
***p < 0.001 and ****p < 0.0001.

3. Results

3.1. Image analysis to quantify nuclear morphological features
between DCIS grades

To assess nuclear morphological characteristics associated with
DCIS grade, we analyzed epithelial cell nuclei in normal and DCIS
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ducts present in a series of DCIS tissues. These tissues were
selected to represent each pathological grade used to classify DCIS
(low (1), n = 12; intermediate (2), n = 34; high (3), n = 44) (Supple-
mental Table 1), and pathological examination confirmed the
absence of invasive disease in all samples. To analyze nuclear mor-
phology, we used QuPath software, which allows for a semi-
automated image analysis of hematoxylin and eosin (H&E)-
stained whole-slide images (WSI) [11]. This involved the identifica-
tion and numbering of all normal and DCIS ducts within a tissue
(Fig. 1a). For each individual duct, we manually selected the
epithelium within the duct, segmented nuclei within the selected
epithelium by automated-detection and extracted features of the
detected nuclei using QuPath (Fig. 1b). We analyzed 405 normal
and 1455 DCIS ducts (average of 5 normal and 16 DCIS ducts per
case), containing 6009 and 797,296 epithelial nuclei, respectively
(average 67 normal and 8858 DCIS epithelial nuclei per case). 41
features were extracted per cell using an automated pipeline, and
of these, 4 nuclear size features (cross-sectional area, perimeter,
major and minor axis) were analyzed further to quantify nuclear
morphology. We excluded features that quantified cell morphology

due to the absence of defined cell boundaries in H&E images, as
well as features quantifying nuclear shape descriptors (circularity,
eccentricity, solidity) which are an extension of nuclear size fea-
tures that are less accurate due to the use of 2D images obtained
from thin tissue sections in routine histopathology. Additionally,
although densitometric and texture features have been shown to
have value in classifying H&E images of DCIS [13,14], we did not
pursue these further, retaining our focus on carefully quantifying
nuclear morphology.

To validate the accuracy of our annotation and nuclear segmen-
tation method, we assessed; 1) intra- and inter-observer agree-
ment of DCIS identification by pathologists’; 2) accuracy of nuclei
detection by comparing to ground truth annotations, 3) repro-
ducibility of nuclei detection in the same epithelium identically
selected and 4) variability of nuclei detection in the same epithe-
lium differently selected. The intra-observer agreement of DCIS
identification was perfect (jw 1.00; 100% agreement). The inter-
observer agreement of DCIS identification between rater 1 and 2
was moderate (jw 0.75; 95% CI 0.42–1.00; p < 0.01; 77.8% agree-
ment), while the agreement between rater 1 and rater 3 was per-

Fig. 1. Image analysis workflow for nuclear morphology in DCIS tissues. a, Hematoxylin and eosin (H&E)-stained whole slide image (WSI) of a representative DCIS tissue.
Within each tissue, all ducts were identified and numbered as either; normal (blue) or DCIS (black). Scale bar, 2 mm. b, For each individual duct, epithelium was manually
selected, nuclei were segmented by automated-detection and nuclear features were extracted using QuPath. Segmented images of nuclei were compared to manually
annotated images. Scale bar, 20 mm. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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fect (jw 1.00; 100% agreement). This difference is due to the
under-scoring of ducts by rater 2 (p < 0.05), and these unidentified
ducts were small. The accuracy of QuPath in comparison to
ground-truth annotations was strong (jw 0.83; 95% CI 0.59–
1.00; p < 0.001; 77.8% agreement). This included errors of under
and over segmentation, which was commonly due to high cell den-
sity and clustering, image contrast or out-of-focal-plane noise. The
reproducibility and variability in nuclei detection by QuPath was
perfect (jw 1.00; 100% agreement).

To quantify nuclear morphological features associated with
DCIS grade, we used whole-tissue averages for each nuclear feature
extracted from normal or DCIS nuclei for each case. For normal
epithelial nuclei analysis, all tissues were grouped together, while
for DCIS, tissues were grouped by their conventional histopatho-
logical grade (Fig. 2a). Nuclear quantification identified a signifi-
cant increase in nuclear cross-sectional area from normal (15.
9 mm ± 2.1) with worsening DCIS grade (1, 23.3 mm ± 3.4; 2, 30.6
mm ± 3.3 and 3, 49.6 mm ± 9.2) (Fig. 2b). Quantification of nuclear
perimeter further supported an increase in nuclear size from nor-
mal (14.0 mm ± 1.8) with increasing DCIS grade (1, 19.3 mm ± 1.6;
2, 22.3 mm ± 1.5; 3, 29.6 mm ± 2.8) (Fig. 2c). Similarly, quantification
of the major/minor axis demonstrated a significant increase in
nuclear size from normal (major/minor, 5.0/3.7 mm) with higher
DCIS grade (1, 7.3/4.6 mm; 2, 8.4/5.2 mm; 3, 11.0/6.7 mm)
(Fig. 2d). Principal component analysis (PCA) shows a shift with
increasing DCIS grade (Fig. 2e), highlighting differences in nuclear
morphology associated with grade.

3.2. Quantitative grading of DCIS tissues based on nuclear
morphological features

To quantitatively grade DCIS tissues, we used whole-tissue
analysis of nuclear cross-sectional area to identify ranges of
nuclear size to categorize grade 1 (20–30 mm), 2 (30–40 mm) and

3 (40 mm and over) cells within these tissues. These nuclear size
categories were based on the ranges of whole-tissue averages of
nuclear cross-sectional area from each tissue within a pathological
group. For all tissues, we then categorized each DCIS cell present to
one of these groups. We first scored tissues for nuclear size accord-
ing to the highest-grade comprising at least 1%, 5%, 10% or 20% of
cells present within the whole-tissue, in order to mimic the patho-
logical defined grade. For example, for a 10% threshold, tumors
with 10% to 100% of cells showing high nuclear size would score
as high grade. In this manner, a 1% or 5% threshold incorrectly
assigned 34% or 38% of cases, respectively, to a higher grade than
that pathologically reported. In contrast, a 20% threshold incor-
rectly assigned 33% of cases to a lower grade than that pathologi-
cally reported. However, a 10% threshold correctly assigned all
tissues to their conventional histopathological grade, with no tis-
sue scoring over 10% of cells with a worse tumor grade than that
clinically reported (Fig. 3a) (Supplemental Table 2). We also
assessed the ability of this method to grade an independent dataset
of publicly available DCIS H&E images, with known DCIS grade. A
highly experienced breast pathologist reviewed these DCIS images
for grading, according to our conventional histological grading
method. For cases that were reported in the dataset to be between
two grades, we reported the higher of the grades, and we excluded
cases in this analysis with a different grade to that clinically
reported in dataset. With this, our quantitative grading method
utilizing a 10% threshold, accurately classified nuclear grade of
97% of DCIS cases in this dataset (Supplemental Table 3).

We then scored our DCIS cases according to the worst 10% of
cells present within each duct across a tissue (Fig. 3b) (Supplemen-
tal Table 4). In this manner, we identified in grade 1 DCIS tissues,
33% of cases had ducts scoring as grade 2, while the remaining
cases scored all ducts as grade 1. In grade 2 DCIS tissues, 29% of
cases (which had no ducts scoring as grade 3) had ducts scoring
as grade 1, while 32% of cases (which had no ducts scoring as grade

Fig. 2. Nuclear morphological features of normal and DCIS epithelial cells. a, H&E staining of a representative normal duct, and DCIS ducts from a DCIS tissue
pathologically defined as grade 1–3. Scale bar, 20 mm. b-c, Violin plots of whole-tissue averages of cross-sectional area (b) and perimeter (c) of normal and DCIS cell nuclei.
Each dot represents a tissue. d, Dot plot of whole-tissue averages of major and minor axis of normal and DCIS cell nuclei. Each dot represents a tissue. e, PCA analysis
comparing nuclear features of DCIS with grade. Grade 1 (light blue), 2 (medium blue), and 3 (dark blue). For plots quantifying nuclear features, normal nuclear averages from
each tissue are grouped (n = 90), while DCIS nuclear averages from each tissue are grouped by pathological grade. All plots represent grade 1, n = 12; 2, n = 34; 3, n = 44. All
violin plots have a p-value of < 0.0001. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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1) had ducts scoring as grade 3 and the remaining 39% of cases
scored all ducts as grade 2. In grade 3 DCIS tissues, 34% of cases
had ducts scoring as grade 2, while the remaining cases scored
all ducts as grade 3.

3.3. Quantitative assessment of heterogeneity within and between
ducts of a tissue

To quantitatively study heterogeneity in DCIS tissues, we
assessed diversity in nuclear cross-sectional area within a single
duct and between ducts of the same tissue (Fig. 4a, b). Using the
proportion of cells belonging to each grade on a duct-by-duct basis,
as determined previously by our classification of grade by nuclear
cross-sectional area, the heterogeneity within each duct was

assessed using Simpsons diversity index. In this index, 1 represents
infinite diversity and 0 represents no diversity. Infinite diversity is
reached when all abundances are equal to the number of species
observed in the sample, and therefore it is not possible to achieve
this score. We identified increasing diversity with worsening DCIS
grade; with grade 1 ducts scoring a low diversity index of 0.1
(range, 0.0–0.2), grade 2 ducts scoring a moderate diversity index
of 0.4 (0.2–0.6) and grade 3 ducts scoring a high diversity index
of 0.6 (0.5–0.8) (Fig. 4c). We then compared the heterogeneity
between ducts of the same tissue using a test for equality of vari-
ance between groups, where significance demonstrates unequal
variance and hence, diversity. We similarly identified increasing
diversity with worsening DCIS grade; with all grade 1 DCIS cases
demonstrating equal variance between ducts in the same tissue

Fig. 3. Quantitative grading of DCIS using nuclear morphological features. a, Annotations categorizing each DCIS cell within a tissue to a nuclear grade based on their
cross-sectional area from a H&E image. Scale bar, 20 mm. b, Average number of cells belonging to grade 1–3 within a DCIS tissue grouped by pathological grade. c, Annotations
categorizing each DCIS duct within a tissue to a nuclear grade based on the worst 10% of cells according to their cross-sectional area from a H&E image. Scale bar, 1 mm. d,
Average number of ducts belonging to grade 1–3 within a DCIS tissue grouped by pathological grade. For all annotations, grade 1 (light blue), 2 (medium blue), and 3 (dark
blue). All plots represent grade 1, n = 12; 2, n = 34; 3, n = 44. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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(no diversity), while 38% of grade 2 cases demonstrated equal vari-
ance and no grade 3 cases demonstrated equal variance between
ducts (high diversity).

4. Discussion

High DCIS nuclear grade has been associated with an increased
risk of disease recurrence [5,15,16] and progression to invasion
[4,16,17], and thus, is a required component of the pathological
classification of DCIS [18]. Pathological assignment of nuclear
grade depends on the visual inspection and subjective judgement
of several criteria, including the degree of pleomorphism,
nuclear–cytoplasmic ratio, nucleolar prominence and mitotic fre-
quency. Pathologists assign a score to nuclear pleomorphism based
on the highest grade that comprises at least 10% of tumor cells (1;
mild, 2; moderate, 3; severe) [2]. Here, we utilized image analysis
of cell nuclear morphological features to objectively and quantita-
tively grade DCIS. The assessment of nuclear size and shape alone
is not sufficient for DCIS classification, for example many nuclei
may not be large enough to classify as high grade but show other
features such as lack of orientation, coarse chromatin and promi-
nent nucleoli. However, our study illustrates that digital image
analysis of cell nuclear morphology in DCIS could provide a sup-
portive tool to conventional pathological analysis for the objective
and reproducible assessment of nuclear grade [19]. Importantly,
this study also quantifies heterogeneity of nuclear morphology
within DCIS, which is currently not formally acknowledged in the
pathological reporting of DCIS. The degree of nuclear heterogeneity

may have clinical implications, and this study provides a robust
method to address this. The ability to use standardized digital
image analysis algorithms, such as QuPath, is an important consid-
eration for clinical utility. These issues are particularly important
when considering the currently subjective nature of assessing DCIS
heterogeneity in grade.

We identified a nuclear size range that classified nuclei belong-
ing to each DCIS grade. Pathological guidelines for size comparison
with red blood cells or normal epithelial cell nuclei supports our
data, with low grade DCIS demonstrating nuclear sizes 1.5-fold lar-
ger and high grade DCIS demonstrating nuclear sizes 2.5-fold lar-
ger, with intermediate grade DCIS demonstrating nuclear sizes
between this range [2]. Indeed, the high accuracy of our image
analysis method also supports that these nuclear features are rep-
resentative of real differences between DCIS grade. Using these
ranges of nuclear size, our whole-tissue analysis aimed to classify
tissues according to the highest-scoring 10% of cells present. This
threshold was selected to represent a significant proportion of
the tumor. In the clinical setting, a threshold of 10% is commonly
used to determine hormone receptor positivity (in Europe) and
to define a mixed subtype in invasive breast cancers [20,21]. This
analysis correctly graded all tissues according to their convention-
ally defined grade. Additionally, we were able to demonstrate the
ability of this method to accurately grade 97% of DCIS images to
their clinically-reported grade in an independent, public dataset.
Importantly, our study performed whole-tissue analysis in a
duct-by-duct manner to quantitatively assess all DCIS nuclei pre-
sent, while many other studies using image analysis to establish
nuclear features associated with grade frequently analyzed only a

Fig. 4. Quantifying heterogeneity within and between DCIS ducts of single tissues. a, Annotations categorizing each DCIS cell within a duct based on their cross-sectional
area from a H&E image. Scale bar, 100 mm. b, Heat map analysis of DCIS duct averages of cross-sectional area (CSA) of nuclei. A single tissue with a matched-number of DCIS
ducts from each pathological grade 1–3 was used for this analysis. c, Box plot analysis of the heterogeneity image index. Each dot represents a tissue, and tissues are grouped
by pathological grade (grade 1, n = 12; 2, n = 34; 3, n = 44). Box plot has a p-value of < 0.0001. For all annotations, grade 1 (light blue), 2 (medium blue), and 3 (dark blue). (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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small proportion of cells or ducts from a representative region [22–
24], often utilizing clinical biopsies or tissue microarrays that do
not reflect the entire lesion [12,25,26].

By studying tissues in a duct-by-duct manner, we demonstrated
that scoring ducts by the worst 10% of cells present, rather than
across the whole tissue, may be used to identify subgroups within
the current DCIS classification system. We showed that a propor-
tion of low grade DCIS tissues had ducts scoring as intermediate
grade (33%). An almost equal proportion of intermediate grade
DCIS tissues had ducts scoring as low and intermediate grade
(29%), intermediate grade alone (39%), or intermediate and high
grade (32%). In contrast, a small proportion of high grade DCIS tis-
sues had ducts scoring as intermediate grade (34%). We showed
that for 44% of cases evaluated (40 out of 90), DCIS tissues do not
exhibit a single grade, and instead demonstrate a range of nuclear
grades with varying proportions. This proportion of cases is consis-
tent with a conventional pathological analysis, assessing the pres-
ence of multiple histological nuclear grades in DCIS (46% of 120
DCIS cases evaluated) [27]. We suggest that while whole-tissue
analysis may assign an average overall grade, the quantitative data
obtained by scoring duct-by-duct may identify different clinical
risk groups. For example, in cases of intermediate grade DCIS
where some ducts score as low grade, these cases may have an
improved prognosis and lower risk of progression, compared with
intermediate grade DCIS where some ducts score as high grade. In
the era of personalized medicine, an objective and quantitative
assessment of the degree of clinical risk posed by a patient’s DCIS
could prove a valuable tool to aid clinical decision making. For
example, whether or not to irradiate the breast following surgery.
In addition, given there are concerns regarding the potential
overtreatment of women with breast tumors deemed to be of
low risk, having an objective score to support a more conservative
monitoring-based approach for these individuals would be useful.
Moreover, having an objective standardized score of DCIS nuclear
grade could help refine the entry criteria for existing surveillance
DCIS trials, such as COMET (USA), LORIS (UK), LORD (Europe) and
LARRIKIN (Australia and New Zealand), which aim to focus exclu-
sively on low-risk disease [28].

The intratumoral diversity we found suggests that the current
classification of DCIS into 3 distinct grades may be an oversimpli-
fication, and highlights the need to have reasonable inter-observer
agreement in clinical diagnosis. We propose a nuclear heterogene-
ity image index as a means to integrate heterogeneity into routine
pathological reporting of DCIS, in addition to composite grading.
This index would score tissues in a duct-by-duct manner to deter-
mine the extent of heterogeneity. Future studies are required to
assess the potential clinical utility of this method of analysis in
adding prognostic value to histopathology reports. Most impor-
tantly, this study highlights image analysis as an adjunctive tool
for pathologists to standardize grading.

Other studies suggest that DCIS exhibits considerable histolog-
ical and biological heterogeneity within a single sample [27,29,30].
Our detailed analysis verified and expanded upon this conclusion
by objectively and reproducibly quantifying the level of hetero-
geneity in nuclear morphology that exists within a duct and
between ducts of a single tissue sample. We demonstrated that
with worsening DCIS grade, more heterogeneity was seen within
a duct and between ducts of that tissue. These data support the
notion that DCIS exhibits broad diversity, and indicate that this
diversity is greater with increasing grade. Together, these data sug-
gest that the proposed models of DCIS evolution, which indicate
that low grade and high grade DCIS have distinct pathways of pro-
gression, may not be sufficiently comprehensive to reflect the true
complexity of tumor evolution [31,32]. In fact, differentiation of
low grade to high grade seems more likely for the majority of cases,
although the rate of sequential change may differ, and some cases

may evolve in a more direct manner. An accurate understanding of
breast cancer evolution is essential to inform breast cancer preven-
tion strategies. In the future, we hope that image analysis can iden-
tify small numbers of defective cells in ‘healthy’ tissue biopsies
from women at high risk of breast cancer. Thus, image analysis
methods to identify morphological alterations may prove to be
an effective tool in early cancer diagnosis and prevention.
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