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Alzheimer’s disease (AD) is a type of dementia that affects the elderly population. A machine learning (ML) system has been
trained to recognize particular patterns to diagnose AD using an algorithm in an ML system. As a result, developing a feature
extraction approach is critical for reducing calculation time. The input image in this article is a Two-Dimensional Discrete Wavelet
(2D-DWT). The Time-Dependent Power Spectrum Descriptors (TD-PSD) model is used to represent the subbanded wavelet
coeflicients. The principal property vector is made up of the characteristics of the TD-PSD model. Based on classification al-
gorithms, the collected characteristics are applied independently to present AD classifications. The categorization is used to
determine the kind of tumor. The TD-PSD method was used to extract wavelet subbands features from three sets of test samples:
moderate cognitive impairment (MCI), AD, and healthy controls (HC). The outcomes of three modes of classic classification
methods, including KNN, SVM, Decision Tree, and LDA approaches, are documented, as well as the final feature employed in
each. Finally, we show the CNN architecture for AD patient classification. Output assessment is used to show the results. Other
techniques are outperformed by the given CNN and DT.

1. Introduction

The brain is the body’s most important organ. The disorders
that affect the brain are extremely important to manage
since, in most situations, once alterations occur, they are
irreversible in extreme circumstances. Dementia is defined
as the loss of cognitive and functional thinking abilities. The
most prevalent cause of dementia is AD. The AD strikes
people in their mid-60s. Alzheimer’s disease affects more

than 5.5 million individuals worldwide [1]. Memory loss,
language problems, and behavioral changes are all indica-
tions of AD. Symptoms of the nonmemory part include
trouble locating words, eye problems, decreased cognition,
and poor judgment. Brain imaging, cerebrospinal fluid, and
blood are the biological signs. Normal age-related decrease
in cognitive function, which is more gradual and associated
with less impairment, should be distinguished from AD. The
disease frequently begins with little symptoms and
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progresses to serious brain damage. Dementia affects people
differently; therefore their abilities deteriorate at varying
rates. Early and reliable identification of AD is advantageous
to disease management. Neuroimaging techniques like
magnetic resonance imaging (MRI) and computed to-
mography (CT), as well as single-photon emission computed
tomography (SPECT) and positron emission tomography
(PET), can be utilized to rule out other forms of dementia or
subtypes. It has the potential to forecast the progression of
prodromal into AD. Neurologists can use medical image
processing and machine learning methods to see if a person
is developing AD. Image segmentation and classification are
critical tasks in MRI data analysis for detecting AD [2].
Structural MRI (SMRI) provides visual information
regarding the atrophic areas of the brain caused by the
tissue level abnormalities that underpin AD/MCI. PET
measures cerebral glucose metabolism, which is a reflection
of functional brain activity [3]. The quantity of amyloid
beta-protein and amyloid tau tangles accumulated in the
cerebrospinal fluid (CSF) is an early predictor of AD. SMRI
has already been shown to be sensitive to presymptomatic
illness and might be used as a disease biomarker [4]. MRI
appears to be the most sensitive imaging examination of the
brain in everyday clinical practice. It provides information
on gray matter, white matter, and CSF morphology.
Structural MRI can record atrophic brain areas non-
invasively, allowing us to see anatomical alterations in the
brain. As a result, they have been recognized as a possible
indication of illness development, and ML approaches for
disease detection are being researched extensively [5].

The MRI scan can be utilized in image processing to
evaluate the likelihood of early detection of AD. Intensity
adjustment, K-means clustering, and the region growing
method are image processing techniques used in MRI to
extract white and gray matter [6]. The same approach may be
used to compute brain volume. Because the raw MRI brain
image is too large to be utilized for classification, the MR
images must be preprocessed before feature extraction and
classification can be performed for illness diagnosis.
Through the warping of labeled atlas, one of the most
generally used approaches is to divide the image into nu-
merous anatomical areas, that is, regions of interest (ROIs),
and the regional measurements, such as volumes, are cal-
culated as the features for AD classification [7]. To identify
the most discriminative features from ROIs for multi-
modality classification of AD/MCI, a discriminative mul-
titask algorithm was presented. In ML, each data item should
be characterized as a feature vector.

There are numerous research advocated extracting
various characteristics from MRI scans and then classifying
the resulting vectors. The quality of the produced feature
vectors is, nevertheless, reliant on image preprocessing due
to registration errors and noise. As a result, domain
knowledge is required to extract discriminative features.
CNN’s layered design has a big influence on its performance.
Greater classification accuracy is anticipated to arise from a
layer structure that is better suited for MRI images. The
input images in this article are Two-Dimensional Discrete
Wavelets (2D-DWT). The Time-Dependent Power
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Spectrum Descriptors (TD-PSD) model is used to represent
the subbanded wavelet coefficients. The primary property
vector is made up of the characteristics of the TD-PSD
model. Based on classification algorithms, the collected
characteristics are applied independently to present AD
classifications. The classification is used to determine the
kind of tumor. For feature extraction of wavelet subbands
from three sets of mild cognitive impairment (MCI), AD,
and HC test data, we employed the TD-PSD technique.

2. Literature Review

For diagnosing AD, feature vectors from MRI images must be
extracted. Several feature extraction techniques have been
proposed in the recent decade since the outcome of ML is
determined by the extracted feature vectors. Employing many
specified templates, Liu et al. [8] retrieved multiview feature
representations for subjects and divided subjects within a
particular class into distinct subclasses in each view space.
Support vector machine-based (SVM) ensemble learning was
used. Suk et al. proposed a multitask and multikernel SVM
learning approach for a stacked autoencoder with a deep-
learning-based feature representation [9]. Due to registration
mistakes and noise, the quality of the recovered features is
dependent on image preprocessing. As a result, domain
knowledge is required while extracting discriminative features.
It takes a long time and a lot of effort to acquire hand-crafted
features. More crucially, hand-crafted features seldom gen-
eralize well. As a consequence, this study recommends
employing deep learning to extract data characteristics.
Sadeghipour and Sahragard [10] developed a novel approach
for facial identification that is based on an enhanced SIFT
algorithm. Acharya et al. [11] created an ML system that can
detect AD symptoms in a brain scan. For classification, the
system combined MRI with a variety of feature extraction
techniques. The T2 imaging sequence was used to get the
images. Filtering, feature extraction, Student’s t-test-based
feature selection, and k-Nearest Neighbor- (KNN-) based
classification were among the quantitative approaches used in
the paradigm. The findings revealed that when compared to
other approaches, the Shearlet Transform (ST) feature ex-
traction methodology provides better outcomes for Alz-
heimer’s diagnosis. With the ST +KNN approach, the
suggested tool achieved 94.54 percent accuracy, 88.33 percent
precision, 96.30 percent sensitivity, and 93.64 percent speci-
ficity. According to Sadeghipour et al. [12], combining fireflies
with intelligent systems would lead to breast cancer detection.
The results show that by comparing the performance of the
suggested system to other methods, it is evident that it is
superior in both performance and accuracy. Sadeghipour and
Moradisabzevar [13] investigated the development of intelli-
gent toy cars as a method of screening children with autism.
The results show that the screening of autistic children was 100
percent accurate. The study by Zhou et al. [14] investigated
probabilistic inflection points for the decomposition of LIDAR
hidden echo signals. Yan et al. [15] examined the structure and
in vitro test results of waxy and regular maize starches after
thermal processing using plasma-activated water. Eslami and
Yun [16] have developed a novel approach called A + MCNN
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and have compared it to four commonly used deep classifiers
in the transportation domain as well as the standard CNN
classifier. Sadeghipour and Hatam [17] developed the XCSLA
System to help in the diagnosis of diabetes. Hassantabar et al.
[18] implemented three deep learning-based methods using X-
ray images of the lungs to detect and diagnose COVID-19
patients. According to Sadeghipour and Hatam [19], the
Expert Clinical System for Diagnosing Obstructive Sleep
Apnea with Help from the XCSR Classifier helps diagnose this
sleep disorder. Abadi et al. [20] have proposed a hybrid swarm
algorithm and genetic algorithm (HSSAGA) model for solving
nurses' scheduling and designation issues. In comparison with
state-of-the-art approaches, this algorithm outperforms the
suggested test function algorithm. Odusami et al. [21] sug-
gested a deep-learning-based technique for predicting MCI,
early MCI (EMCI), late MCI (LMCI), and AD. On the EMCI
versus AD, LMCI versus AD, and MCI versus EMCI classi-
fication scenarios, the fine-tuned ResNet18 network achieved
classification accuracy of 99.99%, 99.95%, and 99.95%, re-
spectively, on the fine-tuned ResNet18 network. In terms of
accuracy, sensitivity, and specificity, the suggested model
outperformed other well-established models in the literature.
Sharifi et al. [22] described a technique for diagnosing weary
and exhausted feet using digital footprint photos. The current
CNN technique outperforms existing methods and may be
employed in the development of future fatigue detection
systems. Furthermore, a conclusion neural network can be
applied to the detection of tumors [23], the scheduling
problems for health care systems [24], and the optimization of
users based on a clustering method [25]. A new approach to
penetration testing based on extended classifier networks has
been proposed by Yazdani et al. [26]. A model of an appli-
cation created for mobile Android systems was provided by
Lauraitis et al. [27], which may be used to examine central
nervous system movement problems occurring in individuals
suffering from Huntington’s, Alzheimer’s, or Parkinson’s ill-
nesses. Specifically, the model detects tremors as well as
cognitive deficits through the use of touch and visual stim-
ulation modalities, among other things. According to the
findings, the adoption of intelligent applications that may
assist in the evaluation of neurodegenerative illnesses is a
significant advancement in medical diagnostics and should be
encouraged. According to Sadeghipour et al. [28], the xcsla
system can be used to develop an intelligent diabetes diagnosis
system. According to the results of the program imple-
mentation document (pid) on databases, the proposed tech-
nique can detect diabetes more accurately than the
conventional xcs system, the Elman neural network, svm
clustering, knn, c4.5, and ad tree. Farahanipad et al. [29]
developed a pipeline for the identification of hand 2D key-
points using unpaired image-to-image translation. In Shi
et al’s [30] study, they investigated the effect of ultrasonic
intensity on the structure and characteristics of sago starch
complexes and their implications for the quality of Chinese
steamed bread. Sadeghipour et al. [31] developed a new expert
clinical method for the diagnosis of obstructive sleep apnea
using the XCSR classifier. Rezaei et al. [32] used depth images
to automate mild segmentation of hand parts. According to
the results, a model without segmentation-based labels may

achieve a mIoU of 42%. Quantitative and qualitative findings
support our method’s efficiency.

Yue et al. [33] use automated anatomical labeling
(AAL) template to divide the brain into 90 regions of
interest (ROIs). They choose the informative voxels in each
ROI with a baseline of their values and arrange them into a
vector to divide the uninformative data. The first stage
characteristics were then chosen based on the voxel cor-
relation between distinct groups. The fetched voxels were
then put into a convolutional neural network (CNN) to
understand the profoundly hidden properties of each
subject’s brain features maps. The testing findings showed
that the suggested technique was reliable and had a
promising performance when compared to other methods
in the literature.

For increasing classification accuracy and identifying
high-order features that potentially provide pathological
information, Li et al. [44] used a novel feature extraction
approach known as radiomics. As a consequence, they
defined ROIs as brain regions mostly dispersed in the
temporal, occipital, and frontal areas. A total of 168 radiomic
characteristics of Alzheimer’s disease were found to be stable
(alpha >0.8). The maximum accuracies for categorizing AD
versus HC, MCI versus HCs, and AD versus MCI were 91.5
percent, 83.1 percent, and 85.9 percent, respectively, in the
classification trial. Silva et al. [46] suggested a model for
diagnosing AD based on deep feature extraction for MRI
classification. The goal of this model was to distinguish
between AD and HC. For extracting the best characteristics
of the selected region, the CNN architecture was also de-
veloped in three convolutional layers. The model’s effec-
tiveness and reliability for the diagnosis of AD were shown
by a comparison study with previous studies in the literature.
Table 1 lists several more techniques.

3. Methods and Materials

3.1. Discrete Wavelet Transform (DWT). If f (x) € L*(R) isa
wavelet expansion function that is connected to wavelet
v (x) and scaling ¢ (x), we get [47]

(e8]

F=Ye e 0+ Y Y,y ). (1)
k k

Jj=ho

c; (k)s are scaling coeflicients, and j, is a starting
counter. The d § (k) coeflicients are wavelet coefficients (see
Figure 1). The following are the expansion coefficients:

¢;, () = (f (Ot 1§ 1,q (%)) = jf(x)@o,k (x)dx,  (2)

d; (k) = f (X)t,n3q (x)) = jf(x)wj,kmdx, (3)

90 () =27°5(2/n - k), (4)
i () = 27%9(2n - k).

It is also known as the discrete wavelet transform of
f (x) if the expansion function is a series of crisp numbers.



4 Computational Intelligence and Neuroscience
TaBLE 1: Summary of method for diagnosis of Alzheimer using computer-aided approach.

Author Year Data Classes Feature extraction Classifier

E(;Z]lg etal. 2021 Magnetoencephalography ~ AD, MCI, HC  Space-frequency-time domain feature extraction 3-81113\INa&r:1d

Eesc]layatl etal. 2021 3D-MRI AD, MCI, HC Ensemble of pre-trained auto encoder CNN

Biagetti et al. . KNN, DT,

[36] 2021 EEG signal AD, HC Robust-PCA SVM. NB

g};e]:n and Xia 2021 sMRI AD, MCI, HC Deep feature extraction CNN

. Low, mild, .

Ahmadi et al. 2021 MRI moderate, severe Brain tumor diagnosis Fuzzy logic,

[38] CNN
stage

Amini et al Low, mild, KNN, SVM,

[39] T2021 fMRI moderate, severe Robust multitask feature extraction method DT, LDA,
stage CNN

Janghel and SVM, DT,

Rathore [40] 2020 fMRI, PET AD, HC Image map LDA, CNN

Ahmadi et al Low, mild,

[41] ’ MRI moderate, severe Tumor area segmentation QAIS-DSNN
stage

Parmar et al. AD, EMCI, . .

[42] 2020 fMRI LMCL HC Spatiotemporal feature extraction 3D-CNN

. Low, mild,

Ahmadi et al 2021 MRI moderate, severe Brain tumor diagnosis CNN

[43] stage

Li et al. [44] 2019 18F-FDG PET imaging  AD, MCI, HC High-order radiomic features extraction SVM

Yue et al. [33] 2019 MRI AD, MCI, HC Voxel-based hierarchical method CNN

Acharva et al Shearlet transform, curvelet, contourlet, complex

1] b4 © 2019 MRI AD, HC wavelet, discrete wavelet, empirical wavelet, dual KNN

tree complex wavelet
Fiscon et al. . . .
2018 EEG signal AD, MCI, HC Fast Fourier transform, discrete wavelet transform DT

(45]

The expansion series is represented by equations (2) and (3)
(DWT pair) [47, 48]:

=

1 M-1 _
Wq: (jO’ k) = W f(x)(/’jn,k(x)’

0

1 e
WGk =2 X fRT0 j2 o (5)
x=0

169 = 57 Wy UoRpsal) + 7 PRRATEIRES
where f(x), ¢; ;(x), and y;; (x) are discrete variables,
x=0,1,..,M-1,j=0,1,...,J-1,k=0,1,2, .., M-1
functions, where M is the number of samples to be con-
verted, and ] is the number of transformation levels; it equals
2/, To construct a 1D scaling function ¢ and associated
wavelet y [39], 2D, ¢ (x, ), and 3D, v* (x, ), v" (x, ), and
vP(x, y), are usually necessary.

@ (x,y) = p(x)p(y),
v (%) = y ()9 (1),
v (%) = (v (%),
v (x5 y) =y () ().

(6)

A two-level wavelet transformation creates four sub-
bands, as seen in Figure 1. In this diagram 2|, v, vV, and
v indicated deviations along horizontal, vertical, and

diagonal boundaries, respectively. Digital filtration and
downsamplers can be used to perform 2D-DWT. The ad-
ditional subbands are produced using discrete 2D scaling
functions and 1D-FWT on f (x, ) [49].

3.2. Feature Extraction. The discrete Fourier transform
(DFT) is supposed to explain the signal trace as a function of
frequency X [k] as a product of the sampled representation
of the signal as x[j] with j=1,2,...N, length N, and
sampling frequency fs Hz. If we remember Parseval’s the-
orem, the sum of the square of the function equals the whole
square of its transformation. We begin the feature extraction
procedure.

N-

N-1 5 1 1 N-1
> IxlllP = Y IXIKIX (K] = } PIKL  (7)
j=0 k=0 k=0

P[k] is the phase-excluded power spectrum, according to the
preceding equation. This implies that multiplying X [k] by
the X* [k] conjugate divided by N yields the frequency index.

P[k] is the phase-excluded power spectrograph; that is,
X[k] has its conjugate X*[k], which is separated by N,
which is compounded by k, and frequency index. The
Fourier transform’s whole notion of frequency is usually
thought to be symmetrical with respect to zero frequency. It
has similar sections that cover both positive and negative
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FIGURE 1: The two-dimensional DWT diagram.

frequencies. This symmetry does not apply to all frequencies
in the spectrum, including positive and negative ones. Be-
cause we do not have comprehensive accessibility to the time
domain, we cannot employ spectral power from there. By the
statistical approach of the frequency distribution model, all
irregular moments are also zero, corresponding to the
concept of a one-minute m of the power spectral density of
order n P[k].

N-1
m, = » K'P[k]. (8)
k=0

The Parseval theorem might indeed be used when n =0 is
used. For nonzero values of n, the Fourier transform time-
differentiation feature could be applied. The n'" means
multiplying the k by the spectrum to the n'™ power,
according to this feature. The derivative of a time-domain
function is alluded to as A" for distinct time signals.

F[A"x[j]] = K"X [K]. 9)

Root Squared Zero-Order Moment (m,). This is a
function that displays the frequency domain’s total
power and looks like this

(10)

All channels could standardize their related zero-order
moments by splitting them into zero-order moments.
Root Squared Second- and Fourth-Order Moments. The
second time is utilized as power, but it is subsequently
shifted to k?P[k], which refers to the frequency
function:

3

N-1 1N-1 N-1
2= [ X KPIKI =\ > KRXIKD® =\ 3 (Ax[j])*
k=0

k=0

The moment is obtained by repeating this approach:

5
hw(—m) —E| WD(i,m,n)
\ y I
Rows
h(,,(—m) — 2] W,),/(j,m,n)
Rows
hw(—m) — 2] Wul,{(j,m,n)
Rows
hy-m) | — 2| W, )
Rows
o N-1 . N-1 5 2
my= \| D K'Pk]=\|> (a*x(j]). (12
k=0 k=0

The overall energy of the signal is reduced when the
second and fourth signals are taken into account. For
decreasing the noise impact on all moment-based
features, to normalize the domains of m,, m,,and my,,
we perform the following power transformation:

m ;"
2 4
=My = —

A A

(13)

The experimental value of 1 is set to 0. As a result of
these settings, the first three features extracted are as
follows:

f1 =log(m),
fa =log(my —my,),
f3 =log(mg —my,).

(14)

Sparseness. This feature calculates the quantity of vector
energy in a small number of additional components. It
is then followed by

fa= 10g<

(15)

m )
My — My [y — 11y

A feature shows a vector with all elements equivalent to
a zero-sparseness index, i.e., m,, and m, = 0, due to
differentiation and log(my/m,) = 0. All other sparse-
ness levels, on the other hand, should have a value
greater than zero.

Irregularity Factor (IF). The ratio of peak numbers
divided by zero-crossings up is expressed by this
metric. A random signal’s number of upward zero-
crossings (ZC) and number of peaks (NP) can only be
characterized in terms of spectral instances. The fol-
lowing is how the appropriate feature should be
written:



o= ZC  \mylm,

STNP \mm,
Covariance (COV). Our COV function is described as
the standard deviation on arithmetic averages di-
vided by the standard deviation on arithmetic

averages:
(xlziizf (x—xf/n) -
X

2
L - M (16)

Moty Moty

f¢ =log

Teager energy operator (TEO). It mainly depicts the
signal amplitude and instantaneous fluctuations, which
are particularly sensitive to even little variations. TEO
has been proposed as a method for modeling nonlinear
speech signals. It was later widely employed in the
audio signal processing industry. It is made up of the
following parts:

N-1
7 =1log (¥ (x[j ))—1og<zx x[]—lx[]+1]> (18)
Jj=0

3.3. Proposed Feature Extraction Methods. The goal of this
research is to apply machine learning algorithms to identify
Alzheimer’s disease. Figure 2 show the block diagram of the
proposed method. To begin, we employed a two-stage 2D-
DWT to break down input images into wavelet subbands.
The obtained wavelet coeflicients are utilized to derive
classification features. The TD-PSD model is then used to
extract features, with the first step using HH1, HLI, LHI,
and the second stage using LL2, HH2, HL2, and LH2. The
PCA approach is employed to diminish the number of
features, and then AD is categorized using multiple machine
learning algorithms using the retrieved feature. The fol-
lowing is the pseudocode for the provided method (Algo-
rithm 1).

4. Results

4.1. Data Collection. In AD, structural MR imaging results
demonstrated microscopic neurodegeneration and are a
measure of brain atrophy (loss of synapses, dendritic
processes, and neurons). In volumetric or voxel-based
assessments of brain atrophy, the degree of atrophy and
the extent of cognitive impairment are closely associated.
There is a relationship between cognitive decline and brain
atrophy. Atrophy does not appear to be exclusive to AD on
MR images. The degree of hippocampal atrophy, on the
other hand, is highly correlated with autopsy Braak staging
[50]. Braak staging of neurofibrillary tangles in ante-
mortem MR imaging and postmortem AD staging match
to the topographic distribution of atrophy on MR images
(medial, basal, and lateral temporal lobes, as well as the
medial parietal cortex) [51]. The data collection includes
atrophy and clinical stages of AD. There is negligible at-
rophy in the cognitively normal control individual, while
there is significant atrophy in the AD patient. The MCI
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| Input MRI images I

| 2D DWT |

[ TD-PSD ]

[ Feature Reduction Using PCA }

-

Classification and diagnosis of
AD using ML classifiers

FIGURE 2: The block diagram of the proposed method.

individual, on the other hand, has an intermediate amount
of atrophy. On Kaggle [52], the dataset is accessible online.
The MRI images are 256 x 256 PNG grayscale images that
have been utilized to analyze and evaluate AD in three
classes: AD, MCI, and an HC group.

4.2. Feature Extraction and Reduction. In this section, the
process of feature extraction is described. Based on the
conceptual diagram of Figure 2 and pseudocode, the first
step in the presented method is wavelet decomposition. The
results of decomposition are presented in Figure 3. Re-
garding Figure 3, a two-level decomposition is done for each
input image. From the first step, three subbands of low-high
(LH1), high-low (HL1), high-high (HH1), and from the
second step low-low (LL2), LH2, HL2, and HH2 are used for
feature extraction.

In the next step, each subband matrix is reshaped to a
vector, and all the zeros are removed from the vectors. The
final vectors are our pseudotime series that are used for
feature extraction. The properties of the seven subbands are
presented in Figure 4. Based on the amplitude and frequency
of subbands, the LL2 subbands include the maximum
number of points and properties of input images. However,
all subbands are consequential in this diagnosis.

Based on the feature extraction results, each image has 49
features (7 subbands with 7 TD-PSD features). Moreover,
principal component analysis is employed to reduce the
features. Based on Figure 5, the first seven features include
almost 100% effect of all features. Consequently, the number
of features is reduced to 7 based on the screen plot in
Figure 5(a). Moreover, the cumulative value of the eigen-
value is presented in Figure 5(b).

4.3. Results of Classification. In this section, the classification
is done using different machine learning methods. The input
layer of the classification methods is seven reduced features
of the images, and the output layer is the three-class label of
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Input: I,,,, = {m xm} € R?

Output: Labels (AD, MCI, HC)

Wavelet Decomposition:

[LL 1m/2><m/2> LH 1m/2><v’ HL 1m/2><m/2> HH 1m/2><m/2] =2 D.DWT (Imxm)
[LL 2m/4><m/4> LH 2m/4><m/4’ HL 2m/4><m/4’ HH 2m/4><m/4] = 2DDWT (LL 1m/4><m/4)
Reshape sub-bands and remove zeros:

LH 1, = Reshape (LH 1, [m/2 x m/2, 1])&Remove (zeros)

HL 1, = Reshape (HL 1, [m/2 x m/2, 1])& Remove (zeros)

HH 1, = Reshape (HH 1, [m/2 x m/2, 1])&Remove (zeros)

LL2, = Reshape (LL,, [m/4 x m/4, 1])&Remove (zeros)

LH 2, = Reshape (LH 2, [m/4 x m/4, 1])&Remove (zeros)

HL2, = Reshape (HL 2, [m/4 x m/4, 1])&Remove (zeros)

HH 2, = Reshape (HH 2, [m/4 x m/4, 1])&Remove (zeros)

Feature Extractlon

M O 0 £ O N
(f f%z VENRN f%z) fo =TD_PSD(LH1,)

M
2)
O 0
( ) = TD_PSD(HL1,)
(?(3) }(%3) }(?3) ;‘?ﬂ f<3) j:?s) ok ) = TD_PSD(HH 1,)
(fl( f%zx) f% f%4) f%4),f?4) )) - TD._ PSD(LLZV)
( f%S) fgs; ;sz f%&i f§53 f%i ;):TD PSD(LH2,)
0 plo) plo o) o) Tel6ly _ Tp_pSD(HL2,)
(}Clm ;%7) f?7> f‘f7> f?n f?7> F7) 1D PSD(HHZ )

F49x1—fj’>, 1—12 7; j=12...,7
Feature reduction:

F' = PCA(F)
Classification:

Train (KNN (F'), Labels)
Train (SVM (F'), Labels)
Train (LDA (F'), Labels)
Train (DT (F1), Labels)
Train (CNN (F'), Labels)
Performance Analysis:
Plot (Confusion Matrix);
Plot (Performance Plot)
Plot (ROC)

ArGoriTHM 1: The pseudocode for the proposed method.

LH1

Input image
P § HL1 HH1

FIGURE 3: The subbands of the discrete wavelet transformation for an input image. HH: high pass-high pass subband, HL: high pass-low pass
subband, LH: low pass-high pass, LL: low pass-low pass, 1: first level, and 2: second level.
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AD, MCI, and HC. Total 600 MRI images are employed for
the classification of AD. The confusion matrixes of the
presented methods are illustrated in Figure 6. The blue balls
show the true values, and the red balls are the false value of
the classification. Moreover, labels 1, 2, and 3 display the HC,
AD, and MCI, respectively. Regarding the results of the
KNN method, from 200 input HC, AD, and MCI images
193, 141, and 109 are diagnosed correctly. Based on the
results, the sensitivity of the KNN for diagnosing Alz-
heimer’s disease for HC is acceptable. Depending on the
results, the SVM and LDA approaches reached the weak
result for the diagnosis of AD. However, the results of DT
show that the sensitivity of the method is 94%, 91.5%, and
97.5%, respectively. It means that the WTD-PSD is com-
patible with the DT approach for this problem. In other

words, 188, 183, and 195 MRI images from HC, AD, and
MCI are detected, respectively. Moreover, the precision of
the method is 91.70%, 95.30%, and 96.10% for HC, AD, and
MCI, accordingly.

To approve the presented feature, we used CNN ar-
chitecture also for this problem. The architecture of the CNN
is presented in Figure 7.

Input layer includes

(i) Seven reduced features of MCI, AD, and HC
(ii) Input matrix 4D [ 7 x 1 x 1x600]

The hidden layers include

(i) 1D convolution layer

(ii) Rectified linear unit layer
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FIGURE 6: The confusion matrixes (a) and the performance plots (b) of the machine learning methods based on the WTD-PSD. The labels 1,
2, and 3 display the HC, AD, and MCL
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Figure 7: The CNN architecture for classification Alzheimer disease based on the WTD-PSD.
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(iii) Fully connected layer (600)

(iv) Fully connected layer (600)

(v) Fully connected Layer (3)
Output layers include

(vi) SoftMax layer

(vii) Classification layer 1D [1 x 600]

Based on the results of the CNN classifier, the sensitivity of
the method is 94%, 91.5%, and 97.5% for HC, AD, and MCI,
respectively. Moreover, from 200 images for each class, 197, 198,
and 196 are detected accordingly. Finally, the precision is 91.7%,
95.3%, and 96.1%, with the same respect. To compare the
presented machine learning method for diagnosing Alzheimer’s
disease, the ROC is depicted in Figure 8. The horizontal axis of

the ROC curve represents the rate of the false-positive index
depending on the HC class. The genuine positive rate is shown
by the vertical axis. The best classifier has the highest rate of true
positives and the lowest number of false positives. Based on the
results, the CNN and DT method shows the two best classifiers
for the presented features. Moreover, the area under the curve
(AUC) value is an index to compare the classifiers. The AUC
and the accuracy of the machine learning classifiers are pre-
sented in Figure 9. Centered on the results, the accuracy of
SVM, LDA, KNN, DT, and CNN is 45%, 53.70%, 73.80%,
94.33%, and 98.50%, respectively. Based on this chart, the CNN
architecture with the highest accuracy and AUC is the more
accurate and compatible method for diagnosing Alzheimer’s
disease using the WTD-PSD. Moreover, DT is the second
method with a higher AUC.
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5. Discussion

Since each data sample in ML should be defined as a feature
vector, several researches have recommended extracting
various features from MRI scans and then categorizing the
vectors generated as a consequence of this process. Image
preprocessing, on the other hand, is necessary to increase the
quality of the recovered feature vectors because of regis-
tration mistakes and noise in the image. It is necessary to
have domain knowledge in order to derive discriminative
qualities. Discrete wavelet is employed as the input image in
this study, and it has a two-dimensional representation. The
subbanded wavelet coefficients are modeled using the Time-
Dependent Power Spectrum Descriptors model, which is
implemented in MATLAB. Each of the attributes of the TD-
PSD model is represented by one of the leading property
vectors. The collected characteristics are utilized in an au-
tonomous manner to construct AD classifications, which are
based on classification algorithms. On the basis of the
findings, the accuracy of SVM, LDA, KNN, DT, and CNN
are correspondingly 45 percent, 53.70 percent, 73.80 percent,
94.33 percent, and 98.50 percent. SVM is the most accurate
of the five models. According to this figure, the CNN ar-
chitecture with the highest accuracy and AUC is the most
accurate and compatible technique for diagnosing Alz-
heimer’s disease when utilizing the WTD-PSD than the
other two methods. Furthermore, DT is the second most
accurate approach with a larger AUC.

6. Conclusion

Many studies have advised extracting numerous features from
MRI scans and then categorizing the resulting vectors since
each data sample in ML should be described as a feature vector.
However, image preprocessing is required to improve the
quality of the recovered feature vectors due to registration
errors and noise. For extracting discriminative characteristics,
domain knowledge is required. The Two-Dimensional Discrete
Wavelet is used as the input image in this work. The Time-
Dependent Power Spectrum Descriptors model is used to
model the subbanded wavelet coeflicients. The leading prop-
erty vector is made up of the characteristics of the TD-PSD
model. Based on classification algorithms, the extracted fea-
tures are applied independently to present AD classifications.
The classification is used to determine the kind of tumor. We
extracted wavelet subband features from three sets of MCI, AD,
and HC data using the TD-PSD method. According to the
KNN approach, images 193, 141, and 109 are correctly detected
from 200 input HC, AD, and MCI images. According to the
findings, the KNN’s sensitivity for identifying AD in HC
patients is adequate. According to the findings, the SVM and
LDA approaches yielded a poor outcome for diagnosing AD.
The DT findings, on the other hand, demonstrate that the
method’s sensitivity is 94 percent, 91.5 percent, and 97.5
percent, respectively. It indicates that for this issue, the WID-
PSD is compatible with the DT technique. In other words, MRI
images from HC, AD, and MCI are observed in 188, 183, and
195, respectively. Furthermore, the method’s precision for HC,
AD, and MCI is 91.70 percent, 95.30 percent, and 96.10

11

percent, respectively. According to the CNN classifier’s find-
ings, the method’s sensitivity for HC, AD, and MCI is 94
percent, 91.5 percent, and 97.5 percent, respectively. Fur-
thermore, out of 200 images, 197, 198, and 196 are recognized
for each class. Eventually, 91.7 percent, 95.3 percent, and 96.1
percent precision are achieved. The CNN architecture with the
greatest accuracy and AUC is the more accurate and com-
patible technique for diagnosing AD utilizing the WTD-PSD,
according to this figure. DT is also the second approach with
the highest AUC.
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