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ABSTRACT
Tensioning techniqueswere the first neurodynamic techniques used therapeutically in the 
management of people with neuropathies. This article aims to provide a balanced evidence- 
informed view on the effects of optimal tensile loading on peripheral nerves and the use of 
tensioning techniques. Whilst the early use of neurodynamics was centered within 
a mechanical paradigm, research into the working mechanisms of tensioning techniques 
revealed neuroimmune, neurophysiological, and neurochemical effects. In-vitro and ex-vivo 
research confirms that tensile loading is required for mechanical adaptation of healthy and 
healing neurons and nerves. Moreover, elimination of tensile load can have detrimental effects 
on the nervous system. Beneficial effects of tensile loading and tensioning techniques, con
tributing to restored homeostasis at the entrapment site, dorsal root ganglia and spinal cord, 
include neuronal cell differentiation, neurite outgrowth and orientation, increased endogen
ous opioid receptors, reduced fibrosis and intraneural scar formation, improved nerve regen
eration and remyelination, increased muscle power and locomotion, less mechanical and 
thermal hyperalgesia and allodynia, and improved conditioned pain modulation. However, 
animal and cellular models also show that ‘excessive’ tensile forces have negative effects on the 
nervous system. Although robust and designed to withstand mechanical load, the nervous 
system is equally a delicate system. Mechanical loads that can be easily handled by a healthy 
nervous system, may be sufficient to aggravate clinical symptoms in patients. This paper aims 
to contribute to a more balanced view regarding the use of neurodynamics and more 
specifically tensioning techniques.
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Introduction

Neurodynamic techniques are commonly utilized with 
either an assessment focus (i.e. to assess the mechanosen
sitivity of the nervous system) or treatment focus. Within 
a treatment paradigm, neurodynamic techniques refer to 
therapeutic methods (manual techniques or exercises) 
which (1) facilitate movement between the nervous system 
and its interfacing tissues (e.g. by mobilizing the nervous 
system itself, including the internal neural connective tis
sue layers, or the structures that surround the nervous 
system) or (2) reduce the mechanical loading on the ner
vous system (e.g. adopting a posture or joint position that 
unloads the nervous system). The aim of these therapeutic 
techniques is to restore the altered homeostasis in and 
around the nervous system [1].

When considering techniques that are aimed at 
mobilizing the nervous system itself, a biomechanical 
distinction can be made between ‘tensioning techni
ques’ and ‘sliding techniques’ [2]. Both aim to mobilize 
the nervous system [3,4], but tensioning techniques 

are associated with a considerable increase in nerve 
strain, whereas with sliding techniques the nervous 
system can be mobilized without substantial increases 
in strain [2,5,6].

Historically, tensioning techniques were the first 
described neurodynamic treatment techniques. They 
were derived from the neurodynamic tests (previously 
called neural tension tests). Because tensioning techni
ques use elements of neurodynamic tests that are 
aimed to reproduce or provoke the patient’s symp
toms [7], they may be contraindicated. In order to 
mobilize the nervous system, but without provoking 
or exacerbating symptoms, sliding techniques were 
developed [5]. A sliding technique consists of two or 
more joint movements whereby movements which 
load the nervous system are simultaneously counter
balanced by movements that unload the nervous sys
tem. For example, throwing a dart can be considered 
a sliding technique for the median nerve (and 
a tensioning technique for the ulnar nerve). 

CONTACT Richard Ellis rellis@aut.ac.nz School of Clinical Sciences, Active Living and Rehabilitation: Aotearoa, Health and Rehabilitation Research 
Institute, Auckland University of Technology, Auckland, New Zealand

JOURNAL OF MANUAL & MANIPULATIVE THERAPY 
2022, VOL. 30, NO. 1, 3–12 
https://doi.org/10.1080/10669817.2021.2001736

© 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.  
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by- 
nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or 
built upon in any way.

http://orcid.org/0000-0001-6848-6842
http://orcid.org/0000-0002-4059-7089
http://orcid.org/0000-0001-5316-7531
http://orcid.org/0000-0002-3958-4408
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/10669817.2021.2001736&domain=pdf&date_stamp=2022-02-20


A backhand frisbee throw can be considered 
a tensioning technique for the median nerve (and 
a sliding technique for the ulnar nerve) (Figure 1).

Because sliding techniques are associated with 
greater nerve excursion with less strain [2–4,8], 
a common misconception is that sliding techniques 
are clinically superior to tensioning techniques. They 
are indeed biomechanically different, but there is no 
clinical evidence that one type of technique is more 
effective than another. Each type of technique most 
likely has its place depending on the stages of tissue 
healing and aims of the intervention.

Traditionally, neural mobilization has been based 
within a mechanical paradigm. This is not surprising, 
as ‘entrapment’ neuropathy suggests a mechanical 
cause, and longitudinal and transverse nerve move
ment is reduced in conditions, such as carpal tunnel 
syndrome [9] and cervical radiculopathy [10]. However, 
there is now a greater understanding that the effects of 
neural mobilization are also – and perhaps predomi
nantly – neurophysiological, neurochemical and 
neuroimmune.

Interestingly, the beneficial effects of neurodynamic 
techniques in animal models of nerve injury have all 
been demonstrated following tensioning techniques 

[11–16]. The aim of this article is therefore to provide 
a re-appraisal of neurodynamic tensioning techniques. 
We will focus on the effects of tensile loading on 
neurons and nerves in-vitro and ex-vivo, from animal 
models and human trials, to highlight beneficial effects 
of moderate nerve tension. We already want to empha
size that by no means are we advocating a re- 
introduction of nerve stretching or vigorous neurody
namic techniques. We always have and will continue to 
advocate to err on the side of caution in the manage
ment of people with neuropathies and to base treat
ment and technique selection on sound clinical 
reasoning. We hope this paper will provide important 
context for this clinical reasoning process for clinicians 
who use (or do not use) neurodynamic techniques in 
their clinical practice.

A structure designed to handle tension

During functional activities, the peripheral nervous 
system needs to be able to accommodate substantial 
amounts of nerve tension and elongation. Composite 
limb movements typically expose peripheral nerves to 
approximately 5 to 10% strain [17], although some 
authors report much higher increases up to 20% strain 

Figure 1. Examples of functional sliding and tensioning techniques. Throwing a dart is a sliding technique for the median nerve (A: 
wrist extension loads the median nerve; elbow flexion simultaneously unloads the median nerve; B: Elbow extension loads the 
median nerve; wrist flexion simultaneously unloads the median nerve), but a tensioning technique for the ulnar nerve (A: wrist 
extension and elbow flexion both load the ulnar nerve; B: elbow extension and wrist flexion both unload the ulnar nerve). 
Conversely, a frisbee backhand throw is a sliding technique for the ulnar nerve (C: elbow flexion loads the ulnar nerve and wrist 
flexion simultaneously unloads the ulnar nerve; D: wrist extension loads the ulnar nerve; elbow extension simultaneously unloads 
the ulnar nerve), but a tensioning technique for the median nerve (C: wrist and elbow flexion both unload the median nerve; D: 
wrist and elbow extension both load the median nerve).
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[18–20]. Because form and function follow each other, 
the nervous system is structurally designed to handle 
nerve strain well.

Peripheral nerves are heterogeneous structures. 
They exhibit non-linear viscoelastic responses to ten
sile loading [21,22]. Furthermore, although the well- 
organized, multilayered structure of the extracellular 
matrix bears considerable mechanical loads, the 
response of peripheral nerves to mechanical load is 
also characterized by their ability to glide, bend and 
twist [22]. Neuroprotective architectural features, such 
as their unique undulating pattern, may also offer 
additional protective strength [23]. In addition, 
mechanical properties of peripheral nerves are not 
equal along their length [24], revealing a complex tis
sue ultrastructure [25]. A recent model of nerve layer 
connections has been proposed to explain the com
plex (whole) nerve response to stretch [26]. This model 
suggests that the mesoneurium, epineurium, and peri
neurium are coupled via viscoelastic physical connec
tions and interact with a loosely coupled perineurium 
and endoneurium, allowing axons to glide and unravel 
throughout the length of the nerve. Collectively, these 
mechanical features allow nerves to straighten without 
bearing significant stresses while maintaining func
tional and structural integrity of the delicate axons 
within [26].

Beneficial effects of tensile loading

The following sections present findings from in-vitro, 
ex-vivo (including cadaveric), and animal and human 
in-vivo research which has assessed the effects of ten
sile loading on nerves (Figure 2.).

1. Evidence from the Petri dish

Mechanical stimuli are fundamental for tissue healing 
since they affect cell differentiation and tissue renewal 
in physiological and pathological conditions, from 
embryo development to wound healing [27–29]. 
Mechanical load applied directly to nerves can activate 
intracellular processes responsible for nerve myelina
tion and nerve homeostasis. In-vitro experiments per
formed on human and rodent neurons have shown 
that stretch promotes cell differentiation (a process in 
which immature neurons acquire an adult phenotype 
with neurites connecting to other surrounding neu
rons, via neurites outgrowth). This process is funda
mental in nerve repair following injury. For example, 7 
days of intermittent mechanical stretch (10% strain at 
0.25 Hz, for 120 minutes/day), applied to sensory neu
rons maintained in culture for an extended period of 
time (human neuroblastoma cell line; SH-SY5Y)), pro
moted processes linked to nerve regeneration (i.e. 

Figure 2. The effects of tensile loading of the nervous system from (A) evidence from the Petri dish, (B) evidence from animal 
models, and (C) evidence from human trials.
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neurite outgrowth and cell differentiation) [30]. 
A study examining sensory and motor neurons 
demonstrated that repeated application of tensile 
load (between 0.1–1% strain) resulted in dose- 
dependent neurite outgrowth, cell differentiation, 
and modulation of mechanosensitive ion channel 
expression with a plausible anti-nociceptive effect 
[31,32].

Progressive uniaxial tension for 14 days applied to 
ex-vivo DRG explants from rats significantly enhanced 
the outgrowth and orientation of neurites [33–35]. 
A tailored mechanical stretch (with a strain of 0.1–1% 
for cultured neurons and up to 10% for DRG explants) 
had positive effects on neurite outgrowth and pain 
modulation [27,30,36,37]. Higher levels of stretch had 
negative effects on neurons, such as impaired neurite 
regeneration and increased neuronal death 
[27,33,34,36–38].

2. Evidence from animal models

Following a peripheral nerve injury, a cascade of 
neuro-immune responses occurs resulting in neuroin
flammation and neuromodulation [39]. In severe nerve 
injuries, this occurs not only at the injury site, but also 
more proximal along the neuraxis: at the correspond
ing DRG [40], the dorsal horn of the spinal cord [41] 
and higher brain centers, such as in the midbrain [42], 
thalamus [43], nucleus accumbens, and prefrontal cor
tex [44]. Neuro-immune responses are defined as sub
stances or processes (such as neuropeptides, 
cytokines, hormones and altered gene expression) 
involved in interactions between the immune system 
and the nervous system [45]. These neuro-immune 
responses play an important role in the generation 
and maintenance of neuropathic pain following 
a nerve injury. Most of these insights originate from 
animal models of peripheral nerve injuries associated 
with severe axonal damage. More recently however, 
local and remote neuro-immune responses (e.g. in the 
DRG and spinal cord) have been demonstrated in peo
ple with lumbar radiculopathy [46].

A recent literature review [47] revealed that neural 
mobilization positively influenced various neuro- 
immune responses at the peripheral nerve injury site, 
but also at the corresponding DRG, spinal cord and higher 
brain centers. Interestingly, the type of treatment techni
ques used in these animal studies all mimicked tensioning 
techniques, with remarkable results. For example, in rats 
with induced painful diabetic neuropathy, tensioning 
techniques alleviated mechanical hypersensitivity on the 
paw of the treated side compared to the untreated side or 
compared to animals who did not receive neural mobili
zation [13]. This improvement correlated with lower 

concentrations of pro-inflammatory cytokines (IL-1β and 
TNF-α) in the sciatic nerve and its branches only on the 
treated side.

At the level of the DRG, tensioning techniques 
resulted in a decrease of Substance-P and transient 
receptor potential vanilloid 1 (TRPV1) expression, 
and an increase in m-opioid receptor expression in 
rats with a sciatic nerve injury [12]. These are rele
vant changes, as TRPV1 upregulation contributes to 
mechanical allodynia and thermal hyperalgesia; 
Substance-P plays an important role in the develop
ment of chronic pain [48] and is responsible for the 
development of hyperalgesia in rats [49]. Another 
study revealed that tensioning techniques were 
associated with a decrease in nerve growth factor 
(NGF) and glial fibrillary acidic protein (GFAP) in the 
DRG [12]. Suppression of NGF overproduction in the 
DRG has shown to be related to neuropathic pain 
attenuation following a chronic constriction injury to 
the sciatic nerve [50]. GFAP is a molecular marker for 
glial cell activity (astrocytes) and glial cell activation 
is a phenomenon linked to neuropathic pain [51]. 
A decrease in GFAP expression following tensioning 
techniques was also observed in the lumbar spinal 
cord, associated with a reduction in mechanical and 
thermal hyperalgesia and allodynia [12].

Glial cells and brain-derived neurotrophic factor 
(BDNF) expression are increased in the midbrain follow
ing a sciatic nerve injury causing neuropathic pain in 
rats [14]. Glial cells are implicated in the development of 
persistent pain and BDNF released from activated 
microglia contributes to the nociceptive transmission. 
Remarkably, tensioning techniques resulted in 
a normalization of glial cells and BDNF expression [14]. 
Also in the midbrain, tensioning techniques resulted in 
an increase in endogenous opioid receptors (Kappa- 
opioid receptors) in the periaqueductal gray [16]. 
Furthermore, the rats who received tensioning techni
ques had increased tibialis anterior muscle strength and 
better locomotion compared to injured rats who did 
not receive neural mobilization [16].

Tensioning techniques following a sciatic nerve 
crush injury or a chronic constriction injury in rats 
resulted in reduced intraneural scar formation [15], 
anti-allodynic and neurotrophic effects able to speed 
up the nerve regeneration processes [11,12]. A severe 
sciatic nerve constriction injury can cause significant 
axonal loss (i.e. Wallerian degeneration) distal to the 
injury site. Increased numbers of axons with myelin 
sheaths of normal thickness and less inter-axonal fibro
sis after treatment (tensioning techniques) have been 
shown in rats compared to controls with the same 
sciatic nerve injury who did not receive the interven
tion [11]. In contrast, when injured nerves are not 
exposed to mechanical stimuli, nerve regeneration 
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diminishes due to increased intraneural scar tissue 
formation, leading to mechanical allodynia and hyper
algesia [11,12,15].

3. Evidence from human trials

In larger human clinical trials, neural mobilization is 
typically part of a multimodal intervention [52–55]. If 
neural mobilization is evaluated as a unimodal inter
vention, different neurodynamic techniques are often 
combined [52,53], making it impossible to isolate the 
effects of tensioning techniques. A few smaller studies 
that evaluate the immediate effects of tensioning tech
niques are, however, available. Tensioning techniques 
enhanced conditioned pain modulation in people with 
chronic neck pain [56]. Tensioning techniques had no 
effect on pain intensity in people with chronic neck 
pain [56], and decreased pain intensity in computer 
users with elbow pain [57].

Ultrasound shear wave elastography investigations 
in healthy young adults revealed that nerve stiffness 
adapts to both short and long-term tensile mechanical 
stimuli [58,59] (Figure 3). For example, sciatic nerve 
stiffness at the onset of stretch pain decreased follow
ing maintaining a nerve tension position (long-sitting, 
maintained twice for 3 minutes) [58]. Similarly, a rando
mized controlled trial revealed a decrease in sciatic and 

tibial nerves’ stiffness following a neural tensioning 
style regime (total loading stimuli of 7.5 hours over 
12 weeks), compared to a muscle stretching style 
regime [59].

There is a growing body of evidence of in-vivo 
studies supporting that mechanical properties of 
human peripheral nerves are altered in various periph
eral neuropathies, such as those associated with nerve 
compression [60], metabolic syndrome [61], and radi
culopathies [62–64]. Interestingly, a preliminary study 
reported that a 3-min slump (static) stretch resulted in 
an immediate decrease in sciatic nerve stiffness in 
people with unilateral sciatica [65].

Too much of a good thing?

As described above, mechanical loading, including 
tensile forces, is fundamental to maintain the home
ostasis in the nervous system. However, the response 
is influenced by the characteristics of tensile loading, 
such as the magnitude, duration, rate of loading and 
frequency [66]. For example, 8% nerve strain exposed 
to an animal nerve [67,68] caused immediate reduc
tion of intraneural blood flow, with total occlusion 
(leading to ischemia) at 15% strain (if sustained for 
up to one hour) [68–70]. Nerve conduction becomes 
impaired from 8% strain of an animal nerve [67] with 

Figure 3. The median nerve, imaged using shear wave elastography, at the level of the mid-forearm when (A) relaxed and (B) 
when on stretch. Note: colored elastogram presents nerve shear wave velocity (metres/sec) (an index of nerve stiffness).

JOURNAL OF MANUAL & MANIPULATIVE THERAPY 7



conduction block from 10% to 12% strain, sustained 
(sustained for up to one hour) [70]. Furthermore, as 
little as 3–5% strain of experimentally inflamed animal 
nerve resulted in increased neural mechanosensitivity 
[71]. Nerve elongation has also been shown to 
decrease the cross-sectional area of a peripheral 
nerve [72], a phenomenon believed to result in 
increased intraneural pressure with associated 
adverse effects [22,68,73]. To the authors’ knowledge, 
there are no studies that have investigated the effect 
of ‘excessive’ tensile forces on neuroimmune 
responses both locally and at remote sites along the 
neuraxis, but it is likely that symptom flare following 
too much tensile loading, which often has a delayed 
onset, is also related to an increase in 
neuroinflammation.

Clinical reflections

From the research described above, what do these 
values of nerve tension and strain mean for clinical 
practice? During forward-bending in standing, sciatic 
nerve strain has been reported to reach 10.5% strain 
[74], whilst composite movements of the upper limb 
expose the median [20], radial [19] and ulnar [18] 
nerves to 18%, 12% and 10% strain respectively. 
During neurodynamic testing, it has been reported 
that the straight-leg raise test increased tibial nerve 
strain to 12.5%, whilst the median nerve neurodynamic 
test exposed the distal median nerve (proximal to the 
wrist) to 4% strain [17]. However, some care is required 
when interpreting these values. Comparison of nerve 
strain between and within different methods (i.e. cada
ver versus animal) is difficult as strain calculations 
require an accurate measure of nerve length at rest, 
and this is different between studies, which may 
explain the sometimes vastly different strain values 
reported in the literature.

Systematic reviews with and without meta-analyses 
reveal the clinical efficacy of neurodynamic techniques 
(which typically combine sliding and tensioning exer
cises, and techniques to mobilize the structures that 
surround the nervous system) for various conditions 
[75–79]. Basic science studies revealed the potential 
working mechanisms of neurodynamic techniques 
(see above). However, the translation of these findings 
to clinical recommendations remains challenging, if 
not impossible. For example, all studies that used ani
mal models to document the effects of tensioning 
techniques used nerve injury models that are much 
more severe than the neuropathies patients who seek 
physiotherapy care present with. The nerve injuries are 
also uniformly the same for all animals, with a selective 
lesion to the nerve without damage to joints or inter
vertebral discs, and animals are typically young with
out comorbidities.

It has also been difficult to directly determine nerve 
strain from human research, which presents 
a significant limitation (to date) when interpreting the 
effects of tensile forces upon the nervous system. In- 
vivo, human studies have examined shear-strain at the 
nerve-muscle interface [80], ultrasound shear wave 
elastography to measure nerve shear wave velocity 
(an index of nerve stiffness) [59,81] (Figure 3), and 
indirect measures of nerve strain calculated from 
excursion values [74]. Future technologies that allow 
direct quantification of nerve strain through human 
research will be of great interest to this field.

The rate of tension application is important to 
consider also. It is believed that sudden stretching 
trauma has the potential to be more damaging 
compared to more gradual tension applied within 
appropriate limits [67]. For example, fast eccentric 
muscle contractions have been shown to induce 
functional and structural damage in interfacing ani
mal [82,83] and human [84] nerves. Clinically, neu
rodynamic techniques are typically promoted to be 
performed as dynamic techniques rather than sus
tained or static holds [85,86]. Furthermore, tension
ing techniques are promoted within limits of 
perceived passive resistance [53,87], a feature that 
has been adopted also in animal models with ben
eficial results [27,34]. Making evidence-based 
recommendations regarding the precise frequency 
and number of repetitions of neurodynamic techni
ques, including tensioning techniques, is proble
matic given the large variability reported in the 
literature [85,88]. For example, a systematic review 
of lower-limb neural mobilization techniques for 
healthy people and people with low back pain 
revealed technique application duration between 
60 and 300 seconds with repetitions ranging 
between 1 and 45 [88].

As mentioned earlier, tensioning techniques are 
considered more biomechanically challenging than 
sliding techniques, and as such careful clinical rea
soning is essential when using and prescribing 
them, particularly in regard to mitigating symptom 
flare and/or clinical deterioration [79]. Although 
there are many benefits of tensile loading to the 
nervous system, there is also a risk that movement- 
based techniques, in particular tensioning techni
ques, may be temporarily aggravating peripheral 
neuropathic pain [89].

Conclusion

The studies summarized within this article illustrate 
the beneficial effects of optimal mechanical load to 
healthy and pathological nerves. The research 
shows that repeated mechanical tension on animal 
peripheral nerves applied by tensioning techniques 
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has positive effects on nerve biomechanics, nerve 
repair and nerve regeneration processes, promoting 
multi-level changes in the peripheral and central 
nervous systems. Notably, these changes are 
induced in the cells of the peripheral and central 
nervous system and are linked to pain modulation 
and normal nerve function restoration. However, 
the optimal tension dosage to apply in clinical con
ditions remains the challenge. Not enough tension 
may result in little effects, whereas too much ten
sion will undoubtedly exacerbate symptoms. It 
should be noted, that the optimal dosage for apply
ing nerve tension in people with neuropathies has 
not been established and is unlikely to be estab
lished any time soon. A dosage that works well in 
one patient, may be too much or too little for 
another person. Therefore, judicious use of neuro
dynamic techniques, including tensioning techni
ques, should always consider multiple aspects and 
how they interact, such as the clinical presentation, 
nature of the symptoms, levels of irritability, patho
physiology, stages of healing, beliefs of the patient. 
Frequent re-assessments continue to play an impor
tant role.
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