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Colloid solutions, both natural and synthetic, had been widely accepted as having

superior volume expanding effects than crystalloids. Synthetic colloid solutions were

previously considered at least as effective as natural colloids, as well as being cheaper

and easily available. As a result, synthetic colloids (and HES in particular) were the

preferred resuscitation fluid in many countries. In the past decade, several cascading

events have called into question their efficacy and revealed their harmful effects. In

2013, the medicines authorities placed substantial restrictions on HES administration

in people which has resulted in an overall decrease in their use. Whether natural

colloids (such as albumin-containing solutions) should replace synthetic colloids remains

inconclusive based on the current evidence. Albumin seems to be safer than synthetic

colloids in people, but clear evidence of a positive effect on survival is still lacking.

Furthermore, species-specific albumin is not widely available, while xenotransfusions

with human serum albumin have known side effects. Veterinary data on the safety and

efficacy of synthetic and natural colloids is limited to mostly retrospective evaluations or

experimental studies with small numbers of patients (mainly dogs). Large, prospective,

randomized, long-term outcome-oriented studies are lacking. This review focuses on

advantages and disadvantages of synthetic and natural colloids in veterinary medicine.

Adopting human guidelines is weighed against the particularities of our specific

patient populations, including the risk–benefit ratio and lack of alternatives available in

human medicine.

Keywords: albumin, dextran, gelatin, HBOC, hydroxyethyl starch, fresh frozen plasma, fluid therapy

BACKGROUND

A colloid is the collective term for electrolyte solutions containing macromolecules, a portion of
which cannot pass freely out of the healthy intravascular space. Hence, they exert a colloid osmotic
pressure (COP) and thereby retain or attract water commensurate with the number rather than the
size of the colloid molecules on each side of the microvascular barrier (1). Natural colloids include
blood products and albumin solutions, such as human serum albumin (HSA) and canine serum
albumin (CSA). Synthetic colloids include hydroxyethyl starches (HES), gelatins, and dextrans
(2) (Table 1). Synthetic colloids and particularly HES solutions have been preferred as volume
expanders over isotonic crystalloids for decades (3). This was based on their presumed “volume-
sparing effect.” Indeed, it was accepted that less colloid than isotonic crystalloid is necessary to
reach adequate volume expansion in various populations of patients. Furthermore, since synthetic
colloids do not readily cross the vascular barrier and produce COP, they were believed to contribute
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TABLE 1 | Synthetic and natural colloids and their physicochemical characteristics.

Colloid Colloid Source Concentration Carrier solution Mean MW

(kDa)/MS/C2/C6

ratio

In vitro COP (mmHg)

Plasma Plasma (dog/cat) 25to 30 g/L n/a n/a 17

HSA 5% Pooled human plasma 50 g/L Sterile water ∼66 kDa 20

HSA 20%, 25% Pooled human plasma 200–250 g/L Sterile water ∼66 kDa > 200

CSA¶ (5% /16%) Pooled canine plasma 50/166 g/L 0.9% saline ∼60 kDa n/a

HES, tetrastarch (6% Voluven*) Waxy-maize starch 60 g/L 0.9 saline 130/0.4, 9:1 36

HES, tetrastarch (6% Volulyte*) Waxy-maize starch 60 g/L Buffered, polyionic 130/0.4, 9:1 36

HES, tetrastarch (Venofundin† ) Potato starch 60 g/L 0.9% saline 130/0.42, 6:1 36

HES, tetrastarch (Tetraspan† ) Potato starch 60 g/L Buffered, polyionic 130/0.42, 6:1 36

HES, hetastarch (Hespan†) Waxy-maize starch 60 g/L 0.9% saline 600/0.75 33

HES, hetastarch (Hextend†) Waxy-maize starch 60 g/L Buffered, polyionic 600/0.75 33

HES, pentastarch (HAES-steril*) Waxy-maize starch 60 g/L 0.9% saline 200/0.5, 5:1 30–35

HES, pentastarch (HyperHAES*) Waxy-maize starch 60 g/L 7.5% saline 200/0.5, 5:1 30–35

Gelatin (Gelofusine 4%†) Bovine collagen 40 g/L 0.9% saline ∼30 kDa 33

Gelatin (Gelafundin-Iso†) Bovine collagen 40 g/L Buffered polyionic ∼ 30 kDa 33

10% dextran-40 (Rheomacrodex) sucrose 100 g/L 0.9% saline 40 kDa n/a

6% dextran-70 (Macrodex§) sucrose 60 g/L 0.9% saline 70 kDa 62

6% dextran-70 (RescueFlow) sucrose 60 g/L 7.5% saline 70 kDa n/a

HBOC (Oxapex) Bovine hemoglobin 60–70 g/L 65 19

HBOC, Hemoglobin-based oxygen carrier; HSA, human serum albumin; CSA, canine serum albumin; HES, hydroxyethyl starch; Trade names in brackets, MW, molecular weight; MS,

molar substitution; kDa, kilo Dalton; COP, colloid osmotic pressure.
*Fresenius Kabi AG, Switzerland.

†
B. Braun Melsungen AG, Germany; §Meda, Sweden; ¶HemoSolutions, LLC, Colorado Springs. Names and manufactures for the listed colloids are

examples and vary between different countries.

to prevention and reduction of edema formation (2, 4). However,
the advantages of synthetic colloids have been questioned in
recent years for two main reasons. First, regardless of their
proposed short-term benefits, synthetic colloids are now known
to be associated with serious long-term adverse effects. Second,
the microanatomic and physiological basis of transvascular fluid
flux has been revised in light of themore widespread appreciation
of the role played by the endothelial surface layer (ESL) (see
below). This newer understanding has raised doubts regarding
the fundamental validity of the physiological basis for colloid
therapy. Nevertheless, according to an international survey from
2016, synthetic colloids and particularly HES were extensively
used in small animals (5). Since 2013 pharmacovigilance
authorities worldwide have restricted the use of HES in people
and colloid usage has therefore shifted to other products
(namely, albumin and gelatins) (6). As a result, veterinarians
are facing difficulties in procurement and overall reduction in
availability of HES. Whether a similar shift toward alternative
colloids is possible and safe for veterinary patients is unclear.

Abbreviations: AKI, acute kidney injury; COP, colloid osmotic pressure; CRI,

constant rate infusion; CSA, canine serum albumin; EG, endothelial glycocalyx;

ESL, endothelial surface layer; FFP, fresh frozen plasma; Hb, hemoglobin: HBOC,

hemoglobin-based oxygen carrier; HES, hydroxyethyl starch; HSA, human serum

albumin; EU, European Union; HES, hydroxyethyl starch; HSA, human serum

albumin solutions; kDa, kilodalton; pRBC, packed red blood cell; RCT, randomized

clinical trial; RRT, renal replacement therapy.

This review will describe the characteristics and adverse effects
of various synthetic and natural colloids, with the aim to provide
risk-assessment and evidence-based recommendations for
their use.

PHYSIOLOGY OF COLLOID SOLUTIONS

Classical vs. Revised Starling Principle
According to the traditional Starling principle, the opposing
hydrostatic and colloid osmotic pressures of the intravascular
space and the interstitium dictate transvascular fluid fluxes.
Thus, administering a fluid that is preferentially retained in
the intravascular space and with a COP higher than that of a
crystalloid will expand intravascular volume to a greater extent
per unit volume administered (1). However, the Starling principle
has been revised in recent decades.

The newer “revised” or “extended” Starling principle considers
the role of the endothelial glycocalyx (EG) within the ESL as
an additional barrier to fluid movement across the vascular wall
(7). The EG is a meshwork of membrane-bound complex sugars
lining the luminal surface of the endothelium of all mammalian
vessels (7). As part of the ESL, it acts as a selective barrier
to movement of molecules across the vascular wall, due to
its tight entanglement and predominantly negatively charged
structure (8). The EG retains albumin and other proteins within
the intravascular space. In that way, it is a major determinant
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of vascular permeability to fluid (9). The EG maintains a
relatively low rate of filtration throughout the entire capillary
length. At normal hydrostatic pressures, no reabsorption from
the interstitium into the intravascular space occurs in non-
fenestrated capillaries (10). Contrary to the “classical” Starling
principle, the revised Starling principle proposes that the
opposing pressures determining fluid extravasation or retention
are the capillary hydrostatic pressure, the capillary COP
(including that of the EG), and the hydrostatic and colloid
osmotic pressure of the sub-glycocalyx area, which is virtually
protein free (10). Therefore, in scenarios where the EG is
intact, the major determinant of fluid filtration is the capillary
hydrostatic pressure. However, in situations where the EG
becomes damaged, such as systemic inflammatory states, it can
no longer maintain its barrier function and extravasation of
both plasma proteins and electrolytes, or administered colloids
and crystalloids, is equally likely (11). Furthermore, extravasated
colloid solutions increase the interstitial COP, thus retaining
more fluid and aggravating interstitial edema (12). Therefore,
theoretically, the change in intravascular volume that is achieved
from a given dose of crystalloid or colloid depends on the
integrity of the individual’s EG. It is noteworthy that most of the
statements supporting the revised Starling principle are derived
from the experimental setting, and the clinical importance of
changes in the EG requires determination. Indeed, the clinical
significance of some aspects of the revised Starling principle has
been called into question in a recent review (13). The interested
reader is referred to the article “Advances in the Starling
principle and microvascular fluid exchange; consequences and
implications for fluid therapy” of this special issue for a more
in-depth review on the EG.

Volume Effects of Colloids
Classically, colloids were believed to exert three to four times
the volume effects of crystalloids (14, 15). This has been
demonstrated in patients without systemic disease (16), in
older studies of people in shock (17, 18), and in experimental
hemorrhagic shock models (19–23). Several recent clinical
studies, however, failed to corroborate these findings in
systemically ill people, suggesting colloid-to-crystalloid relative
volume expansion ratios of 1:1–1:1.5 (24). The proposed cause
for this discrepancy is the damage to the EG resulting in fluid
extravasation of both crystalloids and colloids, and therefore
similar volume effects (2). In states of volume depletion, however,
colloids seemingly exert a superior volume expanding effect
to crystalloids. In people undergoing planned normovolemic
hemodilution to a hematocrit of 21%, replacement of the
removed blood with 115% volume of 6% HES 130/0.4 restored
intravascular volume to 105 ± 4% (25). In a similar setting,
replacement of four times the removed blood volume with
Ringer’s lactate solution led to a volume effect of only 17 ± 10%.
In contrast, subsequent infusion of a 20% albumin solution to
correct a volume deficit led to a volume effect of 184± 63% (16).
Several experimental hyper- and normovolemic hemodilution
models have shown similar findings, whether by evaluating
volume expansion or using resuscitation endpoints (26–28).

Interestingly, these findings contrast with the revised Starling
principle, whereby in the transient state of decreased hydrostatic
pressure, both crystalloids and colloids should be able to equally
restore blood volume (10). The cause for these discrepant
findings is probably multifactorial. For instance, they might
simply be the result of incomparable study designs or imprecise
or different methodology. Indeed, the current techniques for
estimating blood volume (such as dilution tracer techniques
and the more common measurement of hemodilution) are
challenging to perform and may carry inherent errors (12, 13,
29, 30). As a result, comparison between studies is difficult. This
further hinders the ability of scientific evidence to translate into
meaningful clinical guidelines.

In addition to “superior” volume expansion effects, colloids
are proposed to stay “longer in the vessel” than crystalloids.
While crystalloids are expected to redistribute over 20–40min,
studies have shown that the colloids persist in the intravascular
space for 2–3 h in healthy euvolemic volunteers (31–33). Systemic
inflammatory and otherwise “leaky” states are expected to
shorten the duration of this effect (34, 35). However, extensive
studies on redistribution of colloids are lacking (12). Further,
colloids (and especially HES) have been specifically indicated in
states of increased capillary permeability to “plug the holes in
the endothelium.” The ability of the macromolecules contained
in colloids to wedge into endothelial intercellular orifices, a
product of systemic inflammation and endothelial dysfunction,
has been proclaimed in textbook chapters and review articles
(4, 14). This has been extrapolated mostly from experimental
models using entire animals (36–42), isolated tissues (43), or
endothelial cell lines (44). However, this ability remains to
be tested in the clinical setting. Whether colloids reduce or
exacerbate fluid extravasation in systemic inflammatory states
remains controversial with studies reporting opposing results
(34, 45–47). The reader is reminded that evaluating extravasation
is challenging in the clinical setting, which might be a plausible
explanation for these discrepancies. Another explanation for the
“plugging potential” of colloids may lie in their interaction with
the EG. Indeed, experimental studies have demonstrated that
albumin might exert protective effects on the EG (48–52). In the
same series of experiments, HES showed a similar, albeit weaker,
protective effect (53). This is proposed to be the result of colloids
binding to the glycosaminoglycan side chains of proteoglycans
and glycoproteins and stabilizing the scaffolding structure of the
EG (54, 55). However, in the majority of those studies, the study
fluid was infused before an insult on the EG. Therefore, infusing
colloids once the EG damage has occurred might not carry the
same protective effect.

Colloid Osmotic Pressure Optimization
Synthetic colloids have been used as a substitute for albumin
in patients with hypoalbuminemia with the rationale that they
are capable of restoring plasma COP. Indeed, several veterinary
studies in hypoalbuminemic patients have demonstrated that
HES stabilizes (56) or increases plasma COP (57–59), with
one study demonstrating a subjective decrease in peripheral
edema when using high molecular weight HES (hetastarch) (60).
However, the decrease in edema was not correlated with the dose
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administered and a drop of COP was noted after subsequent
HES administrations. In another study where COP increased
after administration of HES, it returned to baseline within 12 h
of administration (58).

Administering synthetic colloids as a constant rate
infusion (CRI) seems to be unique to veterinary medicine.
Veterinarians often use synthetic colloids as CRIs for patients
with hypoalbuminemia and edema (5). Non–peer-reviewed
conference proceedings (61, 62) and review articles (2)
recommend doses of 1–2 ml/kg/h or the maximal recommended
daily dose divided by 24 h to support patients with low albumin
or COP, respectively. In a recent study, HES 130/0.4 was able
to maintain COP levels but did not significantly increase COP
when administered as a CRI over 24 h to a small group of dogs
with hypoalbuminemia (56). To the authors’ knowledge, there
are no other publications reporting the efficacy of administering
colloids as a CRI rather than as a bolus. Ultimately, whether
normalizing and maintaining COP should be a critical point in
patient care is unclear as extravasation is at least as dependent on
the integrity of the EG as it is on intravascular COP. Furthermore,
synthetic colloids are not capable of carrying out all the other
roles of natural colloids and specifically albumin. Therefore, they
cannot be used interchangeably in the hypoalbuminemic patient.

Summary on Physiology of Colloid
Solutions
In conclusion, natural and synthetic colloids may exert greater
intravascular volume expanding effect per unit administered than
crystalloids in healthy patients or patients with hypovolemia.
However, caution is required when administered in patients with
EG damage or other causes of increased vascular permeability.
Not only does increased vascular permeability reduce the
expansion of volume that colloids can lead to but extravasation
of themacromolecules might exacerbate edema and subsequently
impair tissue oxygenation. Previous indications for use of
colloids include volume expansion (including perioperative
hypotension) and COP optimization. These indications should
be revised considering specific conditions (e.g., intact or damaged
EG), alternative therapies (e.g., vasopressors rather than fluids
for drug-induced hypotension), potential harmful effects (e.g.,
HSA leads to anaphylactic reactions in dogs), and overall
availability (e.g., canine albumin found only in limited numbers
of countries).

HYDROXYETHYL STARCH

Characteristics of HES Solutions
Hydroxyethyl starch is a potato or waxy maize–derived
amylopectin, modified by the substitution of hydroxyl groups
with hydroxyethyl residues on the glucose subunits to increase
resistance to degradation in the blood. Recent reviews described
pharmacokinetics, pharmacodynamics, effects, and adverse
effects of HES (2, 4, 63, 64). Preparations are characterized by the
mean molecular weight (molecular size, indicated in kilodalton,
kDa), molar substitution (mole of hydroxyethyl residues per
mole of glucose subunit), C2:C6 ratio (locations of hydroxyethyl
residues on the carbon atom of the glucose subunits) and the

concentration [e.g., 6% (60 g/L) vs. 10% (100 g/L)], the carrier
solution (normal saline vs. polyionic, buffered, and balanced),
and the starch source [potato (e.g., HES 130/0.42) vs. maize
starch (e.g., HES 130/0.4)].

Since its introduction on the market in the 1970s, HES was
one of the most commonly used resuscitation fluids in people
worldwide (2, 3).

Mechanisms of Adverse Effects of HES
HES-associated adverse effects, such as nephrotoxicity,
coagulopathy, tissue storage, and therapy-resistant pruritus,
were reported early after its introduction on the market (2). After
intravenous administration, large HES molecules (>60 kDa) are
degraded by plasma α-amylase and by the reticuloendothelial
system, before they undergo glomerular filtration and urinary
excretion (2). However, HES is also rapidly (within hours)
taken up by a wide variety of tissues in the body, with skin and
kidney being the most affected organs (65). Intracellular HES
degradation is slow and incomplete, and HES deposits persist
up to 10 years in the human kidney (65). A key mechanism
responsible for HES-induced acute kidney injury (AKI) is
osmotic nephrosis after HES uptake in renal proximal tubular
epithelial cells by pinocytosis. Osmotic nephrosis is characterized
histologically by a vacuolization (i.e., storage in lysosomes) and
swelling of the renal tubular epithelial cells, which compromises
and occludes the tubular lumen, with subsequent stasis of
urine flow (66). Another mechanism is hyperviscosity-mediated
injury, in which hyperoncotic tubular fluid leads to stasis of
flow and obstruction of the tubular lumen (Figure 1) which has
been described with 10% HES solutions (ovine endotoxemic
shock model) (67). Further, renal interstitial cell proliferation,
macrophage infiltration, and tubular damage are documented
pathological mechanisms of HES-induced adverse effects on
renal function (68, 69). In an isolated renal perfusion model,
10% HES 200/0.5 caused more tubular damage compared with
6% HES 130/0.42 and Ringer’s lactate (68).

Mechanisms for HES-induced coagulopathy include dilution
of clotting factors, impaired platelet function, decreased
concentrations of circulating von Willebrand factor and
factor VIII, impaired factor XIII–fibrin cross-linking, and
enhanced fibrinolysis, with the subsequent risk of bleeding
complications (2, 4, 70, 71). The pathophysiologic consequence
is an impairment of different hemostatic variables (i.e.,
activated partial thromboplastin time) (71), which may also
complicate the interpretation of coagulation abnormalities in
critically ill human and animal patients (e.g., HES induced vs.
disseminated intravascular coagulation-induced prolongation of
clotting times).

Adverse Effects of HES in Humans
Acute Kidney Injury and Mortality
The presumed beneficial effects of HES and the development
of modern and putatively safer HES preparations seemed to
outweigh the described adverse effects for a long time. This
changed after the results of large multicenter randomized
controlled trials (RCTs) in people, which compared HES and
crystalloids for resuscitation of critically ill patients. Indeed,
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FIGURE 1 | Schematic illustration of proposed mechanism of colloid-induced

AKI: 1. Colloid induced increase in plasma COP that decreases filtration

pressure and consequently GFR (“hyperoncotic AKI”). 2. Accumulation of

colloid containing proximal tubular lysosomes, leading cellular dysfunction. 3.

Local hyperviscosity and colloid precipitation, forming of occluding casts. 4.

Osmotic nephrosis represents vacuolization and swelling of the renal proximal

tubular cells; It can be reversible, and function restored but may also be a first

step in the development of irreversible cell lesions. The above mechanisms are

not mutually exclusive and may occur in combination. AKI, acute kidney injury;

COP, colloid osmotic pressure; GFR, glomerular filtration rate.

three large influential RCTs in nearly 600 patients with severe
sepsis (“VISEP” in 2009), in 800 patients with severe sepsis
with high illness severity (“6S” in 2012), and in 7,000 less sick
intensive care patients (“CHEST” in 2012) found an increased
risk of AKI and renal replacement therapy (RRT) (in all three
trials), and mortality (only in “6S”) in patients receiving HES
(72–74) (Supplementary Table 1). These findings challenged the
risk:benefit ratio of HES. Proponents criticized these landmark
trials for their “flawed” design, i.e., late use of HES in patients
who were already volume resuscitated (in VISEP study patients
received HES for up to 21 days) and including patients who
received HES even though they were in renal failure (75). Around
the same time, two smaller RCTs in 115 patients with penetrating
and blunt trauma (“FIRST” in 2011) and in 156 patients with
severe sepsis (“CRYSTMAS” in 2012) reported no adverse effects
(76, 77). In addition, a large open-label randomized comparison
between crystalloids and various colloids for the treatment of
acute hypovolemia in nearly 2,900 patients with hypovolemic
shock (“CRISTAL” in 2013) showed no significant difference
in 28-days mortality, but a significant reduction in mortality
at 90 days [34.2% (crystalloids) vs. 30.7% (colloids), p = 0.03]
in the colloid group (70% of colloids were HES), and more
vasopressor-free and ventilator-free days by day 28. The study
also found no evidence that colloids increased the risk of AKI or
any other serious adverse event (Supplementary Table 1) (78).
Independently of these controversial RCT results, almost 90
HES-related scientific articles authored by a prominent German
anesthetist and prolific defender of HES were retracted 2012

for data fabrication and lack of ethics approval (79, 80). The
retraction of such a large body of work has had far-reaching
effects on clinical practice and research oversight (81). Because of
the RCTs demonstrating harm in critically ill patients receiving
HES and the retraction of the HES-supporting scientific articles,
several systematic reviews then highlighted the adverse effects of
HES (82–85). As a consequence, two pharmacovigilance safety
reviews of HES worldwide in 2012/2013 and in the European
Union (EU) in 2017/2018 led to progressive restrictions of HES
use in people (86). Since then, experts worldwide have considered
HES solutions to be contraindicated in patients with sepsis or
other critical illnesses, additional warnings on packaging are
required in the EU, and supply has been limited to accredited
hospitals after training of healthcare professionals (86). These
restrictions are still a matter of debate between HES proponents
and opponents. Nevertheless, between 2007 and 2014, the
proportion of patients receiving colloids in human medicine
decreased significantly, which was primarily due to a decrease in
the use of HES, despite an overall increase in the use of human
albumin (6). As most of the negative effects of HES reported
in the RCTs involved patients with sepsis, in 2013 European
medicines authorities requested further studies evaluating the
safety and efficacy of HES in perioperative non-septic patients
(86). Several smaller studies and RCTs in non-septic patients
in the perioperative setting found no evidence of a nephrotoxic
effect of HES (87, 88). Likewise, two recent larger, multicenter
trials in 4,545 (“RaFTinG” in 2018) and 775 (“FLASH” in
2020) surgical patients also found no significant difference in
mortality between patients who received HES or crystalloids
and AKI in one (89), and according to the authors a reduced
risk of RRT and AKI in another (90) (Supplementary Table 1).
Notably, “RaFTinG” was criticized for statistical over-adjustment
and “FLASH” for misrepresenting results (91, 92). In summary
(and regardless of the exhaustive criticism all RCTs have been
subjected to), critically ill and specifically septic patients seem
to be particularly burdened by the nephrotoxicity of HES. This
is exacerbated by long-term HES administration to otherwise
hemodynamically stable patients. Such effects seem to be lost
in less severely ill patients and specifically those presented with
acute hypovolemia or those requiring perioperative fluid therapy.

HES Coagulopathy
In addition to the results regarding kidney failure in the
aforementioned studies, HES-induced coagulopathy and
hemorrhage is also a well-known adverse effect (73, 74). Despite
improved physicochemical properties of newer HES products
(e.g., tetrastarch), a systematic review from 2011 found HES
130/0.4 led to hypocoagulability in a dose-dependent fashion
(70). This was supported in further clinical studies, where
patients who received HES lost more blood and had higher need
for packed red blood cell (pRBC) transfusions than patients
receiving only crystalloids (74, 88). In 6S, more patients in the
HES group than in the Ringer’s acetate group received blood
products, including packed red cells (relative risk, 1.28; 95% CI
1.12–1.47; p < 0.001) (74). In two recently published RCTs, HES
therapy was associated with a blood loss more than twice as high
as with crystalloid alone (87, 93). In contrast, a meta-analysis
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including 49 studies in a total of nearly 3,439 patients undergoing
cardiac surgery (i.e., colloids are used as priming solution and
volume replacement) could not identify evidence for a higher
risk of bleeding, blood transfusion, or reoperation associated
with tetrastarch compared with pentastarch, albumin, gelatin,
and crystalloids. Tetrastarch was superior to human albumin
in terms of blood loss and transfusion requirements (blood
loss after tetrastarch vs. albumin: standardized mean difference,
−0.34; 95% CI,−0.63 to−0.05; p= 0.02) (94).

Safety Recommendation in People
According to the latest recommendation from the European
Medicines Agency from 2018, valid for the EU countries, HES
use should be limited to initial volume resuscitation with a dose
not exceeding 30 ml/kg over a period of administration not
exceeding 24 h, and that kidney function should be monitored
for at least 90 days thereafter. In addition, HES is contraindicated
in sepsis, critically illness, burns, severe preexisting coagulopathy,
and bleeding in people, among others (86).

Adverse Effects of HES in Small Animals
HES is currently the most used and studied synthetic colloid in
veterinary medicine. Guidelines or absolute contraindications on
the use of HES do not yet exist for small animals. Longstanding
recommendations for the use of HES in animals have beenmostly
extrapolated from human medicine so the recent changes in
human guidelines have led to more veterinary research.

HES-Induced Acute Kidney Injury in Small Animals
Most of the studies of the renal effects of HES in dogs and
cats have been retrospective or experimental and have yielded
conflicting results (95–102) (Table 2). In one retrospective study,
treatment with 10% HES 200/0.5 was a risk factor for adverse
outcome, including in-hospital death or AKI, and the risk of AKI
increased with increasing HES dose (97). In four retrospective
studies in critically ill dogs and cats, 6% HES 130/0.4 was not
associated with an increased risk for AKI (98–101), although
the number of HES days was significantly associated with an
increase in AKI grade within 10 days post-HES (98). Two of
these studies specifically evaluated a subgroup of cats and dogs
with sepsis and found no HES-associated acute kidney injury
(100, 101). Interpretation of these studies is hampered by the fact
that different HES types are used, the definition of AKI is not
standardized, study populations are comparatively small, and the
studies are retrospective in nature, indicating associations rather
than causality. Further, creatinine has a poor sensitivity to detect
early stages of AKI. A conclusion regarding the renal safety of
tetrastarch based on these four studies is therefore limited.

Two experimental studies compared the effect of 6% HES
130/0.4 (bolus of ∼20 ml/kg once), of other colloids, and
of crystalloids on kidney injury in canine hemorrhagic shock
models (95, 96). Concentrations of several plasmatic and urinary
renal biomarkers were analyzed, e.g., neutrophil gelatinase-
associated lipocalin, a protein expressed after renal proximal
tubular damage and secreted in blood and urine. Both studies
found no association betweenHES and biomarkers of AKI within
3 or 72 h after HES bolus, respectively (95, 96). It is unclear to

what extent these results can be extrapolated to critically ill or
septic dogs and cats, as acute hemorrhagic shock was induced
in previous healthy dogs, and the studies were conducted over
a relatively short period of time in a small group of dogs and in a
defined disease model.

Prospective RCTs are needed and are currently underway.
Recently, results from a randomized, blinded, clinical trial to
compare different urine biomarkers (e.g., neutrophil gelatinase-
associated lipocalin) of AKI in dogs receiving 6% HES 130/0.4
vs. Hartmann’s solution for shock resuscitation were published
(102). No differences in urinary AKI biomarkers between the
HES group (21 dogs) and the crystalloid group (19 dogs) were
found up to 24 h after the first fluid bolus. In addition, in the
five dogs which developed AKI (i.e., three in the HES group, two
in the crystalloid group), no significant difference in maximum
Veterinary Acute Kidney Injury scores was found (102).

Intrarenal HES accumulation has also been evaluated
histologically in dogs (95, 103). Tubular injury scores (based on
damaged epithelial cells and presence of sloughed cells within
tubular lumen) and the degree of renal tubular microvesiculation
(vesicles within renal epithelial cells) were not significantly
different between dogs receiving 6% HES 130/0.4 compared
with dogs receiving whole blood or isotonic crystalloids in
an experimental hemorrhagic shock model (95). In contrast,
retrospective histopathological examination of kidney tissue
from critically ill dogs revealed that the cumulative dose of
6% HES 670/0.75 was positively associated with the severity of
renal tubular vacuolization (103). It is worth mentioning that
osmotic nephrosis is not specific to HES administration but
can be due to other drugs (e.g., mannitol, glucose, intravenous
immunoglobulins), primary renal diseases, and postmortem
autolysis (66). Immunohistochemical evaluation with specific
HES antibodies would be ideal to provide a reliable diagnosis of
HES-induced osmotic nephrosis.

HES-Induced Coagulopathy in Small Animals
Several in vitro and in vivo studies in healthy dogs and cats (104–
108) have shown a dose-dependent and transient coagulation
impairment after in vitro dilution of blood or IV administration
of HES. Hemostasis assessment was performed predominately
by whole blood platelet function analyses and viscoelastometric
coagulation analyses (e.g., rotational thromboelastometry).
Platelet function, speed of clot formation, and clot firmness
were more impaired after HES than after crystalloids using
similar dilutions (104–108). However, when clinical doses of
HES and isotonic crystalloid (i.e., 10 ml/kg HES vs. the 3- to
4-fold volume of crystalloid) were compared in vitro (blood
from healthy dogs) (107) or in vivo (experimentally induced
canine hemorrhagic shock model), no difference was found
(109, 110). Different results were obtained in two other studies
which used thromboelastometry. In one hemorrhagic shock
model, the administration of 20 ml/kg of 6% HES 130/0.4 was
associated with hypocoagulability beyond effects of hemodilution
(i.e., 80 ml/kg crystalloids) (111). Likewise, in critically ill dogs
with spontaneous hemoperitoneum, more impaired coagulation
was found after 10 ml/kg of 6% HES 130/0.4 compared with
a 3-fold volume of crystalloid (112). However, in this study,
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TABLE 2 | Clinical studies evaluating kidney injury after HES administration in dogs and cats (sorted by publication year).

First author (year,

[reference])

Design Species HES type Definition of AKI Measurement time points Doses Outcome

Hayes et al. (97) Retrospective,

critically ill Dogs

(HES n = 180;

CRYS n = 242)

10%

HES 200/0.5

>2× increase in

admission creatinine

concentration or

oliguria/ anuria of <0.5

mL/kg/h for >12 h

Blood creatinine concentrations

at admission and during

hospitalization.

Median bolus dose:

8.2 ml/kg/d (IQR 5.0–11.3

ml/kg/d); CRI median dose: 26

ml/kg/d (IQR 24.0–48 ml/kg/d)

HES increased risk of an adverse

outcome including death or AKI

(OR = 1.98, 95% CI =

1.22–3.22, P = 0.005)

Yozova et al. (100) Retrospective,

critically ill Dogs

(HES n = 86;

CRYS n = 115)

6%

HES 130/0.4

VAKI staging system Plasma creatinine concentrations

at admission (T0), and 2–13 days

(T1), and 2–12 weeks (T2)

Median total dose: 86 ml/kg

(range, 12–336 ml/kg);

Median bolus 25 ml/kg/d (range,

12–62 ml/kg/d); median duration

of administration 3.7 days

(range, 1–9 d)

Compared to CRYS, HES did

not result in greater increase in

creatinine in critically ill dogs and

in the subgroup of dogs with

sepsis

Yozova et al. (101) Retrospective,

critically ill Cats

(HES n = 31;

CRYS n = 62)

6%

HES 130/0.4

IRIS AKI grading criteria

and VAKI staging

system

Plasma creatinine concentrations

at admission (T0) and the

maximum concentration

measured at any time between

24 h after admission and

discharge or death (T1max)

Median total dose: 94 ml/kg

(range 26–422 ml/kg);

median daily dose: 24 ml/kg/day

(range 16–42)

3.7 days of administration

(range 1–13d)

Compared with CRYS, HES did

not result in greater increase in

creatinine in critically ill cats and

in the subgroup of cats with

sepsis

Sigrist et al., (98) Retrospective,

critically ill Dogs

(HES n = 94;

CRYS n = 90)

6%

HES 130/0.4

IRIS AKI grading criteria Serum creatinine concentration

was recorded each available day

until day 90

Median total dose: 69.4 ml/kg

(range, 2–429 ml/kg); median

daily dose 20.7 ml/kg/d (range,

2–87 ml/kg/d); median duration

of administration 4 days (range,

1–16 d)

Compared with CRYS, HES did

not result in greater increase in

creatinine.

Number of HES days was

significantly associated with risk

of increased AKI grade within 10

days post-HES administration

Sigrist et al. (99) Retrospective,

critically ill Cats

(HES n = 26;

CRYS n = 36)

6%

HES 130/0.4

VAKI staging system % change from baseline to the

last and highest creatinine within

2–10 days and from baseline to

the last creatinine within 11–90

days

Mean total dose: 98.5 ml/kg

(range, 8–278 ml/kg); mean daily

dose: 20.1 ml/kg/d (range,

8–40.5 ml/kg/d)

Median duration of

administration 4 days (range,

1–11 d)

Neither administration of HES,

the HES dose or number of HES

days were associated with an

increased risk for AKI

Boyd et al. (102) Prospective

randomized

controlled blinded

clinical trial in dogs

prescribed a fluid

bolus of at least 10

mL/kg

Dogs

(HES = 21; CRYS

= 19)

6%

HES 130/0.4 vs.

Hartmann’s solution

Urine biomarkers of AKI

(NGAL, cystatin C,

KIM, clusterin, and

osteopontin) and VAKI

staging system

Concentrations of

osmolality-indexed biomarkers

prior to and 6, 12, and 24 h after

the first study fluid bolus where

compared in linear mixed-effects

models. The maximum VAKI

score up to 7 days during

hospitalization and in-hospital

mortality

Mean volume of study fluid was

not significantly different between

groups (HES: 23.1 mL/kg,

CRYST: 25.9 mL/kg)

No differences in change over

time of urine AKI biomarkers in

dogs treated with 10 to 40

mL/kg HES or CRYST over 24 h

VAKI scores and mortality were

not significantly different

between groups

AKI, acute kidney injury; CRYS, isotonic crystalloids; HES, hydroxyethyl starch; NGAL, neutrophil gelatinase-associated lipocalin; KIM1, kidney injury molecule-1; OR, odds ratio; VAKI, Veterinary Acute Kidney Injury.
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parameters for clot firmness remained within reference ranges
and no statistically significant differences in standard coagulation
tests were found between the HES and crystalloid group (112).
The clinical relevance of the aforementioned changes has not yet
been conclusively determined because actual bleeding tendencies
have been evaluated in only one study in dogs. In this study, no
clinical bleeding was detected after 10 ml/kg of 6% HES 600/0.75
administered to healthy anesthetized dogs. HES coagulopathy
appears to last<3 h [15 ml/kg of 6% tetrastarch (106)] and<24 h
[20 ml/kg of 6% hetastarch (113)], respectively, after a single
bolus in healthy dogs.

Additional findings in several in vivo studies were a significant
decrease in hematocrit and platelet count after a HES bolus
(106, 112) which was disproportionate to the administered
volume of HES (i.e., greater decrease in hematocrit after HES
than after crystalloid). The reason for this disproportionate
decrease in hematocrit has been proposed to be mobilization
of plasma volume previously retained within the endothelial
glycocalyx (25).

Recommendations for HES Use in Small
Animals
In general, HES should be avoided if the animal responds
already to crystalloid or other therapy. HES is not a replacement
for albumin and in patients with severe hypoalbuminemia,
natural colloids (such as plasma products or albumin) should be
considered. In complex cases (such as sepsis or septic shock),
therapy is multimodal, and potentially natural colloids and/or
vasopressors are necessary. The current evidence favors a very
limited risk for HES-associated AKI in dogs and cats when
administered in small doses (<20 ml/kg) for short periods of
time. Previously healthy animals with acute hypovolemia (e.g.,
trauma-induced hemorrhage) could inconsequently tolerate
administration of HES in the initial resuscitation phase, and
HES can be considered if substantial amounts of crystalloids
are required. The necessity for colloids is questionable as
isotonic or hypertonic crystalloids usually provide adequate
resuscitation endpoints in such patients. Administering HES to
hemodynamically stable patients and patients with pre-existing
azotemia is not recommended.

Based on extrapolated data from people, resuscitating
critically ill and specifically septic patients with HES might be
detrimental especially in high doses and for long periods of
time. Furthermore, as mentioned previously, it might also be
futile because damage to their EG exacerbates extravasation of
any fluid. Currently, there is no evidence that HES has any
disadvantages in veterinary patients with sepsis; however, there
are no proven benefits to date either.

The effects of HES on different coagulation tests seem to
be mild in dogs without preexisting coagulopathy, and mild to
moderate in those with preexisting coagulopathy when using
doses <20 ml/kg. Given the evidence in human medicine
(definite increased risk of bleeding) and the unclear association
between standard laboratory tests and actual clinical bleeding
risk in dogs, monitoring of coagulation parameters and clinical
bleeding as well as hematocrit and platelet count should be

considered if the HES dose is≥10ml/kg in patients with potential
preexisting coagulopathy, anemia, or thrombocytopenia (112).

In contrast to human medicine and specifically high-
income countries, veterinarians need to incorporate financial
considerations in their decision-making. Furthermore, prompt
expensive therapy might be hindered by owner indecisiveness
(whether on financial or personal grounds) or availability. In such
instances, HES could be considered as a short-term solution in
patients where more costly therapies (i.e., allogenic albumin and
plasma products) are unaffordable or while decisions are made.
Hydroxyethyl starch should be used as a bolus at the lowest
possible dose. Under consideration of the existing literature, the
authors recommend a dose for 6% tetrastarch of 5–10 ml/kg
for dogs and 3–5 ml/kg in cats over 10–15min in states of
hypovolemia. This can be repeated if needed up to a total dose of
20 ml/kg. The authors do recommend against the use of HES as
a CRI, as the effects on COP is negligible (56) and a significant
association was found between days of administration of HES
and AKI grade (98). Kidney function should be monitored after
HES exposure—according to human studies up to 90 days after
exposure. Veterinary clinicians should consider discussing the
potential adverse effects of HES with owners of septic patients.

GELATIN

Characteristics of Gelatin Solutions
Gelatin solutions contain bovine gelatin hydrolysate, chemically
modified to increase solubility. Gelatin preparations have a mean
molecular weight of∼30 kDa. As this is below the renal threshold
for glomerular filtration, most of the gelatin is excreted into the
urine within minutes of infusion. Thus, the volume effect (70–
80%) and the duration of volume expansion (2–3 h) are expected
to be more limited compared with HES (114). Gelatin is available
as a 4% succinylated gelatin solution in normal saline or in a
buffered, polyionic isotonic carrier solution (Table 1). Gelatin
was withdrawn from the US market in 1978 due to concerns of
increased blood viscosity and coagulation impairment (115). In
addition, animal experiments suggest harmful effects on kidney
structure and function similar to the effects seen with HES
(116, 117) (Figure 1). In countries where gelatin is still licensed
(e.g., Germany, Switzerland), it is contraindicated in severe renal
failure. However, there is no clear dose or maximum daily
limit, and the recommendation on the package insert states
that the “maximum daily dose is determined by the degree
of hemodilution.” Due to the restrictions in HES use, gelatin
could potentially become an alternative synthetic colloid in many
European countries.

Adverse Effects of Gelatin in People
Significantly fewer clinical studies on gelatin exist in human
medicine as compared with HES. Despite the lack of RCTs
evaluating the risks and benefits of intravenous gelatin in people,
clinicians in human medicine seem to have increased their use of
gelatin following the HES restrictions from 2013 and 2018 (118,
119). There is nonetheless evidence that gelatin might be at least
as detrimental to kidney function as HES with a more limited
understanding of the underlying mechanism. In a prospective
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study in people with severe sepsis, AKI occurred in 70% of
patients receiving HES and in 68% of patients receiving gelatin,
vs. 47% of patients receiving crystalloids (120). In a systematic
review andmeta-analysis of gelatin-containing plasma expanders
vs. crystalloids and albumin in people, the authors concluded
that gelatin solutions increase the risk of anaphylaxis, and may
increase bleeding, renal failure, and mortality. The authors
recommended against the use of gelatins (119). A prospective
currently ongoing study, Gelatin in ICU and Sepsis (GENIUS), is
a double-blind RCT investigating the efficacy and safety of gelatin
as opposed to crystalloid administration in two parallel groups of
patients with severe sepsis/septic shock (NCT02715466). Results
from that study are expected end of 2021.

Adverse Effects of Gelatin in Small Animals
Gelatin seems to be rarely used in small animals. According to an
international survey about the use of colloids in small animals
from 2016, gelatin was used by only 4% of the respondents
(in contrast to 85% who used HES), although it was the main
synthetic colloid used by 24% of respondents from the UK (5).
This finding might be the result of reduced availability of HES
products in specific countries (e.g., the UK recalled all HES
products from the market in 2013 after the EMA review was
initiated). Therefore, veterinarians were forced to use alternative
licensed options such as gelatins. Only a few reports of the effects
on coagulation and renal injury in dogs, and no reports in cats
have been published (95, 111, 121–123).

In regard to its effects on coagulation, experimental studies
have shown that 20 ml/kg of 4% gelatin leads to impaired
platelet function (111), but that 10 to 20 ml/kg of 4% gelatin
had negligible effects on thromboelastography and plasma
coagulation (111, 123).

Regarding its renal effects, gelatin led to a marked increase
in urine and plasma renal biomarkers, e.g., a 33-fold increase
in urinary neutrophil gelatinase-associated lipocalin and a
5.9-fold increase in the urinary concentration of clusterin
(a renal glycoprotein induced in response to a variety of
injuries including ischemia/reperfusion) (95). Notably, this
increase was significantly more than after the same dose of 6%
tetrastarch. The same study found prominent renal epithelial cell
microvesiculation in all dogs receiving 4% gelatin, although these
were not sufficiently severe to meet the definition of “osmotic
nephrosis” (95). As mentioned earlier, these data cannot be
directly extrapolated to critically ill dogs and cats. However,
preexisting renal damage in critically ill and septic patients favors
the pathogenesis of osmotic nephrosis-related AKI, and certainly
predisposes patients even more to gelatin-induced AKI.

Recommendations for Gelatin Use in Small
Animals
According to the results of a small number of studies, the
administration of gelatin significantly impairs platelet function
and is associated with a high risk of renal injury in dogs. Because
the volume-expanding effects of gelatin are inferior to HES, yet
the risk of renal injury is significant, it is not appropriate to use
gelatin as an alternative to HES.

DEXTRANS

Characteristics of Dextran Solutions
Dextrans are neutral, high-molecular-weight glucose
polysaccharides synthesized from sucrose by the bacteria
Leuconostoc mesenteroides or dextranicum (114). Commercially
available dextran solutions have an average molecular weight
of either 70 kDa (dextran-70) or 40 kDa (dextran-40).
Concentrations used are 3, 6, and 10%, and they are mixed
in either isotonic or hypertonic electrolyte solutions (Table 1)
(1, 124). Dextran is either excreted by the kidneys or metabolized
by hepatic dextranase and the glucose monomers are ultimately
oxidized to carbon dioxide and water (1). Dextran-40, consisting
of smaller molecules, has more particles per unit weight than
dextran-70, and hence it is more osmotically active. However, its
smaller molecular fractions pass faster through semipermeable
membranes of the capillaries into the interstitial space and
through glomeruli into the urine. Thus, the volume expansion
effect of 10% dextran-40 is 150% with a duration of action of
3–5 h, while the volume effect of 6% dextran-70 is 100% with
a duration of action of 6–8 h (up to 20 h), due to its larger
molecular fractions and prolonged excretion (125). Hypertonic
10% dextran-40 leads to an initial volume expansion of up to
200% (114).

Major adverse effects in people include anaphylactoid
reactions, AKI, and impaired coagulation. Several theories about
the mechanism for dextran-induced AKI have been proposed,
with some of these mechanisms shared with other colloids. These
include an increase in plasma COP with subsequent decrease in
glomerular filtration pressure and reduced GFR; precipitation
of dextran within the renal tubules forming occluding casts
and osmotic nephrosis (66, 126, 127) (Figure 1). Dextran is
also known to impair coagulation, with a subsequent increased
risk of bleeding (128). The underlying mechanisms are not
well-understood, but bare similarities with other synthetic
colloids. These include inhibition of platelet aggregation by
reducing the activity of factor VIII, von Willebrand factor,
and the glycoprotein IIb/IIIa receptor, affecting fibrinogen
polymerization by co-binding, and enhancing fibrinolysis by
increasing the circulating levels of tissue type plasminogen
activator, and decreasing the levels of plasminogen activator
inhibitor-1 (128–130).

According to a 2010 international study (3), the use of dextran
in people was widespread in Scandinavia. However, it remained
the least used colloid, accounting for only 3% of the total
international responders. Dextran has been withdrawn from the
human market in several countries (i.e., Germany, Switzerland)
but seems to replace HES in others (e.g., Sweden) (131).

Adverse Effects of Dextrans in People
Anaphylactoid reactions after dextran are the result of preformed
endogenous anti-polysaccharide antibodies, which cross-react
with dextran molecules, causing an immune reaction (114, 132).
These severe reactions are prevented by “hapten inhibition” using
dextran 1, which binds dextran-reactive antibodies and forms
inactive complexes. The dextran 1, which has been used for
hapten inhibition since the 1980s, can be administered a few

Frontiers in Veterinary Science | www.frontiersin.org 9 July 2021 | Volume 8 | Article 624049

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Adamik and Yozova The Pros and Cons of Colloid Therapy

minutes before the infusion of the main solution of dextran. A
35-fold reduction in anaphylactoid reactions after introduction of
the prophylactic use of hapten inhibition was reported in a study
from Sweden from a decade after its introduction (133).

Numerous cases of AKI after administration of 10% dextran-
40 have been published (69, 134–137). While these older studies
have shown an increased risk of AKI with the use of dextran-40,
studies of dextran-70 are few, probably because of its limited use
worldwide. However, existing data suggest that dextran-70 is also
a potential risk factor for the development of AKI in patients with
septic shock (138, 139).

Impairment of in vitro coagulation and increased bleeding
after dextran-70 has also been found in different patient groups
(131, 138, 139). Due to this particular side effect, dextran was used
as a prophylactic agent against postoperative thrombo-embolism
in the 1980 (140).

Adverse Effects of Dextrans in Small
Animals
In the 1990s, hypertonic saline with 6% dextran-70 (HSD)
preparations were studied in different canine shock scenarios,
such as septic, endotoxic, hemorrhagic, and traumatic shock,
and gastric dilatation volvulus. As part of developing “small
volume resuscitation” strategies, the volume effects of dextran
were compared with isotonic crystalloids (141–146). In all
mentioned studies, bolus therapy with 4–5 ml/kg of HSD
solution was found to be a more effective resuscitation solution
compared with an isotonic crystalloid, and 8–10 times less
volume was necessary to reach similar cardiovascular endpoints.
To the authors’ knowledge, there are no reports about dextran-
induced anaphylactoid reactions or AKI in dogs. Two studies
evaluated hemostasis after dextran-70 in dogs and found a
dose-dependent impairment in different hemostatic variables
(such as plasma coagulation assays, platelet numbers, factor VIII
coagulant activity, von Willebrand factor antigen concentration,
and platelet function and buccal mucosal bleeding time) (122,
147). It is likely that as the preference of synthetic colloids shifted
toward HES solutions, clinical studies of dextrans in dogs or
cats were no longer performed. This may change in the near
future. In a recent experimental study in dogs, resuscitation after
hemorrhagic shock with HSD showed a similar hemodynamic
response compared with Ringer’s lactate at 10 times the volume
of HSD, but HSD showed superior efficacy in organ protection
(kidneys, lungs, and liver) (148).

Recommendations for Dextran Use in
Small Animals
Dextran-70 seems to be efficient for volume resuscitation in
dogs, especially when combined with hypertonic saline. Other
than coagulation impairing effects, adverse effects are largely
unknown, and as for other colloids, nephrotoxic effects are likely.
There are insufficient data in dogs, and no data in cats, to make a
recommendation for dextran use.

ALBUMIN

Characteristics of Albumin Solutions
Solutions of human serum albumin are prepared from pooled
human serum, with sterile water as the carrier. The solutions
available for intravenous use contain no preservative, and
pathogen inactivation is performed by pasteurization at >60◦C
for 10 h (149, 150). It is usually available as 5, 20, and 25%
solutions, with availability varying geographically. Albumin
accounts for ∼50% of the plasma protein content and is
responsible for about 80% of the plasma COP (151, 152). A near
exponential relationship exists between albumin concentrations
and in vitro COP, which is explained by the Gibbs–Donnan
effect (153). The negative charges on amino acids within albumin
attract cations (which have and osmotic effect), leading to a
disproportional increase in COP (153). Thus, a 5, 12.5, and 25%
HSA solution exerts a COP of ∼20, ∼95, and >200 mmHg,
respectively (153).

Albumin is incorporated into the EG, where it contributes to
vascular integrity, and normal capillary permeability. In addition,
albumin has antithrombotic, antioxidant, and anti-inflammatory
properties (55, 154). Hypoalbuminemia occurs as a result of
many critical diseases such as systemic inflammation, sepsis,
burns, liver failure, protein-losing enteropathy/ nephropathy,
and severe prolonged malnutrition. Severe hypoalbuminemia
can lead to gastrointestinal complications (i.e., gastric and
intestinal edema, gastrointestinal ileus), effects on coagulation
(i.e., hypercoagulability, increased platelet aggregation),
delayed wound healing, and consequences secondary to the
decreased COP (i.e., tissue edema, body cavity effusions) (152).
Furthermore, hypoalbuminemia has been associated with high
morbidity and mortality rates in human and veterinary patients
(100, 155, 156). A meta-analysis in critically ill hypoalbuminemic
human patients found that each 10 g/L decrease in serum
albumin concentration increased the odds of mortality by 1.37
(156). Nevertheless, it remains unclear whether these effects
are a direct result of the albumin deficit, in which case albumin
replacement would be beneficial, or if it is merely a marker for
the disease severity, and albumin optimization would not lead to
improved patient outcomes.

Use of Albumin in People
Albumin is commonly used for fluid resuscitation in people
(157–159). Usually, 5% HSA (and more rarely 20% HSA)
is administered as a second-line treatment after crystalloids
(24, 159, 160). Another indication is correction of significant
hypoalbuminemia. Albumin is not only used in conditions
requiring COP support. In severe liver diseases such as
cirrhosis albumin is recommended for its non-oncotic properties
such as antioxidant, scavenging, immune-modulating, and
endothelial protective functions (161). Albumin solutions are
used in various settings and conditions including priming
cardiopulmonary bypass circuits, therapeutic plasma exchange,
nephrotic syndrome, and pancreatitis (159). They are not
indicated as a nutritional source to raise serum albumin per se
without hypovolemia (159). Anaphylactoid reactions have been
reported in <0.1% of recipients (162).
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The use of albumin in critical care has generated controversy
for decades. In 1998, a Cochrane systematic review of 30 small
RCTs suggested harmful effects (i.e., increased mortality) of
albumin as compared with crystalloids for volume replacement
in critically ill patients (163). The impact of this meta-analysis
was dramatic and led to a substantial reduction in the use of
albumin in some countries. In 2004, the “SAFE” study was
published, a RCT which compared mortality in 6,997 critically
ill patients with hypovolemia who had received 4% albumin
or saline for intravascular-fluid resuscitation (164). A small
volume sparing effect was observed during the first 4 days in
the albumin group (ratio of albumin to saline was ∼1:1.4),
but no significant difference was found in 28-days mortality,
length of hospitalization, or organ dysfunction. Consequently,
albumin was considered to be “safe,” but that it did not offer
any advantage over saline. Subgroup analyses revealed that
patients with severe sepsis treated with albumin tended to show
a better survival, although the difference did not reach statistical
significance (p = 0.09) (164). In 2014, the “ALBIOS” trial was
conducted in 1,818 patients (158). This RCT aimed to answer
the question of whether in patients with severe sepsis or septic
shock, administration of 20% HSA to maintain a serum albumin
level ≥3 g/dl (≥30 g/L) reduces all-cause mortality at 28 days
compared with no albumin. Similarly to the SAFE study (164),
there was no significant difference in either the 28- or 90-days
mortality or total organ failure scores. Patients who received
albumin had a lower daily positive fluid balance over the first 7
days (158).

Despite the theoretical benefits of albumin and efforts
to translate this into positive patient outcomes (158, 164),
no RCT has yet demonstrated a significant advantage of
albumin over other types of fluid, including crystalloids (165).
Nevertheless, an increase in albumin use in adult intensive
care patients was found recently (6). Albumin appears to
have replaced HES as a resuscitation solution (6, 166). This
is potentially associated with the Surviving Sepsis Campaign
from 2016 which recommend volume replacement with
albumin (instead of a synthetic colloid) when patients require
“substantial” amounts of crystalloid during hemodynamic
stabilization (167).

Adverse Effects of Albumin in Small
Animals
In small animals, intravenous albumin is mostly used to correct
hypoalbuminemia and COP. Sources of albumin in dogs and
cats include CSA, allogenic plasma products, and HSA. No
feline-specific albumin products are available (Table 1). Canine
albumin (e.g., lyophilized canine albumin) manufactured in the
USA is currently not ubiquitously available. Consequently, some
veterinarians are forced to use HSA products if they wish to
administer concentrated albumin to dogs and cats. Human
albumin shares ∼80% structural homology with canine albumin
(168); therefore, allergic reactions are possible. Anaphylactic and
other immune reactions, and life-threatening complications have
been reported in dogs after administration of 5, 10, and 25%HSA

(169–173). Relevant study results are summarized in Table 3 and
are explained in more detail later.

In 2007, two research groups observed profound adverse
reactions after 25% HSA was administered to healthy,
non-hypoalbuminemic dogs (169, 170). Cohn et al. (169)
administered 25% HSA twice, 5 weeks apart, to nine healthy
dogs. Anaphylactic shock (collapse, hypotension, hypothermia,
tachypnea, vomiting, and diarrhea) occurred within minutes
in one out of nine dogs after the first dose of HSA, and in
two out of two dogs receiving a second dose, while the second
HSA infusion for the remaining seven dogs was abandoned.
Furthermore, two out of nine dogs developed urticaria and
edema 1 week after administration, and all developed anti-HSA
antibodies. Similarly, Francis et al. (170) administered 25% HSA
to six healthy dogs. One out of the six developed anaphylactic
shock, and all dogs developed a delayed type III hypersensitivity
including lameness, edema, vasculitis, and vomiting. Two of the
dogs died at 21 and 28 days after HSA administration, despite
intensive care treatment. These two dogs developed disseminated
intravascular coagulation, AKI, and pulmonary edema. All six
dogs were found to have anti-HSA antibodies (170).

Eight publications have reported the effects (including
adverse effects) of administration of HSA in critically ill
hypoalbuminemic dogs and cats in a clinical setting (171–175,
177–179). Human serum albumin resulted in increased serum
albumin concentrations and COP (173, 174, 176, 178) and
increased systemic blood pressure (174). Two studies reported
higher serum albumin concentrations in survivors after HSA
administration (173, 176) and in one study the magnitude of
serum albumin increase was positively associated with survival
(173). All but one of the aforementioned studies (171–175, 177,
179) reported adverse reactions in some patients, of which a few
were severe or fatal. One prospective study in 40 cats reported
no adverse effects after administration of 5% HSA (178). Most
studies were retrospective in nature and adverse effects of HSA
may have remained undetected or unrecorded. Furthermore, the
definition and recognition of adverse reactions is not uniform
between studies.

The available literature suggests that administration of
HSA induces severe adverse reactions predominantly in
healthy, normoalbuminemic dogs and may induce only
mild or no adverse reactions in critically ill patients. Several
possible explanations for this discordant response have been
proposed. Supraphysiologic concentrations of albumin might
be partly responsible for acute adverse reactions in healthy
normoalbuminemic dogs. Therefore, administration of HSA
over a longer period (e.g., 12–24 h) or administration of
diluted albumin solutions may result in fewer immunologically
mediated adverse effects (170, 175, 178). Further, it is possible
that deterioration of the clinical condition or death in critically
ill patients have been incorrectly attributed to the underlying
disease, rather than to an adverse reaction (170). It is also
possible that some hypoalbuminemic dogs given HSA may not
have survived long enough to develop a type III hypersensitivity
reaction (170). Lastly, it is speculated that critically ill dogs
may be immunosuppressed (due to the severe underlying
disease) and therefore not respond as strongly to HSA as healthy
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TABLE 3 | List of small animal publications using human serum albumin solutions and its doses.

Author (year

[references]

Species Setting Albumin

concentration

Total dose Dose per hour* Duration of

administration

Adverse events

Mathews and Barry,

(174) 64 dogs

2 cats

Retrospective

study, critically ill

25% Mean: 1.25 g/kg 0.025–0.43 g/kg/h Range 4–72 h Facial edema in 2 dogs

Trow et al. (173) 73 dogs Retrospective

case series,

critically ill

10% Median 1.4 g/kg (range

0.1–6)

∼0.12 g/kg/h 12 h 23% acute adverse reactions (mild:

tachypnea, tachycardia, increased

temperature, peripheral edema, and

ventricular arrhythmias; severe:

coagulopathies, cardiac arrest). 4%

delayed complications

Vigano et al. (175)
418 dogs

170 cats

Retrospective

study, critically ill

5% Mean: 1 g/kg/day 0.1 g/kg/h
Dogs: Median 96 h

(range 28–264 h)

Cats: Median 72 h

(range 48–168 h)

No acute severe adverse reaction. Minor

acute adverse reactions (diarrhea,

hyperthermia, and/or tremors) in 43.5%

dogs and 36.5% cats (no

specific treatment)

Powell et al. (172) 2 dogs Case series,

critically ill

5%
Dog 1: 1.4 g/kg

Dog 2: 1.3 g/kg

0.35 g/kg/h

0.43 g/kg/h

4 h

3 h

Type III hypersensitivity reaction

(leukocytoclastic vasculitis and dermal

antigen-antibody complexes) 8-16 days

after exposure

Horowitz et al. (176) 22 dogs + 17

negative control

dogs

Retrospective

study, septic

peritonitis

25% Mean: 2.55 g/kg

(range: 0.95–6.38)

n/a Mean: 39.2 h (range:

11–98 h)

No evaluation for adverse reactions

Loyd et al. (177) 21 dogs Retrospective

study, PLE

25% Dose: 0.5 g/kg ∼0.16–0.25 g/kg/h 2–3 h 2/21 acute reaction; 1 dog euthanized

2/21 delayed reaction; 1 euthanized

Vigano et al. (178) 40 cats + 20

control cats

Prospective study,

critically ill

5% Mean: 0.72 g/kg

(range: 0.5–1)

0.07–0.1 g/kg/h Mean: 7 h (range: 5–10 h) No acute or delayed adverse reaction

Mazzaferro et al. (171) 2 dogs Case series, septic

peritonitis

25%
Dog 1: 1.5 g/kg

Dog 2: ∼2.6 g/kg

0.13 g/kg/h

0.33 g/kg/h

12 h

8 h

Delayed type III hypersensitivity reaction

with AKI; euthanasia

Martin et al. (179)
14 critically ill + 2

healthy dogs

21 critically ill + 47

healthy dogs

Prospective,

healthy and

critically ill

25%
Healthy:

1st time 0.5 g/kg

2nd time 0.25 g/kg

Critically ill:

Median: 1.3

g/kg (0.45–11.8)

0.25 g/kg/h

0.125 g/kg/h

0.2 g/kg/h

2 h

1 h

Critically ill: transient fever in 1 dog, no

other acute or delayed adverse reaction

Healthy:

1st time: facial edema in 1 dog day 8

2nd time: acute adverse reaction in

both dogs

Cohn et al. (169) 9 dogs Prospective study,

healthy

25%
1st time: 2.5 g/kg (9

dogs)

after 5 weeks

2nd time: 2.5 g/kg

(2 dogs)

0.66 g/kg/h Mean: 3.75 h (range 3–4.5 h)
1/9, acute hypersensitivity (1st time)

2/2 acute hypersensitivity (2nd time)

2/9 urticaria/ edema after 2 weeks (1st

time)

9/9 developed anti-HSA antibodies

Francis et al. (170) 6 dogs Prospective study,

healthy

25% 0.5 g/kg 0.5 g/kg/h 1 h 6/6 Delayed type III hypersensitivity

reaction

*Doses were converted into grams according to data in the publications; PLE, protein loosing enteropathy; h, hours.
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immunocompetent dogs (169, 170). This was challenged by a
recent case series of two critically ill hypoalbuminemic dogs
with septic peritonitis receiving 25% HSA (171). These dogs
developed a delayed type III hypersensitivity reaction with AKI,
hypoalbuminemia, proteinuria as well as immune complex
deposition and vasculitis. As the use of HSA increases, more
reports of allergic reactions might be expected to emerge thus
proving a fuller picture on HSA safety in animals.

Both healthy (169, 170, 179) and critically ill dogs (179)
developed anti-human albumin antibodies within 7 days after
administration of 25% HSA. Antibody concentrations were
highest 4–6 weeks after HSA administration in the critically ill
dogs. Interestingly, one study reported that 7% of dogs had anti-
HSA antibodies without previous HSA infusion (179). The latter
could be attributed to cross-reaction with anti-bovine albumin
antibodies that developed when dogs were exposed to bovine
albumin through vaccination or ingestion (180). This not only
shows that HSA albumin should not be administered over longer
periods of time (several days), but also some patients might
be previously sensitized to the molecule and show reactions on
initial administration.

Canine serum albumin was evaluated in two prospective,
small-scale, clinical studies. One study evaluated 14 dogs
with septic peritonitis and found increased serum albumin
concentrations, COP, and Doppler blood pressure 2 h after CSA
administration. No acute or delayed adverse events were found
(181). In a second study (presented in an abstract form to date),
six healthy Beagles received CSA at a dose of 1 g/kg at three
different time points (on days 1, 2, and 14). Dogs were monitored
for evidence of transfusion-associated complications during the
infusions and at 1, 2, 12, and 24 h after each infusion. The follow-
up period was 28 days. The authors concluded that repeated
infusions appeared safe, with no adverse changes to physical
examination, hematologic, or biochemical parameters (182).

Recommendations for Albumin Use in
Small Animals
In contrast to people, albumin solutions in small animals have
been mainly used to increase and maintain plasma albumin
concentrations (CRI over hours and days) in patients that may or
may not be cardiovascularly unstable. Only one study to date has
shown an association of albumin administration and increased
patient survival (173). Immediate and delayed adverse reactions
in some critically ill dogs have been observed in several studies,
with some of them proving fatal (169–172, 174, 177, 179). Critical
illness does not seem to be protective against adverse immune
reactions to HSA solutions. Cats seem to be less sensitive to HSA
transfusions compared with dogs; however, this is based on only
three studies with a total of 211 cats (174, 175, 178). Due to
the potential adverse effects, HSA should be considered only for
severely hypoalbuminemic patients in which the use of isotonic
crystalloids alone carries a high risk of edema and/or in which
hypoalbuminemia itself is a greater risk factor than the potential
adverse effects of HSA. Autologous albumin products should be
used when possible. Intravenous HSA or CSA is not a substitute
for a proper nutritional management in critically ill patients.

Depending on the hydration status of the patient, albumin
administration may be considered at plasma albumin
concentrations below 10–15 g/L (1.0–1.5 g/dl) (173–176, 178).
Albumin supplementation should discontinue once the serum
concentration has reached 20–25 g/L (2.0–2.5 g/dl) (152).
The recommended formula for calculation of the albumin
dose is dose albumin (g) = (desired albumin g/L – patient
albumin g/L) × 0.3 × kg body weight (171) over 12–24 h. In
the authors’ experience, this formula overestimates albumin
requirements, so we recommend re-evaluating plasma albumin
concentration after 50% of the calculated dose and adjusting
requirements accordingly. Alternatively, a dose of 2 g/kg over
10 h is recommended (183). Some authors prefer to administer
diluted HSA (5 or 10%) which may be better tolerated due
to a more physiological COP (173, 175, 178), but there is no
conclusive proof for fewer adverse effects compared with the
more concentrated form. The described length of administration
varies between authors from 4–6 h (184) to 12 h (173) to several
days (174, 175). Based on current literature, it is not clear
whether the length of administration, the total dose, or both have
an influence on delayed adverse reactions. Supraphysiological
concentrations are not desired as it might lead to suppression of
hepatic albumin synthesis (152).

ALLOGENIC PLASMA PRODUCTS

Use of Allogenic Plasma Products in
People
The two major indications for administration of fresh frozen
plasma (FFP) in people are to prevent hemorrhage and to
stop active bleeding (185). Common clinical scenarios involving
the use of FFP include liver failure, reversal of anticoagulant
toxicity, temporary treatment of coagulation factor deficiencies,
cardiopulmonary bypass surgery, disseminated intravascular
coagulation, and thrombotic thrombocytopenic purpura (185).
Its use has also been reported in patients with acute pancreatitis,
uremic syndrome, and severe burns (185). Furthermore, FFP
is a component of “massive transfusion” protocols and used in
patients with traumatic coagulopathy. Substantial controversy
surrounds the indications and efficacy of administration of
FFP in people (186–195). While the evidence of its efficacy in
preventing or stopping bleeding is somewhat robust, other less
common indications are not evidence based.

Use of Allogenic Plasma Products in Small
Animals
In veterinary medicine, FFP is most commonly used to prevent
or stop bleeding (196). However, its indications extend beyond
treating or preventing coagulopathies. Fresh frozen plasma is
administered as a means of albumin supplementation as well
as a volume expander (197, 198). It is specifically advocated to
prevent further dilution of albumin and clotting factors that can
result from the administration of large volumes of crystalloids
or synthetic colloids. Clear guidelines for the use of FFP in
veterinary patients are lacking (196). To the authors’ knowledge,
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there are no studies investigating the effects of FFP specifically
when used for fluid resuscitation.

Several retrospective studies have documented the reasons for
FFP administration in small animals. In a 1999 study, 74 dogs
received FFP to provide albumin in 63%, coagulation factors in
47%, α-macroglobulin in 10%, and immunoglobulins in 13% of
patients (197). Another retrospective study compared the use
of FFP in 283 dogs and 25 cats between two decades (1996–
1998 and 2006–2008) (198). The main reasons for FFP use were
coagulopathies, hypoalbuminemia, and acute pancreatitis (i.e.,
provision of α-macroglobulin). In the later decade, significantly
more FFP was used for the treatment of coagulopathies, while
significantly less FFP was used to counteract hypoalbuminemia
or support patients with acute pancreatitis. Fresh frozen
plasma has been advocated for administration to people with
pancreatitis, and, by extrapolation, to dogs (199). The rationale
for the use is to supplement plasma α-macroglobulin. This is
a broad-acting protease inhibitor that prevents intravascular
damage caused by circulating activated pancreatic proteases.
Alpha-macroglobulin becomes depleted during the systemic
inflammation (200). A multicenter RCT in people from 1991
demonstrated no benefit of administering high-volume FFP
to patients with acute severe pancreatitis (201). Hence, the
practice to use FFP in people with pancreatitis has long been
overturned. One retrospective study compared the outcome of
dogs with pancreatitis that had been or had not been given
FFP (202). In that study, dogs that had received FFP had a
higher mortality, and no benefit was apparent. As the authors
did not control for the severity of illness, and FFP is more
likely to be administered to more severely affected patients, this
might have biased the results (202). Two recent retrospective
studies evaluated FFP transfusions in cats. One study in 36 cats
found that coagulopathies were the most common reasons for
FFP transfusion (94% of cats) (203). The other study evaluated
FFP transfusions in 121 cats and found coagulopathies (83%),
hemorrhage (35%), and hypotension (25%) to be the main
reasons for administration (204). Median doses reported in dogs
are 14 ml/kg (small dogs) and 5 ml/kg (large dogs), due to the
administration per unit or ½ unit per dog (197). Another study
reported median doses of 15–18 ml/kg (198). One study reported
median doses of 6 ml/kg in cats (204).

Two retrospective studies evaluated effects of FFP transfusion
in dogs. Median prothrombin time and activated partial
thromboplastin time were significantly decreased after plasma
transfusion. Notably, pre- and post-transfusion serum albumin
and COP were not different in patients receiving FFP. In
addition, no association was found between the volume of
infused FFP and outcome (198). Another study focusing
on adverse effects of blood product administration in dogs
reported 8% mild adverse reactions after FFP transfusions (205)
compared with 22% after pRBC administrations. This contrasts
with the findings in people where transfusion reactions after
administration of FFP are more common than after pRBC
transfusions and include life-threatening acute lung injury, and
circulatory overload (185). The aforementioned retrospective
studies also evaluated effects of FFP administration in cats.
In one study on 36 cats, coagulation parameters seemed to

improve in 90% of the cats after transfusion (203). Fifteen
percent of the cats experienced potential transfusion reactions,
including respiratory signs, fever, and gastro-intestinal signs. In
the other study (121 cats), Doppler blood pressure increased,
and they were significantly less likely to be coagulopathic after
transfusion. Similarly, 16% of the cats had possible reactions,
such as increased body temperature (64% of cats with reactions)
and tachypnea/dyspnea (47% of cats with reactions) (204).

Recently, cryopoor plasma (CPP), a byproduct of the
production of cryoprecipitate, has been used as an albumin
source (206–208). The albumin concentration in canine CPP
is significantly higher than in FFP, suggesting that it may be a
possible treatment for hypoalbuminemia in dogs while avoiding
volume overload (207). A retrospective study of 10 critically ill
dogs found that plasma albumin increased after a CPP CRI (206).
The dogs received a median total dose of 31 ml/kg CPP over
a median duration of 16 h and a mean rate of administration
of 1.8 ml/kg/h. In a recent case report (a 44-kg dog with septic
shock secondary to enterectomy dehiscence), CPP was used
as a source of canine albumin and intravascular volume. In
this case, CPP was provided for a total volume of 58 units
CPP over 9 days (approximately CPP 227 ml/kg). The authors
proposed that CPP CRI may be a viable alternative to CSA
(and HSA) for oncotic support and albumin replacement, but
multiple units from different donors may increase the risk of an
adverse reaction. Cryopoor plasma is only available in specialized
institutions or commercial veterinary blood banks.

Recommendations for Plasma Products
Use in Small Animals
With the decline in use of synthetic colloids and in countries
where albumin solutions are either not available or not popular,
plasma products might be the only natural colloid alternative.
However, the current evidence is not sufficient to enable
strong recommendations for the use of plasma products in
small animals. Allogenic plasma transfusions seem to have a
low risk for adverse effects, although cats seem to be more
sensitive than dogs. As an albumin source, the administration
of plasma (either FFP or CPP) appears to be relatively safe,
although large volumes might be necessary. Fresh frozen
plasma contains ∼30 g/L (3.0 g/dl) of albumin. If the goal
of the plasma transfusion is to achieve adequate albumin
supplementation, substantial volume per kilogram is needed,
particularly when dealing with ongoing albumin loss [i.e., 22
ml/kg of plasma to raise the albumin concentration by 5
g/L (0.5 g/dl)] (152). Administering such volumes, potentially
derived from various donors, should be weighed against the
risk of volume overload and other transfusion reactions. The
use of CPP rather than FFP, where volume expansion is
not required, might prevent volume overload. Because these
products are usually administered per unit (or ½ unit), because
of the necessity to thaw, dose regimens (in ml/kg) vary
depending on patient size. Fresh frozen plasma should not
be used as a first-line volume expander unless specifically
indicated. This is because it is a valuable and expensive resource
that should not be wasted, and it is a potential source of
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adverse reactions in already debilitated animals. Furthermore,
it technically cannot be administered as a first-line volume
expander due to the necessity to thaw, which takes 30–45min
(209). However, if other indications for FFP administration
(e.g., overt or imminent coagulopathy) are present, FFP can
be considered as part of resuscitative efforts. While established
dosing regimens for FFP as a volume expander do not exist,
the authors recommend similar doses as other natural or
synthetic colloids.

HEMOGLOBIN-BASED OXYGEN CARRIER
(HBOC) SOLUTIONS

Hemoglobin-based oxygen carrier (HBOC) solutions consist
of chemically purified and polymerized bovine hemoglobin
(Hb) suspended in a crystalloid carrier fluid. The hemoglobin
in those solutions is a colloid with a high molecular weight
(up to 250 kDa in some) and a relatively high COP.
Several products have been developed over the last few
decades, seeking the advantage of a long shelf-life and low
infectious risk alternative to pRBC transfusions (210). The
safety and efficacy of HBOCs has been evaluated in various
species mostly through experimental studies and have yielded
conflicting results. In hemorrhagic shock models, HBOCs
seem to show promising efficacy in restoring cardiovascular
parameters and in some studies parallel the oxygen carrying
capacity of pRBCs (211–219). However, they are associated with
considerable adverse effects such as systemic vasoconstriction,
pulmonary and systemic hypertension, reactive oxygen species
formation, and renal and myocardial injury (220, 221). As a
consequence, HBOCs are not currently authorized for use in
people (222).

The use of HBOCs has been described two small-scale clinical
studies in dogs. In a prospective randomized study in 20 dogs
with GDV, five times smaller volumes of Oxyglobin (OPKBiotech
Netherlands BV) were required to achieve resuscitation end-
points as compared with HES 450/0.7 (223). Another prospective
randomized study compared the use of Oxyglobin and pRBC
in 12 anemic dogs with babesiosis. The authors concluded that
Oxyglobin had comparable effects with pRBC, with the exception
that dogs treated with pRBC had a quicker return to habitus and
appetite (224). In a retrospective study about the clinical use of
Oxyglobin in 48 cats, a high risk of life-threatening circulatory
overload was found in cats suffering from cardiac disease (225).
Oxyglobin was authorized by the European Medicines Agency
and Food and Drug Administration for use in anemic dogs in
1999 (212–214). However, it has beenwithdrawn from themarket
in most countries. Recently, a new highly purified low molecular
weight (65 kDa) bovine blood–derived HBOC (Oxapex; New A
Innovation Ltd., Kowloon, Hong Kong) has been authorized for
use in anemic dogs in New Zealand and awaiting authorization
in Australia, the USA, Canada, and the EU (Table 1). A canine
hemorrhagic shock model showed improved hemodynamics,
lactate, base excess, and tissue oxygenation after administration
of various doses of Oxapex (226). In this study, high doses led to

significant increases in pulmonary artery pressures (226). Further
studies are required to establish the safety and efficacy of this
new product.

CONCLUSION

Colloids, both natural and synthetic, were originally used
with narrow indications. For instance, the original purpose
of synthetic colloids was a cheap, long shelf-life “bridging
fluid” to remain in the intravascular space while soldiers
wounded on the frontline were transported to the field hospital
where further stabilization took place. The original purpose
of natural colloids was to replace missing blood components
(albumin, clotting factors, fibrinogen) in various patients. In
the decades that followed, their indications have expanded
far beyond their original purpose, such as perioperative fluid
therapy for HES and volume expansion for albumin. The
expansion of their indications to potentially higher doses and
use over longer periods of time (specifically for HES) may
have contributed to more and more severe adverse effects being
observed and, in some instances, has led to severe restrictions in
their use.

Admittedly, veterinary emergency and critical care medicine
does, to some extent, take into account the guidelines adopted in
human medicine. However, veterinary medicine cannot directly
follow the “attitudes” adopted in human medicine because of
species differences, different patient cohorts, the availability and
safety of some products, and the need to incorporate the owner’s
financial considerations into the decision-making process.
Therefore, species-specific guidelines should be established.

We are living in an era where fluids are recognized as
drugs with indications, contraindications, and adverse effects.
Therefore, to ensure rational utilization of colloids in the face
of weak and contradicting evidence, the authors recommend
prescribing colloids on a case-by-case basis, similarly to
prescribing any other drug.
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