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Abstract

Polycystic ovary syndrome (PCOS) is a variable disorder characterized by a broad spectrum of anomalies, including
hyperandrogenemia, insulin resistance, dyslipidemia, body adiposity, low-grade inflammation and increased cardiovascular
disease risks. Recently, a new polytherapy consisting of low-dose flutamide, metformin and pioglitazone in combination
with an estro-progestagen resulted in the regulation of endocrine clinical markers in young and non-obese PCOS women.
However, the metabolic processes involved in this phenotypic amelioration remain unidentified. In this work, we used NMR
and MS-based untargeted metabolomics to study serum samples of young non-obese PCOS women prior to and at the end
of a 30 months polytherapy receiving low-dose flutamide, metformin and pioglitazone in combination with an estro-
progestagen. Our results reveal that the treatment decreased the levels of oxidized LDL particles in serum, as well as
downstream metabolic oxidation products of LDL particles such as 9- and 13-HODE, azelaic acid and glutaric acid. In
contrast, the radiuses of small dense LDL and large HDL particles were substantially increased after the treatment. Clinical
and endocrine-metabolic markers were also monitored, showing that the level of HDL cholesterol was increased after the
treatment, whereas the level of androgens and the carotid intima-media thickness were reduced. Significantly, the
abundance of azelaic acid and the carotid intima-media thickness resulted in a high degree of correlation. Altogether, our
results reveal that this new polytherapy markedly reverts the oxidant status of untreated PCOS women, and potentially
improves the pro-atherosclerosis condition in these patients.
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Introduction

Hyperandrogenemia, insulin resistance, a state of low-grade

inflammation, body adiposity and a pro-atherogenic lipid profile

are usually present in adolescents and young women with

polycystic ovary syndrome (PCOS) [1,2,3]. Previous reports have

evidenced that the PCOS phenotype can also concur with primary

alterations of lipid metabolism involving increased levels of

oxidized LDL (oxLDL) particles [4,5,6]. Accordingly, PCOS

may accelerate the development of a cardiovascular-risk profile

even in the absence of clinical signs of atherosclerosis. Whether

this adverse pro-atherogenic profile and the enhanced oxidant

status may increase the risk for cardiovascular disease remains

unclear [7,8,9].

Most current pharmacological therapies are addressed to

ameliorate menstrual irregularities and cosmetic issues. There is a

clear need, however, for treatments that also improve endocrine-

metabolic markers associated with this disorder. Low-dose fluta-

mide (Flu, a pure androgen receptor blocker) and metformin (Met,

an insulin sensitizer) in combination with an estro-progestagen, is a

polytherapy that reduces total and abdominal fat, decreases the lean

mass deficit, and attenuates the abnormal pattern of adipokines in

young and non-obese PCOS women [1]. Recently, it has been

reported that the addition of low-dose pioglitazone (Pio, a PPARc
agonist) to the aforementioned polytherapy confers further

reductions of visceral fat and carotid intima-media thickness

(IMT), and increases further circulating high molecular-weight

(HMW) adiponectin [10,11,12,13]. Although the phenotypic

evidences demonstrate endocrine-metabolic improvements in a

wide spectrum of long-term health markers, the molecular

mechanisms underlying such polytherapy remain to be elucidated.

An approach to explore the metabolic changes in PCOS women

caused by this new treatment is metabolomics, defined as the

metabolic complement of functional genomics. Metabolomics

enables the characterization of endogenous small molecules that

serve as direct signatures of biochemical activity and therefore are

easier to correlate with phenotype. With the ultimate goal of the

comprehensive metabolome coverage, there is an overriding need

for analytical methodologies able to produce comprehensive

metabolite profiles from complex biological samples. However,
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due to the huge physico-chemical diversity of metabolites, there is

not a unique analytical technology able to cope with the whole

metabolome. Mass spectrometry (both GC-MS and LC-MS) and

NMR have demonstrated to be complementary analytical technol-

ogies in metabolomics-based studies [14,15,16], allowing to expand

the number of metabolites that can be comprehensively covered in

an untargeted experiment. Advantages and disadvantages of each

analytical technique and their current status in the field of

metabolomics are excellently reviewed elsewhere [17,18,19,20].

Here we present a longitudinal study to reveal the mechanism of

action of the low-dose Pio/Flu/Met polytherapy using metabo-

lomics. We analyzed using LC-MS, GC-MS and NMR-based

metabolomics serum samples of twelve young, non-obese women

diagnosed with PCOS, prior to and at the end of a 30 months

treatment with low-dose Pio/Flu/Met in combination with an oral

estro-progestagen. Our results show that at the end of the

treatment there are marked changes in the size of different

lipoprotein particles, in conjunction with downstream metabolic

oxidation products of LDL particles.

Methods

Participants
The study population consisted of twelve young, non-obese

women (age, 19.660.4 yr; BMI, 22.360.9 Kg/m2) diagnosed

with PCOS, participating in a randomized study [11], and whose

metabolomic profiles were assessed at baseline and after 30

months of treatment. Over 30 months, all women received the

same therapy for 24/28 days: pioglitazone (7.5 mg/d) at breakfast,

and metformin (850 mg/d), flutamide (62.5 mg/d) and a contra-

ceptive (ethinylestradiol 20 mg/d plus drospirenone 3 mg/d;

Yasminelle, Schering) at dinner time.

The inclusion criteria were: 1) hyperinsulinemia on a standard

2-h oral glucose tolerance test, defined as peak insulin levels

.150 U/mL and/or mean serum insulin .84 mU/mL; 2)

ovarian hyperandrogenism, as defined by each of the following

symptoms: hirsutism (Ferriman & Gallwey score .8); amenorrhea

(no menses for .3 months) or oligomenorrhea (duration of cycles

.45 days); biochemical androgen excess, as judged by circulating

androstenedione, total testosterone or free androgen index [FAI,

testosterone6100/sex hormone-binding globulin (SHBG)]; 17-

OH-progesterone hyperresponse (.160 ng/dL) to GnRH agonist

stimulation (leuprolide acetate 500 mg subcutaneously) [10].

The main exclusion criteria were: BMI ,17 Kg/m2 or

.29 Kg/m2; evidence of thyroid dysfunction; Cushing syndrome

or hyperprolactinemia; glucose intolerance; personal history of

diabetes mellitus; late-onset adrenal hyperplasia; abnormal liver or

kidney function; abnormal blood counts or serum electrolytes; and

treatment with an oral contraceptive or another medication

known to affect gonadal or adrenal function, carbohydrate or lipid

metabolism.

Patients were selected based on available serum samples pre-

and post-treatment. PCOS patients receiving placebo for 30

months did not meet ethical requirements and were not included

in the clinical study. Blood sampling was performed at baseline

and after 30 months on a cyclic off-treatment day (4/28 days). For

metabolomics analysis, serum samples (600 mL) were obtained

allowing plasma to clot at room temperature for 30 min. After

centrifugation at 4uC at 10,000 g for 10 min, samples were

maintained at 280uC until further analysis.

Experimental Procedures
Clinical and endocrine-metabolic variables, carotid IMT, body

composition [by dual-energy X-ray absorptiometry (DXA)] and

abdominal fat partitioning [by magnetic resonance imaging

(MRI)] were assessed prior to and at the end of the treatment as

previously described [9,10,11,12]. Sampling was performed in the

follicular phase of the cycle, or after 2 months of amenorrhea.

Hirsutism was graded according to the Ferriman and Gallwey

score [11]. Fasting blood glucose, serum insulin, LDL- and HDL-

cholesterol, sex hormone-binding globulin (SHBG), testosterone,

androstenedione and dehydroepiandrosterone-sulfate (DHEAS),

carotid IMT, body composition and abdominal fat partitioning

were measured as previously described [10,11,12,13].

Untargeted metabolomics analysis on serum samples was

performed using three different analytical platforms: NMR, GC/

MS and LC/ESI-MS TOF; each serum sample was split into three

aliquots and run in parallel using the three analytical platforms.

For the NMR measurement 300 mL of serum were mixed with

300 mL of phosphate buffer (0.75 mM Na2HPO4 adjusted at

pH 7.4, and 20% D2O to provide the field frequency lock). The

final solution was transferred to a 5 mm NMR tube and kept

refrigerated at 4uC in the autosampler until the analysis. 1H-NMR

spectra were recorded at 310 K on a Bruker Avance III 600

spectrometerH operating at a proton frequency of 600.20 MHz

using a 5 mm CPTCI triple resonance (1H, 13C, 31P). Three

different 1H-NMR pulse experiments were performed for each

sample: 1) Nuclear Overhauser Effect Spectroscopy (NOESY)-

presaturation sequence to suppress the residual water peak; 2)

Carr-Purcell-Meiboom-Gill sequence (CPMG, spin-spin T2 re-

laxation filter) with a total time filter of 410 ms to attenuate the

signals of serum macro-molecules to a residual level; 20 ppm

spectral width and a total of 64 transients collected into 64 k data

points, and 3) Diffusion-edited pulse sequence with bipolar

gradients along with longitudinal eddy-current delay (LED) to

further estimate the serum lipoprotein profile according to our

recent described methodology [21].

The second aliquot was used for GC/MS analysis according to

Agilent’s specifications [22]. 100 mL of serum were spiked with

20 mL of internal standard solution (1 mg/mL succinic-d4 acid;

Sigma-Aldrich). After protein precipitation using 900 mL of cold

methanol/water (8:1 v/v) samples were centrifuged 10 minutes at

4uC, and 200 mL of the supernatant were spiked with 20 mL of

myristic acid-d27 (Sigma Aldrich) used for retention time lock.

Samples were then lyophilized, and dissolved and incubated in

50 mL of methoxyamine in pyridine (0.3 mg/mL) during 16 hours

at room temperature. Derivatization by silylation reagents was

done using 30 mL of N-methyl-N-trimethylsilyltrifluoroacetamide

with 1% trimethylchlorosilane (MSTFA+1% TMCS, Sigma)

during 1 hour at room temperature. Samples were automatically

injected into a GC–MS system (HP 6890 Series gas chromato-

graph coupled to a mass selective detector model 5973) equipped

with a J&W Scientific DB 5-MS+DG stationary phase column

(30 m60.25 mm i.d., 0.1 mm film) (Agilent Technologies). The

injector temperature was set at 250uC, and the helium carrier flow

rate was kept constant at 1.1 mL/min. The column temperature

was held at 60uC for 1 min, then increased to 325uC at a rate of

10uC/min and held at 325uC for 10 min. The detector operated

in the electron impact ionization mode (70 eV) and mass spectra

were recorded after a solvent delay of 4 min with 2.46 scans per

second (mass scanning range of m/z 50–600; threshold abundance

value of 50 counts). The source temperature and quadrupole

temperature were 230 and 150uC, respectively.

The third aliquot was filtered through a 0.22 mm nylon

membrane filter and directly injected in a HPLC system (1200

series, Agilent Technologies) coupled to a time-of-flight (TOF)

mass spectometer (6210 Agilent Technologies) operated either in

positive (ESI+) or negative (ESI2) electrospray ionization in full
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scan mode. Serum extractions were separated using a Kinetex

C18, 2.6 mm, 15062.1 mm, 100 A (Phenomenex, Torrance, CA)

at a flow rate of 0.4 mL/min. The solvent system was: A = 0,1%

formic acid in water; B = 0,1% formic acid in acetonitrile (ACN).

The gradient profile started linearly from 2% to 20% buffer B in

3 min and was followed by another linear gradient from 20% to

100% buffer B in 18 min and hold for 7 min at 100% buffer B.

The injection volume was 15 mL. The instrument was set to

acquire over the m/z range 80–1000 with an acquisition rate of

1.3 spectra/second. MS/MS data of the metabolites of interest

was collected using an HPLC-ESI QqQ system (6410, Agilent

Technologies) using identical LC conditions.

Quality control samples (QCs) consisting of pooled serum

samples of all patients entering the study were used. In our LC-MS

platform, QCs were injected before the first study samples were

analyzed and then periodically after 5-study samples. For GC-MS,

QCs were injected periodically after 10-study samples. In addition,

to begin with the chromatographic analysis, injection of 3 blank

runs were performed both in LC/MS and GC/MS. Furthermore,

samples entering the study were entirely randomized to reduce

systematic error associated with instrumental drift.

Ethics
This clinical study was registered as ISRCTN12871246 and

conducted in Sant Joan de Déu University Hospital (Barcelona,

Spain), without support from industry, after approval by the

Institutional Review Board of Sant Joan de Déu University

Hospital, and after written informed consent by each patient.

Data analysis and statistical methods
The acquired CPMG NMR spectra were phased, baseline-

corrected and referenced to the chemical shift of the a-glucose

anomeric proton doublet at 5.22 ppm. Pure compound refer-

ences in BBioref AMIX (Bruker); HMDB and Chenomx

databases were used for metabolite identification. After baseline

correction, intensities of each 1H-NMR regions identified in the

CPMG 1D-NMR spectra were integrated for each sample

entering the study using the AMIX 3.8 software package (Bruker,

GmBH). To identify discriminating markers, intensities of each of

the identified spectral regions in the untreated PCOS serum

spectra were compared against the same spectral regions on their

treated counterparts using principal component analysis (PCA) of

the auto-scaled within-subject variation dataset derived from

multilevel simultaneous component analysis (MSCA) [23] and the

non-parametric Wilcoxon-rank summed test. LC/MS (ESI+ and

ESI2 mode) and GC/MS data were processed using the XCMS

software [24] (version 1.6.1) to detect and align features. A

feature is defined as a molecular entity with a unique m/z and a

specific retention time. XCMS analysis of these data provided a

matrix containing the retention time, m/z value, and integrated

peak area of each feature for every serum sample extraction

discussed above. The tab-separated text files containing GC/MS

data were imported into Matlab where normalization to internal

standard succinic acid-d4 was also performed. QCs were always

projected in a PCA model together with the study samples to

verify that technical issues do not mask biological information.

Basal PCOS samples and their treated counterparts were

compared using the integrated peak area of each feature via

PCA of the auto-scaled within-subject variation dataset derived

from MSCA and the non-parametric Wilcoxon-rank summed

test, and assigning a fold value to indicate the level of differential

regulation due to the 30-months treatment. Differentially

regulated metabolites (fold.2) that were statistically significant

(p,0,05) detected by LC/MS were characterized by MS/MS

using a LC-QqQ instrument. Differentially regulated metabolites

detected by GC/MS were identified using the NIST and Fiehn

mass spectral libraries. In addition, the retention time of pure

standards were confirmed. Data (pre-) processing, data analysis,

and statistical calculations were performed in Matlab (Matlab

version 6.5.1, Release 13). The MSCA matlab code was

downloaded and adapted from www.bdagroup.nl.

Results

Low-dose Pio/Flut/Met polytherapy improves
biochemical long-term health markers in PCOS patients

A series of biochemical parameters were initially monitored in

PCOS patients prior to and at the end of the 30 months treatment.

The results summarized in Table 1 indicate that the treatment

caused a broad spectrum of biochemical adjustments, including a

marked reduction in serum concentrations of androgens such as

testosterone (24169%, p = 0.0026) and androstenedione

(23565%; p = 0.003), whereas insignificant changes in body

weight were measured. The carotid IMT was markedly reduced

(23363%; p = 3.061025) after the treatment, and it was

accompanied by a significant augment of HDL cholesterol levels

in serum (3465%, p = 0.005). In addition, some PCOS patients

decreased their visceral fat mass considerably after the treatment.

Of note, markers of liver dysfunction such as transaminases and

lactate dehydrogenase remained unaltered (data not shown).

Overall, these changes are clinically associated with a phenotypic

improvement in PCOS patients after the treatment, and

complement the metabolomic analysis.

Multivariate Data Analysis of PCOS Serum Samples
Given the longitudinal nature of our study, we used a

multilevel simultaneous component analysis (MSCA) method

[23] to examine independently different types of variation in the

NMR and MS-based metabolomic data, namely, variation

between patients and variation in time within patients as a result

of the polytherapy. MSCA enables to split the variation within-

subjects that accounts for the variation before and after the

treatment for each patient, from the variation between-subjects

that accounts for the biological variation (i.e., genotype

differences) in two different data matrices. The variation

within-subjects is represented in the PCA plot of Figure 1. The

PC1/PC2 scores plot of the 1H-NMR CPMG spin-echo

experiment shown in Figure 1A reveals a clear clustering along

PC1 (,57% of the variance), which accounts for the post-

treatment variation of each patient. Figure 1B depicts the bar

loading plot for PC1, the higher the absolute bar value the higher

the influence of such variable in the variation induced by the

treatment. Hence, PCOS serum samples at the end of the

treatment were characterized by rather larger values of choline-

containing molecules and diminished values of 1,2-propanediol

and lysine, among others. Similar PC1/PC2 scores plot was

observed with the GC/MS and LC/MS derived data (Figure 1C

and Figure 1F), confirming a profound metabolic variation within

patients due to the 30 months polytherapy. Loadings bar plot

were also studied and some of the features implicated in this

variation were depicted as boxplots in Figures 1D–H. Altogether

our MSCA model set apart the biological variation between

patients and highlighted within-patient variation due to the Pio/

Flu/Met polytherapy, showing clear differences in the relative

concentration of specific compounds in the serum of PCOS

patients. Accordingly, we focused in the characterization of the

most discriminating compounds of the MSCA model.

Metabolomic Study of a New Polytherapy for PCOS
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Analysis of serum 1H-NMR spectra
The CPMG 1H NMR serum spectra are composed of

overlapped resonances from low molecular weight metabolites

such as amino acids or lactate and T2 lipoprotein attenuated

signals. Figure 2A depicts representative CPMG 1H NMR spectra

of a PCOS patient’s serum prior to and at the end to the 30

months Pio/Flu/Met polytherapy. Clear differences can be

observed between the same serum sample prior to and after the

30 months treatment. The polytherapy induced lipoprotein

rearrangements reflected in resonances attributable to both

methylene (d 1.25 ppm) and methyl (d 0.85 ppm) terminal groups

of fatty acids contained in LDL and VLDL particles. In contrast, a

depletion of the 1,2-propanediol doublet at 1.14 ppm and the

acetate broad singlet arising at 1.91 ppm was observed after the

treatment. Also, two prominent unidentified resonances arisen in

the serum spectra of PCOS patients prior to the treatment were

decreased as a result of the polytherapy. The first resonance

corresponded to a broad singlet (multiplicity examined by 2D J-

res) at 0.85 ppm, and the second unknown resonance was

composed of three different peaks centered at 1.18 ppm which

probably do not correspond with a triplet signal because their

intensities did not match exactly with the established 1:2:1 triplet

intensity ratio.

Table 2 summarizes the statistical values, detailed moieties

assignments and structural identities of the metabolites analyzed

using CPMG 1H NMR. The relative concentration of glutamate,

1,2-propanediol, lysine, and succinate in serum samples was

markedly decreased as a result of the treatment. In contrast,

NMR signals attributed to N-(CH3)3 groups of choline-containing

molecules were increased after the treatment. In addition, the

three unknown NMR signals centered at 1.18 ppm, which match

the characteristic pattern of resonances found in the serum

spectra of patients with coronary heart disease (CHD) reported

by Jankowski et al. [25], decreased in the spectra after the

treatment. Such specific pattern of resonances corresponded to

oxidized LDL particles, as demonstrated by Jankowski and co-

workers when they compared the spectrum of lipoprotein

subfractions of patients with CHD and LDL particles oxidized

in vitro using Cu2+. To confirm the association of lipoprotein

particles with these signals we precipitated serum proteins from

untreated patients using cold-acetone and recorded the 1H-NMR

spectra on the supernatant. As showed in Figure 2B, the three

signals centered at 1.18 ppm disappeared after cold acetone

precipitation, suggesting an association with lipoprotein-related

particles. Overall, our results suggest that the Pio/Flu/Met

polytherapy has a dramatic effect on the lipoprotein profile of

PCOS patients.

Lipoprotein rearrangements after low-dose Pio/Flu/Met
intervention

To confirm that the lipoprotein profile is severely affected by the

Pio/Flu/Met treatment, we measured the size of lipoprotein

particles in serum samples prior to and at the end of the 30 months

intervention, according to our recently described methodology

[21]. In brief, the size of different lipoprotein subclasses were

estimated using up to seven Lorentzian functions to fit the methyl

peak surface obtained from 2D (bipolar-LED) diffusion edited 1H-

NMR experiments. Then, diffusion coefficients and hydrodynamic

radius through Stokes-Einstein equation for each one of these

seven functions were estimated. Figure 3A shows the average

methyl spectrum centered at 0.85 ppm after 30 months of

polytherapy in relation to the average signal at baseline. The shift

to the upfield region in the spectra after the treatment indicates a

greater contribution of the HDL subfraction to the signal of

methyl groups. Figure 3B shows the fitted spectrum of a treated

PCOS patient using the seven Lorentzian functions. Based on the

previously measured diffusion coefficients described in our

methodology [21], we estimated the hydrodynamic radius (i.e.,

size) for each of these functions. Figure 3C shows the mean

percentage of variation of the estimated radius for each function as

Table 1. Endocrine-metabolic markers, carotid IMT and abdominal fat partitioning at baseline and after 30 months of low dose
Pio/Flu/Met polytherapy.

At baseline (N = 12) At 30 months (N = 12) p-values

Age (yr) 19.860.4 -

BMI (Kg/m2) 22.361 22.561.1 0.9770

Score F&G 16.161.3 860.6 0.0001

Total cholesterol (mg/dL) 165.367.1 18568.1 0.0606

HDL-cholesterol (mg/dL) 50.862.2 68.464.2 0.0055

LDL-cholesterol (mg/dL) 102.366.1 96.965.4 0.7726

Triglycerides (mg/dL) 64.465.3 97.769.7 0.0093

Testosterone (ng/dL) 77.266 43.966.6 0.0026

SHBG (nmol/L) 37.863.8 164.368.6 4.061025

FAI 8.561.8 0.960.2 4.061025

Androstendione (ng/dL) 444.3647 276625 0.0030

DHEAS (mg/dL) 265637 202633 0.2365

Carotid IMT (mm) 0.4660.02 0.3160.01 3.061025

Subcutaneus (Sc) fat mass (cm2) 144650 151623 0.8852

Visceral (Vis) fat mass (cm2) 68617 4068 0.0783

Vis/Sc fat mass 0.3960.04 0.2060.04 0.1484

Values are mean 6 SEM; BMI, body mass index; SHBG, sex hormone-binding globulin; DHEAS, dehydroepiandrosterone-sulfate; FAI, free androgen index; IMT, Intima-
Media Thickness.
doi:10.1371/journal.pone.0029052.t001
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Figure 1. Multivariate modelling of 1N-NMR, GC/MS and LC/ESI-TOF MS data. (A) PC1/PC2 scatter scores plot and (B) PC1 loading bar plot
of PCA calculated on the within-subject matrix derived from the MSCA modelling of the 32 selected spectral regions identified in the 1H-NMR CPMG
serum spectra of untreated (red markers) and treated (green markers) PCOS patients. (C) PC1/PC2 scatter scores plot of PCA calculated on the within-
subject matrix derived from the MSCA modelling of GC/MS data. Boxplots of (D) azelaic acid and (E) 1,2-proanediol, the two metabolites
corresponding to the most discriminating features along the corresponding PC1 loadings bar plot. (F) PC1/PC2 scatter scores plot of PCA calculated
on the within-subject matrix derived from the MSCA modelling of LC/ESI-TOF MS data. Boxplots of (G) 9- and 13-HODE, and (H) caprylic acid, the two
metabolites corresponding to the most discriminating features along the PC1 loadings bar plot. P-values derived from Wilcoxon rank-summed pair-
matched comparison of untreated and treated PCOS patients. Mean 6 sem of the percentage of variation are also indicated.
doi:10.1371/journal.pone.0029052.g001
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a result of the Pio/Flu/Met treatment. The polytherapy resulted in

significantly increased radiuses associated with atherogenic small,

dense LDL (F3) and protective large HDL (F4–F6) lipoprotein

subclasses.

Mass spectrometry analysis
Our mass spectrometry-based platform involves LC-ESI-

TOF-MS and GC-single quad MS profiling followed by data
analysis with the open-source software XCMS. The relative

Figure 2. CPMG 1H NMR spectra of a representative PCOS patient’s serum. (A) Comparative spectra at baseline and after 30 months of Pio/
Flu/Met polytherapy. CPMG spin echo experiment allows filtering broad signals of lipid and lipoproteins enhancing low-molecular weight
metabolites such as amino acids, lactate and intermediate metabolites. The inset displays an expanded d (0.75–1.5 ppm) spectral region showing two
unidentified resonances characteristic of the serum spectra of untreated PCOS patients: a broad singlet arising at 0.85 ppm and three peaks centered
at 1.18 ppm. (B) CPMG 1H-NMR spectra of the same untreated PCOS patient shown in Figure 2A before and after cold acetone precipitation. After
acetone precipitation the three signals centered at 1.18 ppm were depleted, confirming the occurrence of oxidized lipoprotein-related structures in
the serum of PCOS women.
doi:10.1371/journal.pone.0029052.g002
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abundance of metabolites in serum samples was quantified

by comparing the integrated area of each feature, and

calculating the percentage of variation of such feature to indicate

the level of differential regulation prior to and at the end of the

Pio/Flu/Met intervention. Some of the most up-regulated

metabolites were identified by tandem MS/MS. Metabolite

annotations and statistical analysis are summarized in Table 2.

Metabolites identified using GC/MS were consistent with

NMR data. For example, the levels of glutamate and 1,2-

propanediol in serum were also significantly decreased after

the polytherapy. In addition, the treatment led to decreased

levels of nonanoic, glutaric and azelaic acid. Of note, the

level of azelaic acid resulted positively correlated with carotid

IMT (r = 0.92, p = 3.9661027) (Figure 4). LC/MS data

showed that the treatment resulted in significantly increased

level of caprylic acid, whereas it induced a marked reduction in

the level of 9-HODE and 13-HODE, the most abundant mono-

hydroxyderivative forms resulting from the oxidation of linoleic

acid.

Discussion

The underlying causes of PCOS are still unknown, and

therefore the medical treatment is tailored to the patient’s

symptoms. Typically, these are lowering insulin level, restoration

of fertility and regular menstruation, and treatment of hirsutism

and acne. General interventions such as low-dose flutamide,

metformin and pioglitazone in combination with an estro-

progestagen can be very beneficial because it confers further

improvements of the endocrine-metabolic state. Our metabo-

lomic analysis has revealed that the polytherapy induces an

increase in the estimated radius of small, dense LDL lipoprotein

subclasses together with a reduction in the level of oxidized

LDL particles. These macromolecular rearrangements are

associated with changes in the level of specific downstream

metabolites produced by linoleic acid peroxidation (i.e. 9-

HODE, 13-HODE). Linoleic acid represents the most abundant

polyunsaturated fatty acid in LDL particles. Oxidation of LDL

transforms linoleic acid into different hydroperoxyderivative

Table 2. Summary of the metabolites found to be significantly varied in either analytical platform after 30 months low-dose Pio-
Flu-Met polytherapy.

1H-NMR analysis (N = 12)

Metabolite d(ppm) multiplicity p-values Mean (%Variation) ±SEM Moieties assignments Comments

unknown* 0.85 s (broad) 0.0038 235619 - *oxLDL related structures

1,2-propanediol 1.14 d (6.5 Hz) 0.0010 265627 2(-CH3-)

unknown* 1.18 36s 0.0097 224627 - *oxLDL related structures

Lysine 1.69 m 0.0008 24564 d-CH2

Acetates 1.91 s 0.0008 25566 CH3

Glutamate 2.35 m 0.0008 25464 c-CH2

Succinate 1.76 s 0.0008 24265 2 (-CH2-)

Cholines-containing
molecules

3.21 s 0.0149 120622 N-(CH3)3

unknown 3.35 s 0.0010 156641 -

unknown 3.38 s (broad) 0.0010 23565 -

unknown* 3.65 m 0.0074 234610 - *oxLDL related structures

GC-MS analysis (N = 6)

Metabolite m/z ion RT(min) p-values Mean (%Variation) ±SEM EI-confirmatory m/z ions

1,2-propanediol1 117 6.05 0.0069 277617 -

Nonanoic acid 215 11.15 0.0069 26867 -

Glutaric acid1 261 11.75 0.0421 29166 -

Glutamate 186 13.37 0.0037 25869 56,84

Azelaic acid1 317 16.38 0.0021 29664 124,152,125,201,199,107,317,129,318,183,
111,204,75,97,153,55,67,185,197,81,123,171

LC/ESI-TOF MS analysis (N = 9)

Metabolite [M-H]2 RT(min) p-values Mean (%Variation) ±SEM [M] Formula d(ppm) MS/MS diagnostic ions

Caprylic acid 143.1068 23.2 0.0143 183613 144.1141 C8H16O2 6 143@20eV

9/13-HODE 295.2282 8.7 0.0143 28667 296.2357 C18H32O3 1 295,277,195@20eV

d = doublet, s = singlet, m = multiplet. Percentage of variation was calculated for each patient as the area of the spectral region or selected XCMS feature at baseline
minus the area of the same feature or spectral region after the treatment relative to the former. Values are expressed as mean 6 SEM. A negative value indicates that
levels of the corresponding metabolite resulted significantly decreased with the treatment while positive values indicate a significant increase. p-values correspond to
Wilcoxon rank-summed test and FDR correction. Statistical significance was considered for those spectral regions or features having p-corrected values,0.05 and fold
changes.2;
1Indicates those metabolites whose retention time and mass spectra were checked using pure standard references.
doi:10.1371/journal.pone.0029052.t002
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(HPODEs) isomers [26], which are subsequently reduced

and released by specific lipases from the membrane lipids as

free hydroxyoctadecadienoic acid (HODE), such as 9- and 13-

HODE, identified in our study [27] (Figure 5). In addition, the

oxidative modification and degradation of fatty acids contained in

LDL particles generates a complex array of shorter chain-length

fragments that covalently modify e-amino groups of lysine

residues of the protein moiety to generate the oxidatively modified

LDL particles [28,29,30]. Among these shorter chain-length

fragments causing structural modifications of proteins, we have

identified azelaic acid and glutaric acid [31]. It is worth mentioning

that azelaoyl phosphatidylcholine (azPC) accounts for almost

two-thirds of the oxidized phospholipids in oxLDL [32,33]. Also,

accumulation of azelaic acid and glutaric acid in plasma of diabetic

rat models and type 1 diabetic patients, respectively, has been

reported previously [34], Overall, our NMR- and MS-

based metabolomics study demonstrate that the Pio/Flu/Met

polytherapy reduces the amount of oxidized lipoprotein particles

and downstream oxidative metabolites in the serum of PCOS

patients.

Previous studies explored the effect of flutamide, metformin,

and pioglitazone in monotherapy or in combination therapy. For

example, combined Pio/Met therapy in type 2 diabetic patients

improved their specific lipid abnormalities [35,36,37,38]. Piogli-

tazone, when used both in monotherapy or in combination

therapy, modifies the atherogenic lipoprotein profile reducing

triglycerides, increasing the larger HDL2 subfractions and

improving the HDL cholesterol load [39]. Very few studies,

however, have addressed in detail the effects of pioglitazone and

metformin in LDL subfractions. Lawrence et al [40] reported a

significant fall in LDL3 mass and LDL3 proportion in overweight

type 2 diabetic patients treated with metformin alone. The total

cholesterol–to–apoB ratio (used as a surrogate marker for changes

in LDL subfraction distribution), however, remained unchanged.

In contrast, when overweight type 2 diabetic patients were treated

with pioglitazone alone, a significant increase in the cholesterol-to-

Figure 3. Lipoprotein 1H-NMR analysis. (A) Comparative bipolar-LED diffusion mean spectra of the methyl region (d 0.85 ppm) for untreated
and treated PCOS patients. (B) Bipolar LED pulse sequence 1H NMR spectra of a treated PCOS serum showing the fitting of the methyl band using the
seven Lorentzian functions derived from our previously described methodology. Black line represents the original methyl envelope and green line the
reconstructed spectrum after the fitting. (C) The estimated radiuses of lipoprotein particles in serum calculated using the seven Lorentzian functions
were compared at baseline and after 30 months of Pio/Flu/Met polytherapy.
doi:10.1371/journal.pone.0029052.g003
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apoB ratio was reported, indicating larger (and potentially less

atherogenic) LDL particles. Pioglitazone alone also induced an

increase of LDL particles diameter and a decrease in LDL density

in normolipidemic, nondiabetic patients with hypertension [41].

Finally, the treatment of Goto-Kakizaki rats (a type 2 diabetes

model) with pioglitazone reduced the levels of lipid peroxides in

plasma and the susceptibility of LDL particles to oxidation [42].

Our findings result in good agreement with previous studies and

evidence that the addition of pioglitazone to the combined

flutamide/metformin polytherapy induces an increase in the mean

diameter particles of small LDL subfractions. Besides, our

comprehensive metabolomic approach allowed us not only to

detect changes in the size of the different lipoprotein particles but

also in downstream, oxidation products such as 9- and 13-HODE,

azelaic acid and glutaric acid. Overall, our results demonstrate the

utility of metabolomics to explore the effect of medical treatments

on metabolic alterations. In this study, the combined pioglitazone/

flutamide/metformin polytherapy reverses the oxidant status of

untreated PCOS patients. Given that oxidation of LDL particles

has been suggested to be the key triggering event in the

progression of atherosclerotic lesions [43], and that the carotid

IMT is also markedly reduced after 30 months of polytherapy, we

postulate that untreated young PCOS women may suffer early

stages of atherosclerosis that could potentially have deleterious

effects at older ages. Besides, we have demonstrated that azelaic

acid levels are strongly correlated with carotid IMT. Hence we

suggest that azelaic acid can be considered as an early marker of

lipoprotein oxidation and subclinical atherosclerosis.

Figure 4. Correlation between IMT and azelaic acid levels in
serum. Positive significant correlation (r = 0.92, p = 3.9661027) be-
tween carotid IMT values and azelaic acid levels. Azelaic acid levels were
calculated as the ratio of the fragmentation peak of azelaic acid at m/
z = 317 (retention time = 16.38 min) and the peak area of the internal
standard. Red and green dots represent values of untreated and treated
PCOS patients respectively.
doi:10.1371/journal.pone.0029052.g004

Figure 5. Linoleic acid oxidation products. Formation of linoleic acid hydroperoxyderivatives (HPODEs) are further reduced to their
corresponding hydroxyderivatives (HODES). Chemical structures of linoleic acid (18:2); 9- and 13-hydroperoxylinoleic acid (9- and 13-HPODE); and 9
and 13-hydroxylinoleic acid (9- and 13-HODE).
doi:10.1371/journal.pone.0029052.g005
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