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Abstract

Chronic alcohol abuse has been linked to the disruption of executive function and allostatic

conditioning of reward response dysregulation in the mesocorticolimbic pathway (MCL). Here,

we analyzed genome-wide mRNA and miRNA expression from matched cases with alcohol

dependence (AD) and controls (n = 35) via gene network analysis to identify unique and shared

biological processes dysregulated in the prefrontal cortex (PFC) and nucleus accumbens

(NAc). We further investigated potential mRNA/miRNA interactions at the network and individ-

ual gene expression levels to identify the neurobiological mechanisms underlying AD in the

brain. By using genotyped and imputed SNP data, we identified expression quantitative trait

loci (eQTL) uncovering potential genetic regulatory elements for gene networks associated

with AD. At a Bonferroni corrected p�0.05, we identified significant mRNA (NAc = 6; PFC = 3)

and miRNA (NAc = 3; PFC = 2) AD modules. The gene-set enrichment analyses revealed

modules preserved between PFC and NAc to be enriched for immune response processes,

whereas genes involved in cellular morphogenesis/localization and cilia-based cell projection

were enriched in NAc modules only. At a Bonferroni corrected p�0.05, we identified significant

mRNA/miRNA network module correlations (NAc = 6; PFC = 4), which at an individual tran-

script level implicated miR-449a/b as potential regulators for cellular morphogenesis/localiza-

tion in NAc. Finally, we identified eQTLs (NAc: mRNA = 37, miRNA = 9; PFC: mRNA = 17,

miRNA = 16) which potentially mediate alcohol’s effect in a brain region-specific manner. Our

study highlights the neurotoxic effects of chronic alcohol abuse as well as brain region specific

molecular changes that may impact the development of alcohol addiction.
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Introduction

Alcohol use disorder (AUD) is a debilitating psychiatric illness with negative health, economic,

and social consequences for nearly 15.1 million affected adults worldwide [1]. AUD risk is

dependent upon both genetic and environmental factors, with a heritability of 0.49 [2]. The

neurobiological framework for understanding how benign, recreational alcohol use leads to

AUD follows various hypotheses [3–5], with the most commonly accepted being the cyclical

model of addiction [6]. This hypothesis provides valuable insight into the functional specializa-

tion of different brain regions that underlie behavioral maladaptations associated with AUD

[7]. However, the genetic architecture and molecular mechanisms contributing to alcohol-

facilitated neuroadaptations remain widely unknown.

Postmortem brain studies provide the unique opportunity to interrogate neurobiological

changes associated with addiction across brain regions and neural pathways [8, 9]. Among

these, the mesocorticolimbic system (MCL), which connects the ventral tegmental area

(VTA) to the prefrontal cortex (PFC), and nucleus accumbens (NAc), has proven especially

sensitive to alcohol-associated neuroadaptations [10–12]. Recent postmortem brain studies

of AUD have focused on examining gene and microRNA (miRNA) expression as the biolog-

ical intermediate between genetic variation and molecular function [13–19]. Studying

mRNA and miRNA interactions may also reveal functional relationships that mediate the

differential expression of risk AUD genes based on the role miRNAs play in the destabiliza-

tion and degradation of their target genes [20]. While single gene expression differences are

continuously explored, network approaches, such as weighted gene co-expression network

analysis (WGCNA), allows genes with correlated expression, and therefore likely related

functions, to cluster into modules that then can be analyzed to identify dysregulated biologi-

cal processes and molecular pathways associated with AUD [21]. Others and we have suc-

cessfully implemented this method to identify gene networks associated with AUD within

the MCL and other brain regions [16, 18]. While postmortem brain expression differences

alone are insufficient to infer a causal relationship between AUD and neurobiological func-

tion, the integration of genetic information via expression quantitative trait loci (eQTL)

analysis can help elucidate the regulatory mechanisms by which genetic variants associated

with AUD impact gene expression [22].

Thus, in this study, we seek to expand upon previous research by jointly analyzing two key

MCL areas, the NAc and PFC, to identify unique and shared neurobiological processes associ-

ated with alcohol dependence (AD). To achieve this, we utilize a case/control study design to

identify genes and co-expressed gene networks associated with AD. We then performed a net-

work preservation analysis to determine how well significant modules and their respective bio-

logical processes are conserved between the PFC and NAc of chronic alcohol abusers. Within

the significant modules, we identified the most connected genes (termed hubs), which were

then integrated with miRNA expression data analyzed using the same methodological frame-

work. Finally, we assessed the genetic factors that might impact the functions of risk AD genes

via expression quantitative trait loci (eQTL). The miRNA and eQTL analyses were performed

in order to identify the regulatory mechanisms by which gene networks identified in PFC and

NAc contribute to alcohol addiction.

Materials and methods

Tissue processing and RNA extraction

Postmortem brain tissue from 41 AD cases and 41 controls was provided by the Australian

Brain Donor Programs of New South Wales Tissue Resource Centre (NSW TRC) under the
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no. GSE62699, and PFC data at accession no.
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support of The University of Sydney, National Health and Medical Research Council of Aus-

tralia, Schizophrenia Research Institute, National Institute of Alcohol Abuse and Alcoholism,

and the New South Wales Department of Health [8]. Samples were excluded based on: (1) his-

tory of infectious disease, (2) circumstances surrounding death, (3) substantial brain damage,

and (4) post-mortem interval> 48 hours. Total RNA was isolated from PFC (the superior

frontal gyrus) and NAc tissue using the mirVANA-PARIS kit (Life Technologies, Carlsbad,

CA) following the manufacturer’s suggested protocol. RNA concentrations and integrity

(RIN) were assessed via Quant-iT Broad Range RNA Assay kit (Life Technologies) and Agilent

2100 Bioanalyzer (Agilent Technologies, Inc., Santa Clara, CA) respectively. Samples were

matched for RIN, age, sex (all male), ethnicity, brain pH, and PMI as part of a previous study

[18] yielding a total of 18 case-control matched pairs (n = 36). Due to our matching, the RINs

in PFC were slightly lower (mean = 4.5, ±2.04) compared to NAc (mean = 6.9, ±0.84). Previous

reports, however, have demonstrated that in post-mortem brain studies reliable results are

readily obtained even with RINs�4 [23]. For demographic information see S1 Table.

Gene expression microarray and data normalization

Gene expression was assayed using Affymetrix GeneChip Human Genome U133A 2.0

(HG-U133A 2.0) on 22,214 probe sets spanning ~ 18,400 mRNA transcripts, and the Affyme-

trix GeneChip miRNA 3.0 microarray interrogating the expression of 1733 mature miRNAs

as previously described [24]. None of the mRNA or miRNA probes were excluded based on

quality control criteria outlined in previous studies [18]. Raw probe data were GCRMA back-

ground corrected, log2 transformed, and quantile normalized using Partek Genomics Suite

v6.23 (PGS; Partek Inc., St. Louis, MO) to obtain relative gene expression values. A principal

component analysis was used to identify potential outlier samples. Only one case sample was

removed from the analyses, leaving 18 controls and 17 cases (n = 35) for both brain regions.

It has become widely accepted to verify a subset of microarray-generated gene expression

changes via an independent platform such as qPCR. Considering limited tissue availability

and our extensive use of the Affymetrix platform in the past, we did not include microarray

validation in this study which is similar to what other groups have done in the past [25]. We

have previously ‘validated’ the same array and platform in independent qPCR experiments

with a concordance between microarray and qPCR platforms exceeding 80% in the past [18].

Analysis of differential gene expression

The relationship between AD case status and gene expression in PFC and NAc was analyzed

via bidirectional stepwise regression for each gene. This approach is better suited to adjust for

the confounding effect of covariates within each transcript’s regression model than the robust

linear regression approach employed previously in the analyses of NAc [18]. Regression coeffi-

cients were calculated in RStudio (ver. 1.66) using the Stats package (ver. 3.5.1). We further

observed that brain pH, RIN, and neuropathology were the most influential covariates in the

analyses of NAc expression data, while RIN and smoking history were the two most important

covariates in the PFC expression analysis. Finally, we assessed proportion of variance explained

by each covariate via the variancePartition package (ver. 1.20) [26]. For more details on our

bidirectional stepwise regression, see S1 File.

Network analyses

WGCNA was performed using the WGCNA package in RStudio (ver. 1.66). All nominally

significant genes (p�0.05) were used to generate a signed similarity matrix via pair-wise Pear-

son correlations. The nominal significance was chosen to (1) include genes with smaller effect
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sizes, albeit true positive signals, (2) exclude genes with low disease variance, i.e., likely not

associated with AD and (3) to provide a sufficient number of genes for the network analysis.

WGCNA was performed as outlined previously by us and others [16, 18] and in S1 File. Mod-

ule eigengenes (MEs), serving as a single aggregate expression value for each of the modules,

were correlated to AD case-status and available demographic/biological covariates. To validate

WGCNA module clustering, we performed a bootstrap based resampling of 100 iterations

with replacement. Next, using WGCNA with the clusterRepro (ver. 0.9) package in RStudio,

we identified the level of module preservation between the PFC and NAc by comparing adja-

cency matrices and calculating the composite preservation statistic (Zsummary). A Zsummary >10

indicates strong evidence for network preservation, Zsummary <10 >2 indicates weak evidence

of network preservation and Zsummary <2 indicates no module preservation, as outlined previ-

ously [27].

Gene set enrichment analysis

Gene set enrichment was performed using ShinyGo (ver. 0.61) gene annotation database [28].

Gene lists from the significant AD modules from NAc and PFC were enriched using GO bio-

logical processes consisting of 15,796 gene sets from the Ensembl BioMart release 96; all p-val-

ues for significantly enriched gene sets are FDR adjusted (FDR of 5%). We further performed

cell type enrichment using the “userListEnrichment” option within the WGCNA package in R

(ver. 1.66) as previously described [18]. Statistical significance of brain-list enrichment was

determined via a hypergeometric test; all p-values were adjusted at FDR of 5%.

Hub gene prioritization

Hub genes were defined based on the strength of intramodular connectedness, (also referred

as module membership (MM)) calculated from the absolute value of the Pearson’s correlation

coefficient between module eigengene and expression values. Hub genes were prioritized for

downstream analysis based on MM of r�0.80 and a significant gene correlation with AD (at p

�0.05).

eQTL analysis and GWAS/GTEx enrichment

DNA from the postmortem brain sample was processed and genotyped as part of a larger

GWAS study [18]. Genotypes with excessive missingness (greater than 20%) and monomor-

phic for homozygous major and minor alleles were removed. We then selected only, local, cis-

eQTLs, defined as SNPs 500kb from the start/stop positions for each hub gene. Such selected

SNPs were pruned with Plink v1.9 to exclude variants in linkage disequilibrium (R2�0.7). For

eQTL detection, SNP effect on hub gene expression was analyzed via MatrixEQTL package

(ver. 2.2) in R using a linear regression model adjusting for covariates. To identify potential

disease risk eQTLs, we further tested for an interaction (SNP x AD) term between genotype

and AD status using the “modelLINEAR_CROSS” argument. A significant genotype/disease

interaction for a SNP/gene pair would indicate that the effect of genotype on expression is sig-

nificantly different in AD cases versus controls. To determine the overlap between the eQTLs

in our sample (at p�0.002) and significant GWAS hits (at p�1E-4) from previously reported

alcohol and smoking GWAS [29, 30], we employed the Simes enrichment test [31]. We further

tested the overlap between eQTLs obtained from our analyses against eQTLs obtained from

GTEx consortium [32]. The significance of this overlap was assessed via a Fisher’s exact test at

p�0.05 threshold. See S1 File for more details.
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MiRNA/mRNA target prediction

The relationship between significant miRNA and mRNA modules from each brain region

was examined by performing a Pearson’s correlation on the miRNA and mRNA module MEs

using the Stats package (ver. 3.5.1) in RStudio. Significant miRNA/mRNA ME correlations

(at FDR of 5%) were followed up with a more detailed series of analyses, in which individual

mRNA hub and miRNA expression was correlated via Pearson’s correlations using the miR-

LAB package in R (ver. 1.14.3).

Results

AD case/control differentially expressed genes

When we assess each covariate’s contribution to the overall gene expression variance, we see

that the impact of a given covariate on gene expression is highly variable across individual

genes. Thus, our approach to use a stepwise regression to select for the most influential set of

covariates that contribute to the highest proportion of the variance and hence minimize model

overfitting. The covariates showing the highest mean contribution to the variance were also the

same factors that were most frequently incorporated into our regression models (S2 Table).

The bidirectional stepwise regression revealed 3,536 and 6,401 differentially expressed genes

(DEG) in PFC and NAc, respectively, at the nominal p�0.05, of which 1,279 DEG were shared

between the two regions. Among these, 603 and 494 genes were downregulated and upregu-

lated, respectively, and 182 genes were expressed in opposite directions between the two

regions. Within the DEG in NAc, nine genes (ADH1B, ADH1C, H2AFZ, EIF4E, FTO, DRD2,

SLC39A8, and VRK2) were implicated in the largest and most recent AD GWAS [33]. At FDR

of 5%, we identified 1,841 DEG from the NAc and 70 from the PFC. The miRNA regression

analysis identified 430 and 170 nominally significant miRNAs in the NAc and PFC, respec-

tively, with 168 miRNAs differentially expressed in NAc at FDR of 5% with no miRNA reaching

FDR significance in PFC. To maintain an identical analytical pipeline for both brain regions

and optimize the selection for the most influential confounding factors, we co-jointly analyzed

the PFC expression data generated in this study with our previously published NAc expression

data [18]. We observed a highly significant overlap between the differentially expressed genes

identified in NAc from both studies (Fisher’s exact test, p = 1E-10). For detailed information

about regression coefficients, the regression models used for each transcript, partitioning of

variance, and frequency of covariates incorporated into the analysis, see S2 Table.

Gene network module clustering

In NAc, at a Bonferroni adjusted p�0.05, we identified 6 modules significantly correlated

with AD case status (Fig 1A). Among these, NAcdarkgreen was the only negatively correlated

module, whereas NAcdarkorange, NAcpurple, NAcmagenta, NAcskyblue, and NAcgreenyellow were all

positively correlated with AD cases relative to controls (Fig 1B). In PFC, we identified 3 mod-

ules significantly correlated to AD at Bonferroni adjusted p�0.05 (Fig 1C). Of these, the

PFCpink module was negatively correlated, while PFCdarkred and PFClightgreen were positively

correlated with AD cases (Fig 1D). To assess the validity of these network modules, we per-

formed a bootstrap resampling that showed consistent module clustering when compared to

the original gene networks (S2 File).

NAc and PFC network preservation

We performed a network preservation analysis to determine how well co-expressed networks

from the PFC are conserved in NAc and vice versa. We focused primarily on the Zsummary and
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Median Rank network preservation statistics because Zsummary estimates network overlap by

also taking into consideration network connectivity. Median Rank being invariant to module

size, provides a more accurate estimate of network preservation since larger networks tend

to be more conserved due to their size alone. We observed that NAcdarkorange and NAcpurple

Fig 1. WGCNA clustering and module-trait relationships. A) NAc cluster dendrogram and module assignment with dissimilarity based on

topological overlap. The 6,401 selected transcripts were clustered into 23 distinct modules. B) NAc module-trait relationship heatmap correlating

(Pearson’s) module MEs with AD diagnosis and covariates. Uncorrected p-values are given in parenthesis below each correlation coefficient. 6 AD

associated significant modules (NAcdarkgreen, NAcdarkorange, NAcgreenyellow, NAcmagenta, NAcskyblue, and NAcpurple,) were identified after Bonferroni

correcting p-values (� = p�0.05). C) PFC cluster dendrogram and module assignment. The 3,536 selected transcripts were clustered into 17 different

co-expressed modules. D) PFC module-trait relationship heatmap created as previously described. We identified 3 AD associated modules (PFCpink,

PFCdarkred, and PFClightgreen) after Bonferroni correcting p-values (� = p�0.05).

https://doi.org/10.1371/journal.pone.0243857.g001
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showed little to no network preservation (Zsummary <2), NAcskyblue, NAcdarkgreen, PFCdarkred,

and PFCpink showed moderate levels of network preservation (2< Zsummary <10), and NAcgree-

nyellow, NAcmagenta, and PFClightgreen showed high levels of network preservation (Zsummary >10)

(Fig 2A and 2B). For detailed information about the individual density and connectivity statis-

tics that were used to create the composite network preservation statistics, see the S3 Table.

Identifying biological processes and cell-type enrichment of the AD

significant modules

To gain perspective on the biological underpinnings of the significant gene networks from

NAc and PFC, we performed a gene-set enrichment analysis, GO biological processes annota-

tion (ShineyGO ver.61) and neuronal cell type enrichment for the two regions. As one of our

Fig 2. Network preservation and gene-set enrichment. A) NAc Z-summary statistic calculated as an aggregate of network preservation statistics

(Preservation level: high = Z>10; moderate = 2<Z<10; low = Z<2) with color corresponded top-10 most significant (-log10(FDR) transformed) GO

biological processes for significant AD associated modules. B) PFC Z-summary statistic and corresponding GO biological processes term (-log10(FDR)

transformed). C) Venn-diagram of the shared transcripts from highly preserved NAc modules (NAcmagenta and NAcgreenyellow) and their corresponding

significant PFC modules (PFClightgreen and PFCdarkred). D) Brain cell type gene-set enrichment from the NAc and PFC (-log10(FDR) transformed).

Colors correspond with their respective modules (NAcgreenyellow, NAcmagenta, NAcdarkgreen, PFCpink, PFCdarkred, and PFClightgreen) with single gene sets

enriched in modules.

https://doi.org/10.1371/journal.pone.0243857.g002
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aims was to identify unique and shared gene networks associated with AD in NAc and PFC,

we focused our analyzes on NAc modules that were highly (i.e., NAcgreenyellow and NAcmagenta)

and poorly (i.e., NAcdarkorange, and NAcpurple) preserved in PFC. NAcgreenyellow and NAcmagenta

are primarily associated with the immune response process (FDR�0.05) believed to be a

consequence of neurotoxicity caused by chronic alcohol abuse (Fig 2A). These modules are

enriched among microglia and astrocyte cell types (FDR�0.05), which is expected based on

the functional properties of the glial cells (Fig 2D). The poorly preserved NAc modules showed

enrichment within gene-sets associated with cilia-based cell projection and cell morphogenesis

(FDR�0.05) (Fig 2A).

Corollary, we performed gene-set enrichment analysis on PFC modules, which were highly

and poorly preserved in NAc. (Fig 2B). Similar to the NAcgreenyellow and NAcmagenta modules,

the highly preserved PFClightgreen module was associated with immune response processes

(FDR�0.05) and significant microglial cell type enrichment (FDR�0.05) (Fig 2D). PFCdarkred

and NAcmagenta, were moderately preserved with each other (Fig 2C) with PFCdarkred showing

astrocyte cell type enrichment (Fig 2D). Interestingly, a class of genes in one family of immune

response proteins, metallothioneins (MTs), contained in both the PFCdarkred and NAcmagenta

modules, were differentially expressed in both brain regions between cases and controls (Fig 3).

Fig 3. Metallothionein gene expression. Relative expression of 8 metallothionein cluster genes (MT1E, MT1F, MT1G,

MT1H, MT1HL1, MT1X, MT2A, and MT3) comparing AD case to controls for both the NAc and PFC. P-values

presented for each transcript are based on our bidirectional stepwise regression.

https://doi.org/10.1371/journal.pone.0243857.g003

PLOS ONE Network preservation analysis from the NAc and PFC of chronic alcohol abusers

PLOS ONE | https://doi.org/10.1371/journal.pone.0243857 December 17, 2020 8 / 19

https://doi.org/10.1371/journal.pone.0243857.g003
https://doi.org/10.1371/journal.pone.0243857


For the complete gene set enrichment analyses for all modules associated with AD in NAc and

PFC see S4 Table. Since hubs are considered the most important genes for preserving the net-

work’s integrity, when these analyses were further limited only to the hub genes, not surpris-

ingly, we captured the same GO terms and biological process that we observed from the entire

module gene lists (S4 Table).

Hub genes of potential biological significance

To identify candidate hub genes of potential biological significance, we focused on the rela-

tionship between intramodular connectivity (i.e., module membership (MM)) and gene signif-

icance (GS) to AD case status (S1 File). Of the 459 genes from the 3 significant PFC modules

and the 6 significant modules in NAc, we identified 99 and 433 unique hub genes with MM

�0.80, respectively. We focus on the hub genes due to their biological relevance to AD and

predicted role as drivers of expression for the entire module [34]. For full PFC and NAc

transcript information regarding individual MM and GS see S5 Table.

Detection of miRNA gene network modules in NAc and PFC

In NAc and PFC, we identified miRNA modules with varying levels of significant correlation to

AD case status. The NAc miRNA data revealed 430 nominally significant loci, which clustered

in 5 modules ranging from 18 (NAcmigreen) to 259 (NAcmiturquoise) loci in size, of which, at

Bonferroni adjusted p�0.05, three miRNA modules remained significantly correlated to AD

(NAcmiyellow, NAcmibrown, and NAcmiturquiose). Of these, NAcmiyellow and NAcmibrown were neg-

atively correlated, whereas NAcmiturquoise was positively correlated within AD (Fig 4A). The 170

miRNA transcripts from the PFC clustered into 6 modules ranging in size from 9 (PFCmired) to

55 miRNA transcripts (PFCmiturquoise), of which PFCmiyellow and PFCmired, remain significant

at Bonferroni adjusted p�0.05; both miRNA modules were negatively correlated with AD (Fig

4D). For further details on the miRNA WGCNA from both brain regions, including individual

transcript MM and GS values, please refer to S6 Table.

MiRNA networks show unique patterns of regulation

In an attempt to identify a higher order system, network levels of interactions, existing between

the AD significant mRNA and miRNA modules we correlated their respective module MEs.

From the NAc, we identified 2 significant positive mRNA/miRNA ME correlations and 4 neg-

ative ME correlations at Bonferroni adjusted p�0.05 (Fig 4B). To better understand the bio-

logical function of miRNA/mRNA interacting networks at specific loci, we honed on the

interaction between individual miRNA/gene pairs. After correlating individual mRNA hubs

and miRNA, we identified 1,801 significant mRNA/miRNA interactions (FDR�0.10) span-

ning 318 genes and 68 miRNA loci (S7 Table). Interestingly, we observed 97% (35/36) of the

purple mRNA module hub genes to be negatively correlated with either mir-449a or mir-449b

from NAcmibrown (Fig 4C). In PFC, we identified one positive mRNA/miRNA ME correlation

and 3 negative correlations at Bonferroni adjusted p�0.05 (Fig 4E). Individual mRNA/miRNA

interaction analysis from the PFC revealed 6 mRNA/miRNA interactions (FDR of�0.10)

spanning 6 genes and one miRNA transcript, mir-485-5p. For a full list of individual mRNA/

miRNA interactions, see S7 Table.

Brain region specific eQTL regulation of differential gene expression

In NAc, we detected a total of 36 mRNA eQTLs spanning 17 unique genes and 9 miRNA eQTLs

covering 4 different miRNA (FDR�0.10). Of the 17 hubs with significant eQTLs, 7 are from
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NAcdarkgreen (VRK1, INPP4A, HMP19, DKK3, PCDH8, RNF34, and RASGRP1), 4 from NAcgree-

nyellow (FCGR3A, CTSS, AASS, and RNASE4), 3 from NAcdarkorange (DNALI1, CCDC81, and

SPAG6), 2 from NAcpurple (HIVEP1 and GNAS), and one from NAcmagenta (VAMP5). Within

the PFC we identified 34 eQTLs spanning 16 unique genes and 18 miRNA covering 7 different

miRNA transcripts (FDR�0.10). Of these, 11 genes are from PFClightgreen (SERPINH1,

Fig 4. MiRNA WGCNA and mRNA:miRNA interaction. A) NAc miRNA cluster dendrogram and module assignment with module-trait relationship

heatmap, both as previously described in Fig 1. B) Bonferroni adjusted significant (p�0.05) NAc mRNA/miRNA module ME correlations (Pearson’s).

Alcohol and control groups are separated by color to emphasize sample clustering. C) Significant (FDR�0.05) correlation (Pearson’s) between mir-449a

and selected mRNA transcripts from the low network preserved NAcpurple module. D) PFC miRNA cluster dendrogram module assignment along with

module-trait relationship heatmap. E) Bonferroni adjusted significant (p�0.05) NAc mRNA:miRNA module ME correlations (Pearson’s).

https://doi.org/10.1371/journal.pone.0243857.g004
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CDKN1A, PNP, EMP1, FKBP5, IL4R, TNFRSF10B, RTEL1/TNFRSF6B, SERPINA1, MAFF, and

SERPINA2) and 5 from PFCpink (GAD2, ACTL6B, KCNF1, SEZ6L, and EFNB3). Among our

significant eQTLs, we highlight two examples: FCGR3A:rs12087446 (NAc p = 3.24E-07; PFC

p = 0.002) from the highly conserved NAcgreenyellow module and DNALI1:rs12119598 (NAc

p = 1.94E-09; PFC p = 0.150) from the poorly conserved NAcdarkorange module. The brain region

specific eQTL impact on the expression of these two genes suggests that different genetic mecha-

nisms are likely at play in NAc and PFC that may further shed light on the different behavioral

measures encoded by the two brain regions (Fig 5). For the full list of cis-eQTL, please refer to

S8 Table. To highlight the potential clinical importance of our findings and provide functional

support for previous genetic studies, we also tested for enrichment of our clinically relevant

eQTLs (i.e., testing only SNPs that showed a significant (SNP x AD) interaction term) and

previously published GWAS of addiction phenotypes. While the overlap did not reach formal

significance, likely due to the smaller GWAS sample size, we nevertheless observed suggestive

enrichment, i.e., GSCAN drinks per week p = 0.195; GSCAN smoking initiation p = 0.251;

Fig 5. Cis-eQTL analysis. A) Cis-eQTL boxplot directly comparing AD case/control designation with the FCGR3A:

rs12087446 eQTL from the high network preservation NAcgreenyellow/PFClightgreen module and the DNALI1:rs12119598
eQTL from the low preservation NACdarkorange module, the relative expression is presented on the y-axis and SNP/

genotype on the x-axis. B) Alternative boxplot visualization of the same cis-eQTL directly comparing differences

between brain regions.

https://doi.org/10.1371/journal.pone.0243857.g005

PLOS ONE Network preservation analysis from the NAc and PFC of chronic alcohol abusers

PLOS ONE | https://doi.org/10.1371/journal.pone.0243857 December 17, 2020 11 / 19

https://doi.org/10.1371/journal.pone.0243857.g005
https://doi.org/10.1371/journal.pone.0243857


GSCAN smoking cessation p = 0.147; and COGA+Irish p = 0.299. Finally, we attempted to

replicate all eQTLs in our study, irrespective of their potential disease relevance, in the GTEx

database using the Fisher’s exact test. Interestingly, we observed a significant overlap between

our eQTLs detected in the PFC (n = 2,368, 6.6% of eQTLs tested, p = 0.003), but not in the NAc

(n = 5,436, 3.4% of eQTL tested, p = 1).

Discussion

AUD continues to be a growing public health concern with a complex and poorly understood

etiology as recreational alcohol use becomes habitual and problematic. The broad goal of this

study is to identify the neurobiological processes associated with chronic alcohol use via ana-

lyzing brain region-specific gene networks from the NAc and PFC. To understand the human

behavior leading to addiction, it is important to investigate how chronic alcohol use impacts

expression changes in the evolutionarily newer cortical areas, in contrast to the older, more

evolutionarily conserved subcortical brain regions [35]. Here, we attempt to understand the

neurobiological underpinnings of alcohol specific reward conditioning in the NAc and disrup-

tion of executive function within PFC [6] through identifying gene networks and biological

processes associated with AD that are conserved or unique to each brain region. Additionally,

we assessed the relationship between the miRNA and mRNA networks significantly correlated

to AD based on the miRNA functions to induce mRNA degradation and/or translational inhi-

bition. Finally, we tested the impact of genetic variants on gene expression in a disease depen-

dent manner via AD-mediated eQTL analysis.

Our network analyses are consistent with previously published reports by others and us,

showing the upregulation of immune response mechanisms among AD cases as a byproduct

of alcohol’s neurotoxic effects [36]. The immune-related modules show significant enrichment

for both astrocyte and microglial cell types, which has been validated by previous alcohol stud-

ies and the known immune functions of astrocyte and microglia in the brain [37, 38]. More

importantly, we observed generalized up-regulation of immune response mechanisms within

both the PFC and NAc, suggesting that the neurotoxic response to chronic alcohol use is ubiq-

uitous across cortical and subcortical brain regions. Interestingly, in both brain regions, we

further identified differentially expressed genes in the metallothionein cluster (MT1HL1,

MT1H, MT1X, MT1E, MT1G, MT1F, MT2A, and MT3). The metallothionein cluster is pri-

marily responsible for maintaining the cellular homeostasis of zinc and copper while also regu-

lating oxidative stress [39]. Zinc is an essential catalytic cofactor for alcohol metabolism via

alcohol dehydrogenase [40]. Free or “chelated” zinc ions (Zn2+) are seen in abundance in the

brain, specifically at ionotropic glutamate receptors such as the NMDA receptor family. The

interaction between Zn2+ and NMDAR activity has shown to be an important contributor to

synaptic plasticity through regulating postsynaptic density assembly [41]. It is well understood

that chronic alcohol abuse leads to varying degrees of organ-wide zinc deficiency [42]; how-

ever, the neurobiological consequences of how zinc deficiency in the brain contributes to AD

neuropathology is poorly understood. We believe this interaction between chronic alcohol

abuse, metallothionein expression, zinc deficiency, and synaptic plasticity is an important ave-

nue for future research that should be explored.

In addition to identifying dysregulated immune response mechanisms, we validate recent

studies showing differential expression among signaling and neurodevelopmental processes

within AD cases [13, 15, 16, 18]. However, these processes are less conserved between cortical

and subcortical regions, likely due to the different neuronal composition and functional prop-

erties of the PFC and NAc [43]. Interestingly, two NAc modules that primarily associate with

cilium assembly (NAcdarkorange) and cellular localization/morphogenesis (NAcpurple) show
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limited network preservation within the PFC. There has been increasing evidence suggesting

primary cilia aid in facilitating extrasynaptic signaling during adult neurogenesis [44, 45], an

important aspect of addiction related extracellular membrane plasticity [46]. For example,

GRP88, a g-protein coupled receptor and primary cilia enriched gene [47], was linked to

increased alcohol seeking behaviors in knock out (KO) mice models [48], further reinforcing

the importance of primary cilia in AUD etiopathology. The cilium assembly genes enriched in

NAcdarkorange, were shown to be associated with axonemal dynein assembly (DNAAF1, DNAI2,

and DNALI1). A recent gene expression study in adolescent rat hippocampus identified

increased expression of two dynein associated genes (dnai1 and dnah5) [49]. One explanation

for increased expression of primary cilia associated genes in the NAc relative to the PFC is

related to potential discrepancies in adult neurogenesis between subcortical vs cortical brain

regions. It is well understood that most adult neuronal stem cells originate in the ventricular–

subventricular zones (V-SVZ) and migrate to adjacent cortical and subcortical brain regions

as neuroblasts to promote neurogenesis [50]. A recent study showed increased adult neurogen-

esis of medium spiny neurons within the NAc and that the migration and incorporation of

new neurons was experience-based [51]. We believe that the increased expression of genes that

encode for the cilia assembly complex may reflective of experience mediated neurogenesis of

medium spiny neurons in NAc, except being driven by chronic alcohol consumption instead

of pain. These new neurons formed in response to alcohol use may play an important role in

the reward response deficits we often associate with addiction and AUD [4].

Other interesting findings arise from our mRNA/miRNA interactions, e.g., when correlat-

ing the MEs from mRNA and miRNA modules, we see distinct patterns between cases and

controls within both brain regions. Based on the known function of miRNAs in regulating the

expression of target mRNAs [52] we can infer these significant miRNA networks may serve as

a driving contributor for differential network expression between AD cases and controls. Spe-

cifically, 97% (35/36) of the hub genes from the NAcpurple module were significantly negatively

correlated with either mir-449a or mir-449b. Mir-449a/b have primarily been studied in the

context of spermatogenesis and cellular proliferation in cancer [53–55]. Based on the mRNA-

miRNA correlations, our study suggests that mir-449a/b cluster has additional functions

related to cellular proliferation in the brain. Among the genes correlated with mir-449a in the

NAc, ELAVL4, DPYSL3, and KCNJ6 have shown significant associations with AD in other

expression, and genetic association studies [19, 56, 57], as well as being implicated in other

substance use disorders [58–61].

In an attempt to understand the causal nature of the gene networks associated with AD, we

integrated genetic information via eQTL analysis. We were able to detect a significant number

of mRNA and miRNA cis-eQTLs from both brain regions. We selected highly significant

eQTLs (FCGR3A (Fc fragment of IgG receptor IIIa):rs12087446 and DNALI1 (dynein axonemal

light intermediate chain 1):rs12119598) based on FCGR3A and DNALI1’s role as network hubs

to highlight the interaction between AD case status and eQTL while also demonstrating brain

region-specific eQTL variation. FCGR3A is one of the low-affinity Fc receptor genes important

for NK cell-mediated antibody-dependent cytotoxicity [62] and a hub gene from our highly con-

served NAcgreenyellow and PFClightgreen modules. The consistent effect of rs12087446 on FCGR3A
expression between both brain regions suggests the genetic impact on immune response pro-

cesses might also be ubiquitous across the brain of chronic alcohol users. Differential FCGR3A

expression was recently shown to be associated with both alcohol preference and binge-like

behaviors in the ventral tegmental area of rats [63]. In contrast, DNALI1, a hub gene in the cil-

ium assembly enriched NAcdarkorange module, is under the genetic control of specific eQTL only

in NAc but not in PFC, suggesting that changes to cilia organization due to alcohol abuse might

be under different genetic control between the two brain regions. We observed suggestive

PLOS ONE Network preservation analysis from the NAc and PFC of chronic alcohol abusers

PLOS ONE | https://doi.org/10.1371/journal.pone.0243857 December 17, 2020 13 / 19

https://doi.org/10.1371/journal.pone.0243857


evidence for enrichment between our eQTLs and previously published GWAS of alcohol or

other addiction phenotypes, such as smoking. We believe this is primarily due to three factors:

1) low statistical power within our sample to detect genetic signals that would otherwise appear

in large-scale GWAS studies, 2) our selective study design focusing only on potentially clinically

relevant eQTLs, and 3) the presence of variants with a lower MAF in the GWAS potentially not

detectable in our dataset. We further successfully replicated our eQTLs in the GTEx database for

PFC, but not NAc. One possible explanation is that the increased number of DEG in the NAc

relative to PFC with the fact GTEx does not include AD diagnosed brains in their analyses [64]

effectively limits our ability to replicate GTEx eQTLs based on significant and potential subtle

non-significant expression changes among AD cases.

Conclusion

The strength of this study lies in our ability to compare and contrast expression changes

between subjects with AD and controls within two different brain regions. We successfully

identified gene networks and biological processes from both brain regions that were vali-

dated by previous AD studies as well implicated a novel biological process (cilia assembly)

and gene family (metallothionein cluster) as potentially important for the development of

AD. Our mRNA/miRNA interaction analysis pinpointed mir-449a/b cluster as an important

regulator of differentially expressed genes between AD cases and controls. Finally, via

our eQTL analysis, we provided evidence that mRNA and miRNA expression differences

between AD cases and controls might be under brain region specific genetic control. While

our sample size could be perceived as a limitation, we mitigated this by utilizing WGCNA

to aggregate differentially expressed genes into biologically relevant modules with single

expression values, effectively increasing our power to detect significant AD associations

within a multivariate framework. Additionally, to increase the power of our study, consider-

ing the more prevalent and heavier drinking patterns in men, we assessed the molecular

processes of alcohol drinking in male subjects only. While we recognize the importance of

comparing the molecular pathology of drinking between the two sexes, we would like to

highlight observations from genetic epidemiological studies showing male and female sub-

jects to have a similar genetic predisposition to alcohol abuse [65]. We further recognize that

a number of our significant AD associated modules in PFC were also nominally correlated

to neuropathology (p�0.05). This is not entirely unexpected, given the known neuropatho-

logical impact of chronic alcohol abuse [66]. Finally, while we understand that the lower

RINs from the PFC can be seen as confounding factor, studies have suggested that reliable

data can still be obtained from postmortem brain tissue even with suboptimal RNA quality

[67–69]. However, our careful analytical design to adjust for the impact of RIN on gene

expression maintains the robustness of our results even in the presence of lower RINs.

Overall, the broader impact of our findings is the understanding that chronic alcohol con-

sumption can reinforce addiction behaviors through dysregulating different biological process

across various brain regions. This information could potentially lead to more focused therapies

for AUD by targeting important brain regions specific neurobiological pathways involved in

the development of alcohol addiction. While our results point to certain biological processes

that differentiate between the PFC and NAc, these findings require replication in an indepen-

dent postmortem brain samples spanning other cortical and subcortical brain regions. Addi-

tional support for the postmortem brain findings presented here can also be obtained by

studying ethanol activity in animal models or neuronal cell cultures. Increased research within

the methodological framework of our study can help validate our findings and identify biologi-

cal processes and genes that play the most significant role in the development of AUD.
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