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Abstract 
 
Cognitive control, the ability to adapt thoughts and actions to shifting contexts and goals, 
is composed primarily of three distinct yet interrelated components: Inhibition, Shifting, 
and Updating. While prior research has examined the nature of different cognitive 
components as well as their inter-relationships, fewer studies examined whole-brain 
connectivity to predict individual differences for the three cognitive components and 
associated tasks. Here, using the Connectome-based Predictive Modelling (CPM) 
approach and open-access data from the Human Connectome Project, we built brain 
network models to successfully predict individual performance differences on the Flanker 
task, the Dimensional Change Card Sort task, and the 2-Back task, each putatively 
corresponding to Inhibition, Shifting, and Updating. We focused on grayordinate fMRI data 
collected during the 2-Back tasks after confirming superior predictive performance over 
resting-state and volumetric data. High cross-task prediction accuracy as well as joint 
recruitment of canonical networks, such as the frontoparietal and default-mode networks, 
suggest the existence of a common cognitive control factor. To directly investigate the 
relationships among the three cognitive control components, we developed new measures 
to disentangle their shared and unique aspects. Our analysis confirmed that a shared 
control component can be well predicted from functional connectivity patterns densely 
located around the frontoparietal, default-mode and dorsal attention networks. In 
contrast, the Shifting-specific and Inhibition-specific components exhibited lower cross-
prediction performance, indicating their distinct and specialized roles. Notably, the 
Updating-specific component showed significant cross-prediction with the general control 
factor, suggesting its central role in cognitive control. Given the limitation that individual 
behavioral measures do not purely reflect the intended cognitive constructs, our study 
demonstrates the need to distinguish between common and specific components of 
cognitive control. 
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Introduction 
 
Cognitive control, also referred to as executive functions or executive control, is the 
process of aligning one’s cognition and behavior with current goals. Cognitive control may 
be categorized into three main processes (Miyake et al., 2000; Lehto et al., 2003; Diamond, 
2013): Inhibition, Shifting, and Updating. Inhibition involves actively suppressing the 
dominant response and is assessed through tasks like the Stroop task (Stroop, 1935), the 
Flanker task (Eriksen & Eriksen, 1974), and the Stop Signal task (Logan & Cowan, 1984). 
Shifting, sometimes called cognitive flexibility, occurs when individuals switch between 
multiple tasks, measured through tasks like the Wisconsin Card Sorting Test (Berg, 1948), 
the Dimensional Change Card Sort (Frye et al., 1995), and the Color/Shape Switching tasks 
(Hayes et al., 1998). Lastly, Updating involves continually monitoring pertinent information 
and integrating it into our finite working memory, which can be measured via tasks like the 
N-Back task (Kirchner, 1958), the Sternberg task (Sternberg, 1966), and the backward Corsi 
task (Isaacs & Vargha-Khadem, 1989). 
 
The relationship between different forms of cognitive control has been extensively studied 
in behavioral experiments. Using large batteries of cognitive tasks, Miyake and colleagues 
(2000) originally discovered that the performances of all tasks can be loaded onto the three 
factors: Inhibition, Shifting, and Updating. However, these three factors are 
intercorrelated. In an attempt to refine the model, Friedman and Miyake (2017) replaced 
the original Inhibition factor with a general control factor that is highly loaded by all tasks, 
resulting in a model with a better fit and more orthogonal factors, which they termed as the 
"Unity and Diversity" of executive functions (Friedman & Miyake, 2017). The different 
control processes are interdependent. For instance, people with superior working memory 
performance are also more likely to achieve a higher Inhibition score, suggesting that 
successful working memory may rely on actively inhibiting distractors irrelevant to one’s 
goals (Conway et al., 2001; Mj & Rw, 2003; Unsworth et al., 2004; Kane et al., 2007). 
Similarly, Shifting also displays a positive relationship with working memory (Baddeley et 
al., 2001; Emerson & Miyake, 2003) and Inhibition (Mayr & Keele, 2000; Koch et al., 2010). 
 
Beyond the behavioral level, researchers have long strived to uncover the neural systems 
underlying each cognitive control component. Earlier lesion studies indicated that damage 
to the prefrontal cortex may impair performance in different control tasks, but the exact 
anatomical locations differed across studies and the type of process targeted (Aron et al., 
2003, 2004; Floden & Stuss, 2006; Barbey et al., 2013). Empirical studies and meta-
analyses of fMRI data have also revealed multiple brain regions such as the lateral 
prefrontal cortex, posterior parietal cortex, and dorsal anterior cingulate cortex with both 
similar and different roles across various cognitive control components (Assem et al., 
2024; Derrfuss et al., 2005; Kim et al., 2012; McNab et al., 2008; Niendam et al., 2012; 
Rodríguez-Nieto et al., 2022). Discrepant results across studies may lead to different 
conclusions being drawn about the relationship between control processes, such as the 
superordinate role of the Updating component (Lemire-Rodger et al., 2019; Rodríguez-
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Nieto et al., 2022) or the existence of a core cognitive control network in the brain 
(Niendam et al., 2012).  
 
While univariate fMRI analyses inform us about the brain regions whose activity is 
modulated by task conditions, connectivity-based approaches enable us to peek into the 
interaction between different brain regions and how they may be related to individual 
differences in task performance (Friedman & Robbins, 2022a; Menon & D’Esposito, 2022). 
In the realm of cognitive control, researchers have shown that the prefrontal cortex's 
global functional connectivity as well as structural connectivity profiles can predict one’s 
cognitive control ability (Cole et al., 2012; Smolker et al., 2015). Furthermore, the 
performance in the three types of control tasks may correspond with different sets of 
functional connectivity profiles: Inhibition was highly related to the connectivity strength 
between the frontoparietal and cingulo-opercular networks (Deck et al., 2023); Shifting 
scores were correlated with the strength of connectivity within the cingulo-opercular 
network (Reineberg & Banich, 2016), between the default mode and the dorsal attention 
networks (Deck et al., 2023), and between the medial frontal and default mode networks 
(Chén et al., 2019). Updating performance was reflected in the frontoparietal network 
connectivity profiles (Reineberg & Banich, 2016), and between the angular gyrus and 
ventral attention network (Reineberg et al., 2015). Another insightful study found that 
connectivity between the cerebellum and the frontoparietal network predicts a general 
control factor score (Reineberg et al., 2015), but their analysis was limited to resting-state 
data, and the use of an ICA approach restricted their focus to highly synchronized brain 
regions. 
 
In the current study, we aim to characterize the unity and diversity of cognitive control 
processes by relating individual differences to their brain-wide connectome profiles. To 
achieve this, we employed an entirely data-driven approach, the Connectome Predictive 
Modeling (CPM) method (Finn et al., 2015; Shen et al., 2017), to extract the relevant 
functional connectivity features of distinct cognitive control processes. CPM has 
previously shown exceptional capability in utilizing brain connectomic features to predict 
cognitive performance such as sustained attention (Rosenberg et al., 2016; Yoo, 
Rosenberg, Kwon, Lin, et al., 2022), fluid intelligence (Finn et al., 2015; Yoo et al., 2019), 
creativity (Beaty et al., 2018), and working memory (Avery et al., 2020). In this study, we 
extend the application of CPM to study the unity and diversity of the cognitive control task 
measures of Inhibition, Shifting, and Updating.  
 
Both the behavioral scores and neuroimaging data used in this project were obtained from 
the open-access Human Connectome Project (HCP) dataset (Van Essen et al., 2012). We 
used their Flanker task as a measure for Inhibition, the Card Sort task for Shifting, and 2-
Back tasks for Updating. For our analysis, while both resting-state and 2-Back task data 
were used to build CPMs, we focused our analyses on the latter due to its higher data 
quality (Huijbers et al., 2017), greater test-retest reliability (Kristo et al., 2014; Rosazza et 
al., 2014; Wang et al., 2017), and superior predictive accuracy (Greene et al., 2018, 2020; 
Yoo et al., 2018).  
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Using CPM, we explored the unity and diversity of cognitive control from two distinct 
perspectives. First, we developed CPM models based on the three raw cognitive control 
measures. By evaluating the models' within-task and cross-task predictive prediction 
performance, we could infer the separability and interdependence of different cognitive 
control components. That is, the more a model’s prediction generalize from one task to 
another, the more they can be viewed as overlapping. Additionally, by examining the 
underlying connectome profiles, we assessed the differential contributions of canonical 
functional networks to each control component. The second approach addressed the 
limitation that individual behavioral measures may not purely reflect the intended cognitive 
constructs. We developed measures by extracting or regressing out common variance to 
specifically target the shared and distinct features of the three cognitive control 
components. We then applied CPM analyses to these refined measures to uncover their 
connectome foundations. 
 
 
Method 
 
FMRI Data 
The data for this project comes from the WU-Minn Human Connectome Project (HCP) (Van 
Essen et al., 2012) S1200 Release of February 2017. Among the various neuroimaging 
modalities available in the dataset, we specifically used the 3T resting-state fMRI scans 
and 2-back task fMRI data. Detailed scanning parameters for all fMRI sessions are 
available in Van Essen et al (2012). 
 
Our initial filtering process retained subjects who had full completion of the resting-state 
fMRI sessions, a set of task fMRI sessions (Working Memory, Social, and Emotion tasks; 
The latter two were not used in this project.) as well as the full set of out-of-scanner NIH 
Toolbox tasks (NIH Toolbox®; n=445 removed from this step).  We discarded subjects 
displaying significant head motion (≥ 3mm translation, ≥3° rotation, and ≥0.15 mm mean 
frame-to-frame displacement), or those missing head movement parameter files for any of 
the resting-state or task fMRI runs (n=2 removed). Furthermore, we excluded subjects with 
fMRI data flagged for known defects by the HCP team (n=11 removed). Consequently, our 
final sample comprised n=748 (female: 418) subjects. Our sample size is comparable or 
even larger than that of previous CPM studies (e.g., (Avery et al., 2020; Rosenberg et al., 
2016)), providing sufficient statistical power to conduct functional connectivity-based 
prediction.  
 
For each included participant, two resting-state sessions were available, collected across 
two separate days. Each session consists of two runs (about 15 minutes each) with 
different phase encoding directions: left-to-right (LR) and right-to-left (RL). The N-back task 
data was collected over two sessions, each lasting approximately 5 minutes and using 2 
different phase encoding directions, the same as in the resting sessions. The N-back task 
session included both 2-back and 0-back blocks. However, we only analyzed the fMRI 
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timeseries associated with the 2-back trials, since the 0-back trials do not significantly 
engage working memory (Miller et al., 2009).  
 
To compare the robustness of fMRI data representations, we tried both the volumetric 
(NIFTI) and grayordinate (CIFTI) fMRI data for our analysis. Both types of resting-state fMRI 
data were processed using the HCP minimal preprocessing pipeline (Glasser et al., 2013). 
The volumetric data was registered to 2mm MNI space, while the grayordinate data was 
additionally transformed to the standard CIFTI grayordinate space. Further preprocessing 
of the volumetric data involved customized Python code to remove 12 motion parameters, 
white matter and cerebral spinal fluid (CSF) signals, global signals, and linear trends in the 
timeseries data. For the resting-state grayordinate fMRI data, we used a version further 
denoised by an additional ICA-FIX procedure (Salimi-Khorshidi et al., 2014), which 
enhances the signal-to-noise ratio by isolating and removing independent components 
linked to motion and other artifacts. Additionally, white matter and CSF signals, global 
signals, and linear trends were regressed out for consistency with the volumetric 
preprocessing. 
 
The 2-back volumetric fMRI data underwent the same preprocessing procedures as the 
resting-state data. However, for the 2-Back grayordinate data, ICA-FIX was not applied due 
to insufficient data to train the denoising classifier. Instead, we regressed out the 12 
motion parameters as done in the volumetric case, followed by the same nuisance 
variable regression for white matter and CSF, global signal, and linear trend. 
 
 
Behavioral Data 
The behavioral data for this project were derived from the performance measures for the 2-
back task, the Dimensional Change Card Sort Test (DCCS), and the Flanker task from the 
HCP dataset. Every subject included in our neuroimaging sample had all 3 behavioral 
scores available. The 2-back task was conducted inside the scanner during the working 
memory session, whereas the DCCS and Flanker tasks were completed outside during a 
“NIH Toolbox Behavioral Tests” session. Both accuracy and response time were recorded 
for all 3 tasks and integrated into a normalized score for each subject. The scores for DCCS 
and Flanker were provided by the HCP team and preprocessed in accordance with the 
procedures detailed in the NIH Toolbox Scoring and Interpretation Guide found in the 
reference section. For the 2-back task, we processed the 2-back accuracy and response 
time for each individual following the same procedure using our customized Python code. 
The only modification we made was to lower the accuracy threshold from 4 to 2 when 
combining accuracy and threshold, to ensure data normality. All measurements were 
normalized to have a mean of 100 and a standard deviation of 15, following the standard 
normalization procedure outlined in the NIH Toolbox manual. Note that the out-of-scanner 
List Sorting scores were excluded as a measure of Updating since the task did not record 
response time data.  
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Connectome-based Predictive Modelling 
Connectome-based Predictive Modelling (CPM) (Finn et al., 2015; Shen et al., 2017) links 
individual differences in brain functional connectivity and behavior measures. 

 
To construct the functional connectivity matrices, we utilized the Shen268 (Shen et al., 
2013) whole-brain atlas for parcellating the volumetric data, and Schaefer300 atlas 
(Schaefer et al., 2018) for parcellation of the cortical part of the grayordinate data. The 
average timeseries within each ROI was computed to represent the activity at that node, 
and pairwise Pearson correlation of all nodes was used to generate the functional 
connectivity matrix for each subject. Each Pearson r value underwent Fisher 
transformation to obtain a z value. For ease of calculation, we vectorized each individual's 
connectivity matrix and concatenated them to form the connectivity matrix for the entire 
sample. It is important to note that each scanning session (e.g., REST1, REST2, WM) yields 
two connectivity matrices corresponding to the two different phase encoding runs (L-R and 
R-L). Consequently, we averaged these two matrices to produce a single connectivity 
matrix for that session. For resting-state data, since there are two resting state sessions, 
we further averaged the two to obtain the final resting state functional connectivity matrix 
for each individual. 
 
 
CPM Prediction of Cognitive Control 
We constructed CPMs for the three cognitive control components – Inhibition, Shifting, and 
Updating – by using behavioral measures from the Flanker task, the Dimensional Change 
Card Sort (abbreviated as “Card Sort” below) task, and the 2-Back task, respectively. 
 
The CPM approach involves two principal stages: feature selection and model fitting. 
During feature selection, we used Pearson's correlation to associate the connectivity 
edges with the behavior measure, identifying the correlation score between each edge and 
the selected behavior. Only edges surpassing the significance threshold (p<0.01, two-
sided) were kept for model fitting. This process distinguishes two types of edges for 
selection: positively-associated edges (referred to as “positive edges” hereafter) and 
negatively-associated edges (“negative edges”), based on the sign of their correlation with 
the behavior scores. To control for variations in parcellation atlas sizes and further 
constrain the model to the most predictive edges, we retained only the top 100 significant 
positive and negative edges for subsequent analysis. Next, to fit the model, we summed 
together the selected positive and negative edge weights for each participant to generate 
an aggregate positive score and an aggregate negative score, respectively. Three linear 
regression models are then developed: one using the positive score only (“positive 
model”), one using the negative score only (“negative model”), and one combining both 
scores (“both model”). 
 
To evaluate predictive performance without overfitting, we employed a 10-fold cross-
validation method. Specifically, we shuffled and divided the data into 10 equal parts, 
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training the CPM on 9 of them and testing it on the remaining one. This procedure is 
iterated 10 times, ensuring each fold is used for testing exactly once. The training set is 
utilized for feature selection and model fitting, whereas the testing set is for assessing the 
model's performance. Pearson’s correlation between the predicted and actual behavioral 
scores is computed to gauge the model’s prediction accuracy. The average correlation 
across all 10 folds serves as the final measure of model fit. This process was repeated 
1,000 times, with a different shuffle each time, to confirm the reliability and reproducibility 
of our findings. The mean model fit score across these 1,000 iterations was reported as the 
model's final score. Additionally, a permutation test follows the same steps but with the 
subject’s behavioral scores randomly shuffled before being split into folds, ensuring a 
rigorous evaluation of model performance. 
 
We assessed the within-task prediction accuracy of each CPM – evaluating the prediction 
for the same task on which the model was trained. This approach allows us to directly 
ascertain whether the individual differences in functional connectivity identified by the 
CPM model are robust enough to accurately predict new data. 
 
In addition, we explored cross-prediction across every pair of tasks to evaluate the 
generalizability of each task-specific CPM model to predict individual differences in a 
different task. Cross-predictions also allow us to infer the separability of different cognitive 
control components, namely what’s common and what’s specific across tasks. To this 
end, we tested the model on a different measure from what it was being trained on. For 
cross-validation, during each iteration, we maintained the exact same train-test split and 
applied the previously trained CPM model to predict a different task measure within the 
testing cohort. 
 
 
CPM Canonical Network Analysis 
We also examined the anatomy of the features selected across all models to evaluate the 
influence of specific anatomical/functional networks on the three cognitive measures. Due 
to the variability in edge selection across iterations of CPM training resulting from different 
training-testing splits, we included an edge only if it was selected in more than half of the 
total iterations (over 500 out of 1000 iterations). This approach helps preserve only core 
edges that reflect meaningful individual differences in behavior. To confirm that the choice 
of threshold did not qualitatively change the results, we varied the thresholds between 
40%-60%, but did not see substantial changes of the edges within or between canonical 
networks. 
 
To define canonical networks on volumetric data, we used the 10-network version of the 
Shen 268 atlas, where each parcel is categorized into one of the medial frontal, 
frontoparietal, default mode, motor, visual A, visual B, visual association, salience, 
subcortical, cerebellum networks. For grayordinate data, we employed the 7-network 
version of the Schaefer 300 atlas for cortical regions. For subcortical structures, we 
divided them into two separate networks based on their original label given by the CIFTI 
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file: a subcortical network and a cerebellum/brainstem network. Furthermore, since the 
subcortical network includes regions such as the hippocampus and thalamus, which are 
traditionally classified within the limbic network, we combined these regions with the 
limbic network as defined in the Schaefer 300 atlas and retained the designation 
"subcortical network" for consistency. 
 
 
CPM Computational Lesion Analysis 
To further assess a canonical network’s contribution and importance to prediction 
performance, we performed a computational lesion analysis (also known as an ablation 
analysis). In this approach, we removed all connectivity patterns associated with a specific 
network and evaluated how this affected the predictive performance of CPM. Specifically, 
for each target network under investigation, we retrieved the CPM model trained using the 
standard procedure, removed all within and cross-connectivity edges associated with the 
target network, and then predicted outcomes on the hold-out testing set using the same 
cross-validation procedure. 
 
 
General and Specific Cognitive Control Analysis 
We conducted additional analyses to address the following two questions.  First, is there 
an overarching functional connectome for general cognitive control (Unity; Friedman & 
Miyake, 2017)? Second, given that the original measures may not purely reflect the 
underlying cognitive control constructs (as indicated by their high correlation), can we 
identify the functional connectome unique to each construct (Diversity; Friedman & 
Miyake, 2017)? 

 
To address these questions, we devised two types of measures: a general cognitive control 
score and three component-specific scores of Inhibition, Shifting, and Updating. The 
general cognitive control score was derived from the mean of the original z-scored task 
measures, where we hope to retain only the core information shared by different cognitive 
control components. On the other hand, the component-specific scores were defined as 
the residuals after regressing out the other two measures from each target measure, with 
the aim to preserve only the variance that cannot explained by other measures. We created 
CPMs for the general cognitive control score and the three component-specific scores.   
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Results 
 
Different Cognitive Control Measures Are Correlated 
To investigate the cognitive control components of response inhibition, set switching, and 
working memory updates, we used behaviors from the Flanker task, the Card Sorting task, 
and the 2-Back tasks, respectively.  
 
Descriptive statistics revealed that every pair of measurements were correlated with each 
other (with p<0.001), as indicated in Table 1. The highest correlation was found between 
the Card Sort and Flanker measures. More statistics for each measurement can be found 
in Supplementary Table 1. 
 
 
CPMs Predict Individual Differences for 3 Cognitive Control Components 
Table 2 shows the results of CPMs trained and tested on Flanker, Card Sort, and 2-back 
task data using connectomes measured during resting state (left column) or 2-back task 
scans (right column).  Most predictions were statistically significant (Permutation test 
p<0.05, corrected for FWE). The three rows of tables correspond to CPMs based on 
positive, negative or both types of edges.  For instance, the top left entry (0.1443) in the first 
sub-table corresponds to the predictive performance of a positive CPM model, when 
trained and tested both on Flanker measures and resting-state fMRI data.  
Within-task predictions, as represented by the diagonal of each table, were significant in 
all cases. Notably, 2-Back was predicted significantly more accurately than Flanker and 
Card Sort performance (p’s < 0.05). More interestingly, cross-task prediction performance 
(that is, train the CPM on one measure and test on a different measure) was also 
significant in most cases (permutation test p<0.05, corrected for FWE). 2-Back 
performance was most strongly predicted when trained on any of the task measures (blue 
and green shading). On the other hand, cross-prediction performance for Card Sort and 
Flanker (both ways) was numerically lower and even non-significant when using resting-
state fMRI data. This low cross-prediction score stands in stark contrast with their high 
correlation in behavioral measures. 
 
Comparing the left and right columns shows that CPM performance was significantly 
higher from 2-Back task fMRI data than from resting-state data (p’s <0.001in all cases, 
corrected for FWE). In other words, the 2-Back task fMRI data enabled higher prediction 𝑟 
(permutation test p<0.05, corrected for FWE) across all model types and behavioral 
combinations.  
 
We also examined the impact of fMRI data format on CPM performance by comparing 
models trained and tested on grayordinate data versus volumetric data. Grayordinate-
based data showed superior CPM predictive performance over traditional volumetric-
based data in most cases (p<0.001 in all cases using 2-back fMRI data; p<0.001 in 18 out of 
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27 cases using resting-state fMRI data, both corrected for FWE). Detailed CPM 
performance on volumetric fMRI data is presented in Supplementary Table 4. 
 
Therefore, due to the greater variance captured by using grayordinate-based task fMRI 
data, we will primarily present the results based on 2-Back grayordinate fMRI data in the 
following sections. For those interested in the results on resting-state or volumetric data, 
which produced comparable patterns of results, please refer to the supplementary tables 
for further details. 
 
 
The FPN, DMN, and DAN are involved across all cognitive control components 
We next investigated the connectome anatomy for each of the cognitive control 
components. The resulting connectome profile for each component is depicted in Figure 1. 
In summary, positive predictive edges for the Flanker task were mainly within the 
frontoparietal network and with the dorsal attention network and cerebellum. Positive 
predictive edges for the Card Sort task involved mainly the frontoparietal, default mode, 
and salience networks. Lastly, positive predictive edges for 2-Back performance were 
mostly within the frontoparietal network, as well as between the frontoparietal network 
and both the default mode and dorsal attention networks. Overall, the edges that positively 
predicted the three cognitive control measures span a wide range of canonical networks 
and are relatively distinct from one another. The core cluster of positive edges common to 
all three cognitive control CPMs, illustrated in Figure 1 (bottom right), was located within 
the frontoparietal, and between the frontoparietal, dorsal attention, and default mode 
networks. 
 
On the other hand, CPM also picked up a set of negative edges that inversely relates to 
performance in each cognitive control task. For the Flanker task, negative edges were 
found within and between the frontoparietal, default mode, and dorsal attention networks, 
as well as some edges within the visual network. The CPM for the Card Sort task included 
negative edges within the default mode, visual, and salience networks, as well as between 
the salience network and the dorsal attention and frontoparietal networks. The negative 
CPM model for the 2-back task included mostly edges associated with the frontoparietal 
network, along with the those between the visual network and cerebellum. The 
intersection plot (Figure 1, bottom right) reveals that most of the negative edges common 
to all three CPMs were within frontoparietal and default mode networks, as well as 
between somatomotor and default mode networks. 
 
 
Lesioning the FPN and DMN led to largest performance drop 
To directly study the contribution of each network in predicting individual differences, we 
then performed computational lesion analysis on CPM by lesioning each network’s 
connectivity one at a time. As shown in Figure 2, in the positive models, lesioning 
frontoparietal connectivity resulted in the largest prediction performance drop in most 
cases, where lesioning the default mode network showed the largest prediction 
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performance drop in the other cases. In the negative models, most impairments can be 
attributed to lesioning the frontoparietal network and especially the default mode network. 
To a lesser extent, lesioning other networks such as the salience and visual networks 
resulted in a significant drop in prediction performance.  
 
 
General Control is Predicted Better Than Specific Control 
To study the shared connectome underlying general cognitive control, as well as the 
idiosyncratic connectomes for specific cognitive control components, we repeated the 
CPM procedure on four newly devised measures: one general control score and three 
component-specific scores. The general cognitive control score was derived from the 
mean of the original z-scored task measures, and the component-specific scores were 
defined as the residuals after regressing out the other two measures from each target 
measure. More statistics for each measurement can be found in Supplementary Tables 2 
and 3. 
 
As illustrated in Table 3, when tested on the same measure as the CPM was trained on, the 
general control measure was predicted better than the component-specific measures 
using 2-back fMRI data. Also, after regressing out other non-target measures, the cross-
task prediction performance between different component-specific measures was 
dampened.  
 
Aligned with our earlier analysis, using 2-Back fMRI data enhanced predictive performance 
over the resting-state data. Therefore, the following sections will emphasize results 
obtained from task-based fMRI data over resting-state fMRI data. We encourage interested 
readers to check out the supplementary tables and figures for results in other conditions. 
 
 
The Component-specific Measures Bear Little Network Connectivity Overlap 
Examining the canonical functional networks for each component-specific positive CPM 
model reveals little overlap Figure 2 (bottom right), suggesting that the connectome for 
each cognitive control component became more unique when shared variance was 
removed.  
 
While the connectome for each component looks roughly similar to the previous ones, one 
can spot some differences relative to the models without shared variance removed (Figure 
1). For positive networks, the Flanker model now consists of fewer frontoparietal-related 
edges, both in terms of within frontoparietal edges and between frontoparietal and other 
networks such as dorsal attention network and brainstem/cerebellum. Within-salience 
network connectivity was more relevant to predict individual differences in performance 
(all p<0.001, FWE corrected). Similar patterns were observed for the Card Sort model, 
where the frontoparietal network showed fewer connections within itself and with the 
dorsal attention network, while the salience network’s connections were increased 
(p<0.001, FWE corrected). Lastly, the 2-Back model showed fewer positive edges between 
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dorsal attention and frontoparietal networks, but more edges between within dorsal 
attention and between dorsal attention and default mode networks (p<0.001, FWE 
corrected). 
 
Negative CPM models in Figure 3 also showed a decrease in overlapping edges relative to 
the models without shared variance removed (Figure 1). Again, subtle changes can be 
observed when closely examining each component CPM. For the Flanker task model, the 
reduction in within-frontoparietal edges was accompanied by an increase in the 
interconnection between the salience and default mode networks (p<0.001, FWE 
corrected). The Card Sort model showed more within-frontoparietal and 
brainstem/cerebellum-frontoparietal edges (p<0.001, FWE corrected). Additionally, the 2-
back model showed an increase in visual-frontoparietal edges (p<0.001, FWE corrected). 
 
 
General Control Involves the Interplay of the FPN, DMN, and DAN 
Lastly, we examined the connectome for the general cognitive control measure, defined as 
shared variance across the Flanker, Card Sort, and 2-Back tasks. As shown in Figure 4, the 
positive edges were densely located around the frontoparietal networks, including within-
network connections and its interconnections with the dorsal attention and default mode 
networks. Other edges, though less densely populated, mostly bridged the default mode 
network with other networks. In contrast, the negative edges were most numerous within 
the frontoparietal network, between the frontoparietal and default mode networks, and 
between the cerebellum and visual networks. Additionally, the dorsal attention and visual 
networks comprised a substantial number of inter-network connections that inversely 
contributed to individual behavioral differences. These findings closely align with the 
intersection plot in Figure 1, reinforcing its validity as the connectome for general cognitive 
control. 
 
 
Discussion 
 
In this study, we provided a novel demonstration of the neural connectome profiles 
underlying the cognitive control components of Inhibition, Shifting, and Updating 
(Friedman & Miyake, 2017). Utilizing Connectome-based Predictive Modeling (CPM) to 
develop models trained and tested on the Flanker task for Inhibition, the Card Sort task for 
Shifting, and 2-Back tasks for Updating, we revealed that distributed functional 
connectivity patterns serve as robust predictors of individual differences in each cognitive 
control process in the HCP dataset. Additionally, by comparing within-task and across-
task model predictions, and by averaging or regressing out different measures, we were 
able to investigate the shared and specific connectomes associated with the three 
cognitive control constructs. Our analyses further confirmed that 2-Back task and 
grayordinate fMRI data supported superior predictive performance over resting-state and 
volumetric data. 
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Cross-predictions 
CPM cross-prediction patterns revealed that the 2-back (Updating) task CPM generalizes 
best to predict the performance in the other two tasks. The high cross-prediction 
performance of models trained on 2-back task suggests the central role of Updating in 
cognitive control, a notion supported by various prior studies. In Lemire-Rodger et al. 
(2019), multivariate analysis on fMRI data alluded to Updating as a common factor 
supporting the other cognitive control processes. In another meta-analysis, Rodríguez-
Nieto et al (2022). reported that the Updating network highly overlaps with the Shifting and 
Inhibition networks, while the latter two exhibited minimal overlap. At the behavioral level, 
Updating stood out as the sole process among the three control mechanisms showing a 
substantial correlation with general intelligence (Friedman et al., 2006), suggesting it is 
domain-general. Updating, commonly operationalized as working memory, involves 
controlling attention to resist interference, a key component that scaffolds many higher-
order executive processes (Engle, 2002; Engle et al., 1999; Kane & Engle, 2003; Unsworth 
et al., 2004). Our findings are less consistent with some previous studies that posited 
Shifting (Dajani & Uddin, 2015) and Inhibition (Miyake & Friedman, 2012) as the common 
components for general cognitive control.  
 
On the other hand, the Flanker task CPM (Inhibition) and the Card Sort task CPM (Shifting) 
exhibited lower generalizability when applied to predict other tasks, suggesting they are 
distinct components in cognitive control. This proposition aligns with several previous 
studies (Lemire-Rodger et al., 2019; Miyake et al., 2000; Rodríguez-Nieto et al., 2022). 
Upon closer examination of our results using task fMRI data, we found that models trained 
on the Card Sort task and tested on the Flanker task performed better than those trained 
and tested in the opposite direction. This observation may be related to the idea that task 
switching is facilitated by inhibition, as smoothly transitioning to a new task set requires 
effectively suppressing the previous set of rules. (Davidson et al., 2006; Diamond, 2013; 
Koch et al., 2010).  
 
 
General and Specific Control Connectomes 
The significant CPM cross-task prediction scores indicate the presence of a general 
control factor that supports the three control components. This is further supported by the 
high CPM prediction accuracy of our general cognitive control measure, derived from the 
mean of the three original measures that correlated significantly with each other.  The 
above-chance within-task prediction accuracy of the 2-Back specific CPM model, along 
with its high cross-predictive performance on the general control factor, emphasizes the 
central role of Updating in cognitive control. Conversely, the cross-prediction accuracy 
between flanker and card sort-specific measures were numerically lower, suggesting that 
they became more distinctive after removing the general aspect of cognitive control. 
Overall, the identification of a general control factor aligns with Miyake's theory (Miyake et 
al., 2000) that posited a construct that unifies different types of control processes. 
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Examining the functional networks supporting general executive control, we observed that 
many positive edges (i.e., edges that positively correlate with performance) reside in and 
between the frontoparietal (FPN), dorsal attention (DAN), default mode (DMN), and 
salience networks (SN). All of these canonical functional networks have previously been 
implicated in various aspects of executive control (Friedman & Robbins, 2022b; Menon & 
D’Esposito, 2022). The FPN is associated with the initialization and adjustment of control, 
executive task performance and interactions between attention and other cognitive 
processes (Dosenbach et al., 2008; Marek & Dosenbach, 2018; Seeley et al., 2007). The 
DAN directs top-down attention and assists successful spatial attention (Corbetta & 
Shulman, 2002, 2011; He et al., 2007). The SN plays a role in perceiving event saliency, 
monitoring conflicts, and initiating access to working memory and attention (Carter & van 
Veen, 2007; Menon & Uddin, 2010). Finally, although the DMN tends to quench its activity 
during tasks, it has a putative role in switching between internal and external attention 
modes (Leech et al., 2011). Additionally, we also found a number of positive edges in the 
visual network (VN). Although this may not be directly related to cognitive control, the 
strength of connectivity within the VN is consistent with the fact that all three tasks 
involved visual perception (Baldassarre et al., 2012).  
 
While each of these networks serve their distinct roles in executive control, they 
communicate with each other to subserve more complicated control processes, as 
reported by various prior studies. For instance, researchers have found that the FPN shows 
differential connectivity patterns with the DMN and the DAN. The former strengthens 
during cue-independent introspective tasks, while the latter relates more to perceptual 
attention (Dixon et al., 2018).  Another study revealed that the connectivity between the 
DMN and other task-related networks (e.g., the SN, FPN) were strengthened during a 
battery of tasks and is correlated with task performances (Elton & Gao, 2015). Aligned with 
these results, our general control CPM picked up these connectivity features, and thus 
further consolidate the notion that these functional networks may act as hubs for general 
cognitive control. 
 
Interestingly, some connectivity features that negatively correlated with general control 
performance were from the same set of canonical networks. For instance, a high 
proportion of edges within the FPN and between the FPN and DMN appeared in both the 
positive and negative models. One possible interpretation is that the canonical networks 
such as FPN encompasses a large number of brain regions that may be heterogeneous in 
their contributions to cognitive control (cf. Dixon et al., 2018). As a result, the connectivity 
strength of different subregions may correlate differently with performance measures. 
 
While many of the identified edges have established roles in prior studies, CPM also 
detected numerous edges that are less reported. For instance, our results revealed an 
inverse relationship between general control performance and the cerebellum's co-
activation with the VN. However, we did not find much reported about the cerebellum's 
negative correlation on cognitive performance. Therefore, confirming or disproving this 
relationship warrants deliberate investigation in the future. Overall, we believe that CPM 
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can play a valuable role in expanding our current knowledge base by generating new 
hypotheses for future testing. 
 
We also explored whether the neural basis of general control overlaps with that of 
attention, a well-studied cognitive process, at the connectome level. To investigate this, 
we conducted a separate analysis using an externally validated connectome model of 
general attention from Yoo et al. (2002) to predict general control performance here. The 
cross-prediction accuracy on general control was significant but numerically much lower 
than when predicted using general control CPM (Supplementary Table 9a), suggesting that 
general control is distinct from the general attention mechanism. When applied to the 
three original cognitive control measures, the general attention CPM showed numerically 
lower prediction accuracy than the general control CPM (Supplementary Table 9b), 
reinforcing the idea that attention does not fully account for cognitive control. Note that for 
consistency with the general attention connectome predictive modeling (CPM) 
specifications, we utilized resting-state volumetric fMRI data for this comparison across 
studies. 
 
On the other hand, the connectome profiles for each component-specific measure were 
more distinct from one another. For example, in the positive models, the Flanker task was 
characterized by a high density of edges within the FPN, DMN, and SN. In contrast, the 
Card Sort task showed more edges connecting the DMN with the SN and DAN. The 2-Back 
task's edges were primarily concentrated within and between the FPN, DMN, and DAN. 
These network motifs might hint at unique signatures for each specific control component. 
 
 
FMRI Data Representations 
Throughout our analysis, we also studied the impact of fMRI data representation and brain 
state on CPM performance. We found that using grayordinate (CIFTI) data provides 
significant boost in CPM predictive accuracy over traditionally used volumetric (NIFTI) 
data. This advantage can be attributed to the inherent benefit of using grayordinate data, 
which registers the cortical areas into a flat surface, while maintaining 3D structures of 
subcortical areas. By doing so, it provides a more compact representation with higher 
inter-subject spatial correspondence (Glasser et al., 2013), better signal-to-noise ratio 
(Smith et al., 2013), and reduced signal contamination that inflates functional connectivity 
(Brodoehl et al., 2020). Admittedly, this is not an exhaustive comparison between the two 
data representations, but it suggests that a well-chosen fMRI data format can enhance 
CPM analysis performance. More dedicated comparisons in the future may provide deeper 
insights into the best practices for CPM analysis. 
 
 
Brain States 
Comparing between resting state data with 2-Back task-based fMRI data, we noticed a 
significant improvement associated with the use of 2-Back data across both volumetric 
and gradyordinate data representation formats. This enhancement is consistent with 
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previous findings that task-based fMRI data generally aids in more accurate prediction of 
traits and behaviors, even if the task data differs from the behavior being predicted (Elliott 
et al., 2019; Finn & Bandettini, 2021; Greene et al., 2018; Jiang et al., 2020; Yoo et al., 2018; 
Yoo, Rosenberg, Kwon, Scheinost, et al., 2022). In combination with other reported 
benefits of task fMRI data, such as its greater information gain for inferring hidden 
parameters (Tuominen et al., 2023), less head motion during acquisition (Huijbers et al., 
2017), and better test-retest reliability for network identification (Kristo et al., 2014; 
Rosazza et al., 2014; Wang et al., 2017), when possible, we support the use of task-based 
fMRI data over resting-state data (or a hybrid use of resting and task, see Finn, 2021 for 
further perspectives) to achieve better predictive accuracy. 
 
 
Limitations 
While our study provides a fresh perspective on the connectome profiles of various control 
processes, we also consider several limitations of our current approach as well as 
potential future directions. First off, the so-called task impurity problem (Burgess, 1997; 
Phillips, 1997) poses a serious challenge to accurately measuring the psychological 
processes targeted by executive function tasks. Because each cognitive control task 
typically involves a combination of cognitive, perceptual, and motor processes, it 
becomes nearly impossible to assert that the variance captured by the model reflects only 
the intended process. Given the inherent difficulty in creating a "pure" executive control 
task, our project takes the valuable approach of distinguishing between the common and 
specific components that each cognitive control score measures. Future work could build 
on these analyses by extending it to other cognitive and non-cognitive measures, allowing 
us to evaluate the extent to which each task relies on general versus specific control 
components, as well as the generalizability of our cognitive control connectome. 
 
Secondly, due to the constrained nature of public neuroimaging datasets, we were only 
able to build our CPMs on the 2-Back and resting-state data. While the 2-Back data already 
demonstrates good predictive performance across all three behavior measures, it would 
be valuable to replicate these analyses using other types of cognitive control-related task 
fMRI data. A similar concern is that the connectome profile captured using 2-Back fMRI 
data differs from that obtained using resting-state data. Interpreting this discrepancy is 
essential to developing a connectome profile of cognitive control that is agnostic to brain 
state.   
 
An additional limitation is that our CPM network analysis is based on canonical functional 
networks, which are suitable for prediction but may be coarse for detailed examination of 
connectome features. As noted above, each canonical network (e.g., the FPN) may be 
functionally heterogeneous. The next step could focus on developing novel, optimized 
methods to achieve more fine-grained delineations of the canonical networks, leading to 
clearer explanations of each network's functional contributions. 
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Another limitation is that our study was focused on healthy adults. As previously revealed 
cognitive control and prefrontal cortex undergo prolonged developmental trajectories 
before stabilizing in adulthood (Anderson, 2002; Davidson et al., 2006; Diamond, 2002; 
Kolb et al., 2012; Luna, 2009). Thus, it would be beneficial to generalize our CPM analysis 
pipeline to developmental data, leveraging datasets like the ABCD Study® to investigate 
the neurodevelopmental trajectories of each facet of cognitive control. A thorough 
understanding of how the connectome of cognitive control components evolve across 
different ages could illuminate the origins of executive control and provide insights into the 
neural signatures of atypical cognitive control development. 
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Tables 
 
 

Table 1. Pearson Correlation between behavior measures 
 Flanker Card Sort 2-back 

Flanker -- -- -- 
Card Sort 0.4905*** -- -- 

2-back 0.3094*** 0.3525*** -- 
***p<0.001, uncorrected 

 
 
 

Table 2. CPM prediction accuracy of raw cognitive control measures, grayordinate  

 Working Memory (2-back) Rest 
Flanker Card Sort 2-Back Flanker Card Sort 2-Back 

Positive 
Flanker 0.23*** 0.18*** 0.35*** 0.16*,a 0.13†,b 0.32*** 

Card Sort 0.20*** 0.26*** 0.35*** 0.16*,c 0.21*** 0.26*** 
2-Back 0.24*** 0.23*** 0.42*** 0.21*** 0.18*** 0.37*** 

Negative 
Flanker 0.28*** 0.20*** 0.34*** 0.20*** 0.13†,d 0.27*** 

Card Sort 0.25*** 0.31*** 0.36*** 0.16*,e 0.20*** 0.25*** 
2-Back 0.28*** 0.27*** 0.44*** 0.23*** 0.18*** 0.35*** 

Both 
Flanker 0.29*** 0.21*** 0.36*** 0.20*** 0.14*,f 0.31*** 

Card Sort 0.25*** 0.32*** 0.39*** 0.18*** 0.23*** 0.29*** 
2-Back 0.29*** 0.28*** 0.48*** 0.25*** 0.20*** 0.39*** 

Each sub-table (bounded by bold lines) represents a set of CPM prediction performance 
scores for a specific fMRI task state (2-back working memory vs. rest) using one type of edges 
(positive, negative, or both). For example, the top-left sub-table shows the CPM performance 
using working memory task fMRI data and only positive-associated edges. In each 3x3 sub-
table, each row represents the training behavior, and each column represents the testing 
behavior. The maximums of each row and column in the sub-tables are colored in blue and 
yellow, respectively, with the overlap colored in green.  ***p<0.001, **p<0.01; *p<0.05; †p<0.1, all 
corrected for family-wise error (FWE) after permutation testing. Exact p-values: a: p=0.012; b: 
p=0.060; c: p=0.024; d: p=0.072; e: p=0.012; f: p=0.012. 
 

 
 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 22, 2024. ; https://doi.org/10.1101/2024.10.21.619468doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.21.619468
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3. CPM prediction accuracy of general and specific control measures, grayordinate 
  General Control Flanker Specific Card Sort Specific 2-Back Specific 

Positive 

General Control 0.39*** 0.10a 0.06b 0.30*** 
Flanker Specific 0.17*,c 0.13†,d -0.07e 0.15*,f 

Card Sort Specific 0.13g -0.06h 0.16**,i 0.04j 
2-Back Specific 0.31*** 0.04k -0.01l 0.36*** 

Negative 

General Control 0.45*** 0.12m 0.08n 0.33*** 
Flanker Specific 0.15*,o 0.12p -0.05q 0.11r 

Card Sort Specific 0.10s -0.07t 0.16*,u 0.02v 
2-Back Specific 0.38*** 0.08w 0.04x 0.34*** 

Both 

General Control 0.46*** 0.12y 0.08z 0.34*** 
Flanker Specific 0.18*** 0.15*,aa -0.07ab 0.15†,ac 

Card Sort Specific 0.13ad -0.08ae 0.18**,af 0.03ag 
2-Back Specific 0.40*** 0.07ah 0.02ai 0.40*** 

Each sub-table (bounded by horizontal lines) corresponds to the CPM prediction performance scores using 2-back task-
fMRI and one type of edges (positive, negative, or both). In every 4x4 sub-table, each row represents the training 
behavior, and each column represents the testing behavior. The maximums of each row and column in the sub-tables 
are colored in blue and yellow, respectively, with the overlap colored in green.  ***p<0.001, **p<0.01; *p<0.05; †p<0.1, all 
corrected for family-wise error (FWE) after permutation testing. Exact p-values: a: p=0.79; b: p=3.50; c: p=0.024; d: p=0.064; e: 
p=2.59; f: p=0.024; g: p=0.12;  h: p=3.41; i: p=0.008;  j: p=6.14;  k: p=5.71;  l: p=10.92;  m: p=0.33;  n: p=2.23;  o: p=0.024;  p: p=0.13;  q: 
p=4.56;   r: p=0.53;   s: p=1.18;   t: p=2.76;   u: p=0.024;   v: p=10.03;   w: p=2.40;   x: p=6.17;  y: p=0.38;  z: p=1.90;   aa: p=0.048;   ab: 
p=2.33;   ac: p=0.072;   ad: p=0.24;   ae: p=1.90;   af: p=0.008;   ag: p=8.09;   ah: p=2.57;  ai: p=8.93. 
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Figures 
 

 
 
 
Figure 1. Predictive edges identified by CPM on three control measures. The top row displays the 
edges identified by CPMs trained on each of the three types of cognitive control measures. Each heatmap 
is divided into left and right halves, where the right half represents negative edges, and the left half 
represents positive edges. Each cell within the heatmap indicates the percentage of reliable edges (see 
the Methods section for detailed inclusion criteria) identified between the corresponding pair of canonical 
networks. Higher percentages are represented by more intense pink or blue hues. The bottom row 
illustrates the union (sum) and intersection (minimum) of the three heatmaps above. FP, frontoparietal; 
DM, default mode; DA, dorsal attention; SM, somatomotor; VI, visual; SA, salience; SC, 
subcortical; BS/CB, brain stem/cerebellum. 
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Figure 2. CPM lesion analysis on grayordinate, 2-back task-fMRI data. The figure is divided into 
two main sections: the left half displays CPM performance after lesioning positive edges of each 
network, while the right half shows the results after lesioning negative edges. Each section is 
further divided into subplots based on different train/test task combinations. In these subplots, 
each row corresponds to a training task, and each column represents a testing task. For example, 
the top-left subplot in the left half illustrates CPM prediction when trained and tested both on the 
Flanker scores after lesioning positive edges of each canonical network. The horizontal gray line 
attached to each bar denotes the 95% (± 2 standard deviation) confidence interval. The vertical 
gray dashed line represents the baseline CPM performance (without lesioning) for each scenario. 
To assess the impact of lesioning, paired t-tests were conducted comparing the lesioned 
performance to the regular performance. The results are depicted with colored bars: blue bars 
indicate significant reductions in performance (p<0.05, after FWE correction), orange bars 
represent significant increases, and white bars denote no significant difference from regular 
performance. All significant bars except the within-Card Sort prediction in the frontoparietal 
negative edge lesion condition have p<0.001 (FWE corrected). The within-Card Sort prediction 
when lesioning FP negative edges has p = 0.037. For non-significant conditions (white bars): 
Flanker-Flanker, SM, positive (p=5.96); 2Back-Flanker, BS/CB, positive (p=43.17); 2Back-Card Sort, 
BS/CB, positive (p=0.078); Card Sort-Flanker, SA, negative (p=0.37); Card Sort-2Back, BS/CB, 
negative (p=15.30). FP, frontoparietal; DM, default mode; DA, dorsal attention; SM, somatomotor; 
VI, visual; SA, salience; SC, subcortical; BS/CB, brain stem/cerebellum. 
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Figure 3. Predictive edges identified by CPM on the three component-specific measures. The top row 
displays the edges identified by CPMs trained on each of the three component-specific measures. The 
bottom row illustrates the union (sum) and intersection (minimum) of the three heatmaps above. FP, 
frontoparietal; DM, default mode; DA, dorsal attention; SM, somatomotor; VI, visual; SA, salience; 
SC, subcortical; BS/CB, brain stem/cerebellum. 
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Figure 4. Predictive edges identified by CPM on the general cognitive control measure. FP, 
frontoparietal; DM, default mode; DA, dorsal attention; SM, somatomotor; VI, visual; SA, salience; 
SC, subcortical; BS/CB, brain stem/cerebellum. 
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Supplementary Materials 
 
 
 

Supplementary Table 1. Statistics of raw behavior measures  
Flanker Card Sort 2-Back 

count 748 748 748 
mean 100 100 100 

std 15.0100 15.01 15.01 
min 58.9189 49.69 -9.32 
25% 90.1104 89.51 90.63 
50% 99.3473 99.78 101.09 
75% 109.6509 109.56 109.76 
max 144.86 140.95 138.20 

 
 

Supplementary Table 2. Pearson Correlation between the 4 new measures 

 General 
Control 

Flanker 
Specific 

Card Sort 
Specific 

2-back 
Specific 

General Control -- -- -- -- 

Flanker Specific 0.3730*** -- -- -- 

Card Sort Specific 0.3671*** -0.4287*** -- -- 

2-back Specific 0.4006*** -0.1674*** -0.2422*** -- 

***: p<0.001, uncorrected 
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Supplementary Table 3. Statistics of the new behavior measures 

  
General 
Control 

Flanker-
specific 

Card Sort-
specific 

2-Back-
specific 

count 748 748 748 748 
mean 100 100 100 100 

std 15.010037 15.010037 15.010037 15.010037 
min 50.81347 55.554659 40.13981 -17.843425 
25% 88.847471 89.516514 90.357072 90.915042 
50% 100.5231 99.330337 99.688935 101.035226 
75% 110.625526 109.315296 109.320616 110.210396 
max 143.037699 156.004711 152.515038 143.44036 

 
 
Supplementary Table 4. CPM prediction accuracy of raw cognitive control measures, 
volumetric 

 Working Memory (2-back) Rest 
Flanker Card Sort 2-Back Flanker Card Sort 2-Back 

Positive 
Flanker 0.16*, a 0.13†, b 0.32*** 0.15*** 0.08 g 0.15*, h 

Card Sort 0.16*,c 0.21*** 0.26*** 0.06 i 0.15*, j 0.14*, k 
2-Back 0.21*** 0.18*** 0.37*** 0.15*** 0.16*** 0.20*** 

Negative 
Flanker 0.20*** 0.13†, d 0.27*** 0.10 l 0.05 m 0.09 n 

Card Sort 0.16*, e 0.20*** 0.25*** 0.07 o 0.15*** 0.19*** 
2-Back 0.23*** 0.18*** 0.35*** 0.12 p 0.20*** 0.22*** 

Both 
Flanker 0.20*** 0.14*, f 0.31*** 0.13*, q 0.07 r 0.13†, s 

Card Sort 0.18*** 0.23*** 0.29*** 0.07 t 0.16*** 0.18*** 
2-Back 0.25*** 0.20*** 0.39*** 0.15*, u 0.20*** 0.23*** 

***p<0.001, **p<0.01; *p<0.05; †p<0.1, all corrected for family-wise error (FWE) after permutation 
testing. Exact p-values: a: 0.012; b: 0.060; c: 0.024; d: 0.072; e: 0.012; f: 0.012; g: 0.92; h: 0.012; i: 
1.76; j: 0.012; k: 0.036; l: 0.22; m: 2.08; n: 0.52; o: 1.48; p: 0.13; q: 0.04; r: 1.20; s: 0.072; t: 1.16; u: 
0.024. 
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Supplementary Table 5. t-test statistics for grayordinate vs. volumetric, rest 

 Flanker Card Sort 2-Back 

Positive 
 

Flanker -7.92*** 83.55*** 62.06*** 
Card Sort 91.19*** -9.13*** 128.05*** 

2-Back 6.78*** 49.22*** 38.18*** 

Negative 
 

Flanker 40.95*** 75.49*** 113.57*** 
Card Sort 25.30*** -26.16*** -25.48*** 

2-Back -6.60*** -14.74*** -33.67*** 

Both 
 

Flanker 31.19*** 97.35*** 111.44*** 
Card Sort 77.78*** -38.03*** 66.53*** 

2-Back 14.25*** 6.73*** -1.54*** 
***p<0.001. a: p=0.37 (FWE corrected) 

 
 

 
 
 
 
 
 

Supplementary Table 6. CPM prediction accuracy of general and specific control measures, grayordinate, 
rest 

  General Control Flanker Specific Card Sort Specific 2-Back Specific 

Positive 

General Control 0.24*** 0.04 0.08 0.16*** 
Flanker Specific 0.05 0.07 -0.04 0.02 

Card Sort Specific 0.08 -0.05 0.06 0.08 
2-Back Specific 0.23*** 0.05 0.08 0.16*** 

Negative 

General Control 0.21*** 0.01 0.09 0.14*** 
Flanker Specific 0.02 0.11 -0.07 -0.02 

Card Sort Specific 0.06 -0.04 0.06 0.05 
2-Back Specific 0.20*** 0.01 0.12* 0.10 

Both 

General Control 0.24*** 0.04 0.08 0.16*** 
Flanker Specific 0.04 0.09 -0.05 0.01 

Card Sort Specific 0.08 -0.05 0.07 0.07 
2-Back Specific 0.24*** 0.03 0.10 0.15*** 

Each sub-table (bounded by horizontal lines) corresponds to the CPM prediction performance scores using resting-state 
fMRI and one type of edges (positive, negative, or both). In every 4x4 sub-table, each row represents the training 
behavior, and each column represents the testing behavior. The maximums of each row and column in the sub-tables 
are colored in blue and yellow, respectively, with the overlap colored in green.  ***p<0.001, **p<0.01; *p<0.05; †p<0.1, all 
corrected for family-wise error (FWE) after permutation testing.  
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Supplementary Table 7. CPM prediction accuracy of general and specific control measures, volumetric, 2-back 
  General Control Flanker Specific Card Sort Specific 2-Back Specific 

Positive 

General Control 0.32*** 0.08 0.02 0.29*** 
Flanker Specific 0.09 0.06 -0.07 0.12 

Card Sort Specific 0.06 -0.04 0.11 -0.01 
2-Back Specific 0.32*** 0.10 0.00 0.30*** 

Negative 

General Control 0.32*** 0.09 0.03 0.26*** 
Flanker Specific 0.14† 0.10 -0.05 0.13 

Card Sort Specific 0.03 -0.04 0.07 -0.01 
2-Back Specific 0.29*** 0.10 -0.01 0.26*** 

Both 

General Control 0.35*** 0.09 0.03 0.29*** 
Flanker Specific 0.13 0.09 -0.07 0.14† 

Card Sort Specific 0.05 -0.04 0.10 -0.01 
2-Back Specific 0.33*** 0.11 -0.01 0.30*** 

Supplementary Table 8. CPM prediction accuracy of general and specific control measures, volumetric, rest 
  General Control Flanker Specific Card Sort Specific 2-Back Specific 

Positive 

General Control 0.23*** 0.07 0.03 0.16*** 
Flanker Specific 0.09 0.10 -0.05 0.06 

Card Sort Specific 0.04 -0.07 0.12† 0.00 
2-Back Specific 0.17* 0.04 0.05 0.11 

Negative 

General Control 0.22*** -0.01 0.10 0.18*** 
Flanker Specific 0.01 0.08 -0.07 0.00 

Card Sort Specific 0.06 -0.06 0.08 0.04 
2-Back Specific 0.17*** -0.01 0.09 0.12† 

Both 

General Control 0.25*** 0.04 0.07 0.19*** 
Flanker Specific 0.07 0.10 -0.06 0.04 

Card Sort Specific 0.06 -0.06 0.09 0.04 
2-Back Specific 0.18*** 0.01 0.08 0.13* 

Each sub-table (bounded by horizontal lines) corresponds to the CPM prediction performance scores using resting-state 
fMRI and one type of edges (positive, negative, or both). In every 4x4 sub-table, each row represents the training behavior, 
and each column represents the testing behavior. The maximums of each row and column in the sub-tables are colored in 
blue and yellow, respectively, with the overlap colored in green.  ***p<0.001, **p<0.01; *p<0.05; †p<0.1, all corrected for family-
wise error (FWE) after permutation testing. 

Each sub-table (bounded by horizontal lines) corresponds to the CPM prediction performance scores using 2-back task-fMRI 
and one type of edges (positive, negative, or both). In every 4x4 sub-table, each row represents the training behavior, and 
each column represents the testing behavior. The maximums of each row and column in the sub-tables are colored in blue 
and yellow, respectively, with the overlap colored in green.  ***p<0.001, **p<0.01; *p<0.05; †p<0.1, all corrected for family-wise 
error (FWE) after permutation testing. 
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Supplementary Table 9a. Use general attention CPM to predict the general and specific control measures, volumetric, 
rest, both edges 

 General Control Flanker Specific Card Sort Specific 2-back Specific 
General Attention CPM 0.11*, a 0.06 0.08 0.05 
General Control CPM 0.25*** 0.04 0.07 0.19*** 
The general attention CPM cross-prediction performance is calculated by correlating the predicted behavior measure 
with the actual behavior measure. The general control CPM results are from Table 9. The p-values are corrected by FWE.  

***p<0.001, **p<0.01, *p<0.05; †p<0.1. p-values: a: 0.031.  
 

Supplementary 9b. Use general attention CPM to predict the original control measures, volumetric, rest, both 
edges 

 Flanker  Card Sort  2-back  
General Attention CPM 0.08 0.11*, a 0.09 
General Control CPM 0.15**, b 0.18*** 0.25*** 
The model performance is calculated by correlating the predicted behavior measure (by the general attention 
CPM) with the actual behavior measure. The general control CPM results are obtained via the regular CPM 
train/test procedure. The p-values are corrected by FWE. ***p<0.001, **p<0.01, *p<0.05; †p<0.1. p-values: a: 0.031, 
b: 0.006.  
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Supplementary Figure 1. CPM Canonical network analysis, using 2-Back, volumetric fMRI  
 Top 3: Flanker, Card Sort, 2-back; Bottom 2: Union, Intersection 
 Network Acronyms: MF, medial frontal; FP, frontoparietal; DMN, default-mode; Mot, motor; VI, 
visual A; VII, visual B; VAs, visual association; Limb, limbic; BG, basal ganglia; CBL, cerebellum 
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Supplementary Figure 2. CPM Canonical network analysis, using resting, grayordinate 
fMRI  
Top 3: Flanker, Card Sort, 2-back; Bottom 2: Union, Intersection 
Network Acronyms: FP, frontoparietal; DM, default mode; DA, dorsal attention; SM, somatomotor; 
VI, visual; SA, salience; SC, subcortical; BS/CB, brain stem/cerebellum. 
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Supplementary Figure 3. CPM Canonical network analysis, using resting, volumetric fMRI  
Top 3: Flanker, Card Sort, 2-back; Bottom 2: Union, Intersection 
Network Acronyms: MF, medial frontal; FP, frontoparietal; DMN, default-mode; Mot, motor; VI, 
visual A; VII, visual B; VAs, visual association; Limb, limbic; BG, basal ganglia; CBL, cerebellum 
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Supplementary Figure 4. CPM lesion analysis on 2-Back, volumetric fMRI data. 
 
Left: lesioning positive edge; Right: lesioning negative edges; Rows are training behaviors, 
in order of: Flanker, Card Sort, 2-back. Columns are testing behaviors, in the same order as 
rows. Colorings and notations all follow Figure 2 in the main article. Besides those listed 
below, all the p-values are < 0.001 after FWE correction.  
Exact p-values: 
listed in format of (training task-testing task, network name, type of edge, corrected p value) 
Flanker-2Back, VA, positive, p=0.007; Card Sort-Card Sort, DM, positive, p=39.91; Card Sort-2Back, 
MF, positive, p=0.005; 2Back-Flanker, SA, positive, p=0.077; Flanker-2Back, VA, negative, p=0.048; 
Card Sort-2Back, SC, negative, p=2.89; Card Sort-2Back, CB, negative, p=1.34; 2Back-Flanker, SC, 
negative, p=0.027;   
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Supplementary Figure 5. CPM lesion analysis on resting, grayordinate fMRI data. 
 
Left: lesioning positive edge; Right: lesioning negative edges; Rows are training behaviors, 
in order of: Flanker, Card Sort, 2-back. Columns are testing behaviors, in the same order as 
rows. Colorings and notations all follow Figure 2 in the main article. Besides those listed 
below, all the p-values are < 0.001 after FWE correction.  
Exact p-values:  
listed in format of (training task-testing task, network name, type of edge, corrected p value) 
Flanker-Card Sort, SC, positive, p=30.34; Flanker-2Back, SM, positive, p=0.020; Card Sort-Flanker, 
DM, positive, p=0.029; Card Sort-Flanker, DA, positive, p=36.70; Card Sort-2Back, BS/CB, positive, 
p=0.317; 2Back-Flanker, VI, positive, p=58.67; 2-Back-Flanker, BS/CB, positive, p=Nan; 2Back-
Card Sort, BS/CB, positive, p=NaN; 2Back-2Back, BS/CB, positive, p=NaN; Flanker-2Back, FP, 
negative, p=0.13; Flanker-2Back, VI, negative, p=10.94; 2Back-Card Sort, SM, negative, p=18.53;   
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Supplementary Figure 6. CPM lesion analysis on resting, volumetric fMRI data. 
Left: lesioning positive edge; Right: lesioning negative edges; Rows are training behaviors, 
in order of: Flanker, Card Sort, 2-back. Columns are testing behaviors, in the same order as 
rows. Colorings and notations all follow Figure 2 in the main article. Besides those listed 
below, all the p-values are < 0.001 after FWE correction.  
 
Exact p-values:  
listed in format of (training task-testing task, network name, type of edge, corrected p value) 
Flanker-2Back, SC, positive, p=13.87; Card Sort-Flanker, CB, positive, p=0.001; Card Sort-Card 
Sort, VIB, positive, p=49.90; 2-Back-Flanker, MF, positive, p=27.30; Flanker-Card Sort, VIA, 
negative, p=0.94; Card Sort-Flanker, CB, negative, p=0.18; Card Sort-Card Sort, VIB, negative, 
p=13.07;  2Back-2Back, SC, negative, p=0.53.  
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Supplementary Figure 7. CPM canonical network analysis of component-specific 
measures using resting-state, Grayordinate fMRI data. 
Top 3: Flanker-specific, Card Sort-specific, 2-back-specific; Bottom 2: Union, Intersection 
Network Acronyms: FP, frontoparietal; DM, default mode; DA, dorsal attention; SM, somatomotor; 
VI, visual; SA, salience; SC, subcortical; BS/CB, brain stem/cerebellum. 
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Supplementary Figure 8. CPM canonical network analysis of general control using 
resting-state, Grayordinate fMRI data. 
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Supplementary Figure 9. CPM canonical network analysis of component-specific 
measures using 2-back, volumetric fMRI data. 
Top 3: Flanker-specific, Card Sort-specific, 2-back-specific; Bottom 2: Union, Intersection 
Network acronyms: MF, medial frontal; FP, frontoparietal; DMN, default-mode; Mot, motor; VI, 
visual A; VII, visual B; VAs, visual association; Limb, limbic; BG, basal ganglia; CBL, cerebellum 
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Supplementary Figure 10. CPM canonical network analysis of general control using 2-
back, volumetric fMRI data. 
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Supplementary Figure 11. CPM canonical network analysis of component-specific 
measures using resting, volumetric fMRI data. 
Top 3: Flanker-specific, Card Sort-specific, 2-back-specific; Bottom 2: Union, Intersection 
Network acronyms: MF, medial frontal; FP, frontoparietal; DMN, default-mode; Mot, motor; VI, 
visual A; VII, visual B; VAs, visual association; Limb, limbic; BG, basal ganglia; CBL, cerebellum 
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Supplementary Figure 12. CPM canonical network analysis of general control using 
resting, volumetric fMRI data. 
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