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Background: Breast cancer (BC) is one of the leading cancers in women. Recent progress 

has enabled BC to be cured with high efficiency. However, late detection or metastatic disease 

often renders the disease untreatable. Additionally, relapse is the main cause of death in BC 

patients. Breast cancer stem cells (BCSCs) are considered to cause the development of BC and 

are thought to be responsible for metastasis and relapse. This study aimed to target BCSCs using 

dendritic cells (DCs) to treat tumor-bearing humanized mice models.

Materials and methods: NOD/SCID mice were used to produce the humanized mice by 

transplantation of human hematopoietic stem cells. Human BCSCs were injected into the mam-

mary fat pad to produce BC humanized mice. Both hematopoietic stem cells and DCs were 

isolated from the human umbilical cord blood, and immature DCs were produced from cultured 

mononuclear cells. DCs were matured by BCSC-derived antigen incubation for 48 hours. Mature 

DCs were vaccinated to BC humanized mice with a dose of 106 cells/mice, and the survival 

percentage was monitored in both treated and untreated groups.

Results: The results showed that DC vaccination could target BCSCs and reduce the tumor 

size and prolong survival.

Conclusion: These results suggested that targeting BCSCs with DCs is a promising therapy 

for BC.
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Introduction
Breast cancer (BC) is the second leading cause of cancer-related death in women.1 

Despite advances in treatment methods, such as surgery, chemotherapy, radiation 

therapy, and biological therapy, the percentage of death in BC patients remains high. 

Although targeted therapies using antibodies, such as pertuzumab and trastuzumab, 

have significantly improved the treatment of BC in recent years,2–4 some investigations 

reported that 30%–70% of BC patients relapse after 5 years.5

In recent years, dendritic cell (DC) vaccination has emerged as a promising therapy 

for cancer treatment. DCs are professional antigen-presenting cells in the human body 

that originate from bone marrow precursors.6 In an immature state, DCs exhibit high 

endocytic activity and low T-cell activation. Upon contact with an antigen, they become 

mature and can strongly activate the T-cells via cell–cell contact or by producing a 

pool of cytokines.7 These cells highly express costimulators, major histocompat-

ibility complex molecules (CD80, CD86), and CD40. Through interaction between 

CD40 (on DCs) and CD40 ligand (on T-cells), DCs can proliferate and present the 
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antigens to T-cells.8 In BC patients, DCs reportedly exhibit 

abnormalities that prevent them from efficiently presenting 

the tumor antigens to T-cells. In fact, it has been shown 

that DCs in cancer patients exhibit reduced antigen uptake, 

reduced antigen processing, low expression of costimula-

tors, weak migration, and decreased interleukin-12 (IL-12) 

production.9 It was previously demonstrated that DCs in 

BC are dysfunctional and show weaker migration to lymph 

nodes, lower expression of human leukocyte antigen (HLA) 

and CD86, and lower ability to induce IL-12 secretion in vitro 

compared with those in healthy patients.10 To address these 

problems, DC therapy was used to produce a large number 

of functional DCs ex vivo. Specifically, both hematopoietic 

stem cells (HSCs) and monocytes were collected and induced 

to DCs using a cocktail of granulocyte-macrophage colony-

stimulating factor (GM-CSF) and IL-4.11 Subsequently, the 

immature DCs were loaded with antigens in the form of 

DNA, RNA, proteins, peptides, or cell lysates to produce 

the mature DCs for further applications.

DC therapies have been used in both preclinical and 

clinical trials for various cancers, such as prostate cancer,12,13 

multiple myeloma,14,15 renal cell carcinoma,16,17 pancreatic 

cancer,18,19 leukemia,20 melanoma,21 colorectal cancer,22,23 

glioma,24,25 and BC.26–28 In almost all cases, DC vaccination 

was demonstrated to be a safe and effective method for treating 

metastatic patients.29 Importantly, some DC vaccinations have 

been approved by governmental regulatory agencies as official 

methods to treat cancers. For example, Sipuleucel-T has been 

approved by the United States Food and Drug Administra-

tion to treat human prostate cancer,30 and Vaccell has been 

approved by the Japanese Food and Drug Administration. 

To date, there are .289 clinical studies of DC-based cancer 

vaccines that are registered and under investigation (https://

www.ClinicalTrials.gov). More importantly, among the 289 

cases, six are in Phase III, and two are in Phase IV.

Recently, it has been shown that DC vaccination can 

improve BC treatment. For example, Brossart et al31 showed 

that DC vaccination with HLA-A2-restricted HER2 or MUC 

peptide-pulsed DCs induced immunologic responses in 

patients. However, the clinical efficacy of DC vaccination 

was not recorded in this study. In a separate study, Avigan 

et al32 fused DCs with BC cells and recorded immunological 

and antitumor responses. More recently, Qi et al33 adopted a 

novel inducing method for DCs by using tumor lysate, but 

the results were limited, with only a partial response. DC 

vaccine, in combination with IL-228 or IL-12, also recorded 

specific immunity against introduced antigen. In order to 

improve the outcome, some investigators combined DCs with 

cytokine killer cells and found significant improvement in the 

progression-free survival and overall survival of patients.34 

Thus, to date, DC therapy has had limitations in the improve-

ment of the clinical outcome.

Breast cancer stem cells (BCSCs) were discovered over 

10 years ago, by Al-Hajj et al,35 and have been shown to 

be the cause of breast tumor development and the drivers 

of therapeutic resistance in BC.36,37 New therapies aimed 

at targeting BCSCs have shown an increase in patient 

outcome.38,39 Therefore, we hypothesized that the existence of 

BCSCs in tumors may be responsible for the low efficacy of 

DC therapy. In this study, we aimed to evaluate the preclini-

cal trial efficacy of a DC vaccination from DCs primed from 

BCSC lysate using BC humanized mice models.

Materials and methods
Animals, BCSCs, and umbilical cord blood
NOD/SCID mice were bought from Jackson Laboratory (Charles 

River). Mice manipulations were approved by the Institutional 

Animal Care and Use Committee of Stem Cell Research 

and Application Laboratory, University of Science, Vietnam 

National University, Ho Chi Minh. All mice were housed in 

individual ventilated cages and were carefully monitored daily 

as The Institutional Animal Care and Use Committee guidelines 

(followed by Guide for the Care and Use of Laboratory Animals, 

Eighth Edition, National Institute of Health, US, published by 

The National Academies Press, Washington, DC, USA).

BCSCs were used from the previously published study.40 

BCSCs were thawed and allowed to proliferate in suitable 

conditions. BCSCs were cultured in mammosphere medium 

without fetal bovine serum supplement (ie, Dulbecco’s 

Modified Eagle’s Medium/F12 supplemented with 1% (v/v) 

prostate-specific antigen, 2% (v/v) B-27 supplement, 

20  ng/mL epidermal growth factor and basic fibroblast 

growth factor, 4 ng/mL heparin, and 10 μg/mL insulin) in 

10% O
2
, 5% CO

2
, as published previously.41 BCSCs were 

validated by flow cytometry using the surface markers with 

phenotype CD44+CD24− before being used in the experi-

ments. Briefly, BCSCs were stained with both anti-CD44 

monoclonal antibody conjugated with antigen-presenting 

cells and anti-CD24 monoclonal antibody conjugated with 

fluorescein isothiocyanate (FITC) (BD Biosciences, San 

Jose, CA, USA). Stained cells were analyzed in FASCalibur 

machine with CellQuest Pro at 10,000 events.

Umbilical cord blood (UCB) was collected as described 

previously.42 Briefly, UCB was collected from the umbilical 

cord vein with informed consent from the mother. The collec-

tion was performed in accordance with the ethical standards 

of the local ethics committee (Van Hanh General Hospital, 

Ho Chi Minh City, Vietnam).
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Isolation of HSCs from UCB
In this study, HSCs were used as unpurified, mononuclear 

cells (MNCs) that were isolated from UCB. To isolate MNCs, 

each UCB unit was diluted into a ratio of 1:1 with phosphate-

buffered saline (PBS), and 10  mL of diluted blood was 

loaded on to 25 mL Ficoll Hypaque solution (1.077 g/mL; 

Code 10771; Sigma-Aldrich Co., St Louis, MO, USA) in a 

50 mL tube. After centrifuging at 2,500 rpm for 5 minutes, 

MNCs were derived from the interphase layer and washed 

twice with PBS.

To determine the dose of HSCs for transplantation, the 

obtained MNCs were used to enumerate the HSCs. The 

number of HSCs was determined using an Enumeration 

Pro-Count Kit (BD Biosciences) following the manufac-

turer’s guidelines.

Humanized mice
NOD/SCID mice were intraperitoneally injected with 

busulfan (25  mg/kg) prepared in dimethyl sulfoxide. 

After 48 hours, total white blood cells (WBCs) and body 

weight were measured for each mouse. Only mice with 

WBCs  ,1,000  cells/mL were used to graft HSCs. Mice 

were anesthetized using ketamine (100 µL/mouse). Mice 

tails were relaxed in warm water (37°C) for 3–5 minutes. 

Tails were  then cleaned with 70% alcohol. HSCs (1×106) 

in MNCs were transfused into the tail vein with a total volume 

of 0.5 mL at a rate of 10 mL/h using an electronic pump.

The presence of human cells was determined by measur-

ing the percentage of human leukocytes (CD45 cells) in the 

peripheral blood. HSC localized in the bone marrow was 

determined by the existence of human HSCs (CD34 cells) 

in the bone marrow. HSC differentiation was determined 

based on the presence of CD3, CD4, CD8, CD1a, and CD56 

in the peripheral blood. To determine the presence of CD1a, 

CD3, CD4, CD8, CD34, CD56, and CD45, peripheral blood 

was collected at the tail vein with anticoagulation agent 

(ACD-A; BD Biosciences). Blood samples were stained with 

antibodies for CD1a, CD3, CD4, CD8, CD34, CD56, and 

CD45 conjugated with FITC for 20 minutes at room tempera-

ture. Then, blood was lysed with Pharm Lyse Lysing buffer 

(BD Biosciences). Lysed blood was diluted with 100  μL 

sheath fluid for analysis in a FACSCalibur machine. The 

human immunoglobulin G (IgG) was detected and measured 

in peripheral blood using enzyme-linked immunosorbent 

assay (ELISA) technique.

BC humanized mice
Humanized mice were injected with 1×106 BCSCs with 

GFPs into the fat pad to produce BC humanized mice. 

Mice were monitored for tumor growth and invasion. BCSCs 

were transduced with GFP as described in a previously 

published study.43

Immature DC production
MNCs were cultured in RPMI 1640 supplemented with 10% 

fetal bovine serum, 20 ng/mL GM-CSF, 50 ng/mL IL-4, 1% 

l-glutamine, and 1% penicillin/streptomycin (Sigma-Aldrich 

Co.). At day 3 of culturing, 75% of the medium was removed, 

and fresh medium was added. On day 6, DC maturation 

was induced by supplementing the complete medium with 

10,000  ng/mL BCSC-derived lysate and tumor necrosis 

factor-α (100 ng/mL). At day 3, cells were harvested and 

used in subsequent experiments.

To evaluate the phenotype of mature DCs, the differenti-

ated cells were stained with specific surface markers CD40 

(CD40-FITC), CD80 (CD80-PERCP), CD86 (CD86-PE), and 

HLA-DR (HLA-DR-FITC) in staining buffer (PBS pH 7.4, 

0.5% bovine serum albumin, 0.02% azide). The stained cells 

were analyzed by BD FACSCalibur flow cytometer.

T-lymphocyte proliferation stimulated by DCs and 

measurement of IL-12 were evaluated as described in a 

previously published study.44 There were five experimental 

groups with different ratios of DCs:lymphocytes (0.25:100, 

0.5:100, 1:100, 2:100, and 8:100) and three control groups 

with DCs + phytohemagglutinin (PHA), PHA alone, or 

PHA + lymphocytes. The T-lymphocyte concentration was 

measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltet-

razolium bromide assay kit according to the manufacturer’s 

instructions (Sigma-Aldrich Co.). Optical density values 

were read at a wavelength of 490  nm with the reference 

wavelength of 620  nm. The stimulation ability of DCs 

was calculated based on A-values. A-values were offset 

from optical density values measured for control samples 

(lymphocyte + PHA) and experimental groups. To measure 

IL-12 concentration, mature DCs were incubated in the 

fresh culture medium in a 24-well plate for 24 hours. Then, 

supernatants were collected and frozen at −80°C until analy-

sis. IL-12 concentration in the supernatants was measured 

by ELISA kits (IL-12 High Sensitivity Human ELISA Kit; 

Abcam, Cambridge, UK), and the results were analyzed 

with the DTX880 Multimode Detector (Beckman Coulter, 

Inc., Brea, CA, USA).

BCSC antigen production
BCSCs grown to 70%–80% confluence were detached with 

0.25% trypsin/ethylenediaminetetraacetic acid and washed 

two times with Dulbecco’s PBS. BCSC lysates were gen-

erated from 5×106 tumor cells by three rapid freeze–thaw 
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cycles (7 minutes in liquid nitrogen and 7 minutes in the 

water bath). The tumor cell lysates were then spun at 

700 rpm at 4°C for 10 minutes to remove cellular debris, 

and the supernatant was collected. All lysates were stored 

at −80°C until use.

DC vaccination and efficiency 
monitoring plan
On day 3, tumor-bearing mice were treated with intravenous 

injections of mature DCs in 100 μL of PBS. Tumor-bearing 

mice were sorted into two groups: 1) the treated group 

(ten mice), which was injected with 1×106 primed mature 

DCs (only one time), and 2) the untreated control (ten mice), 

which was injected with 100 μL of PBS.

From day 0 until day 30 of treatment, tumor size was 

measured using calipers in two dimensions, and size was 

calculated using the following formula: a × b2/2, where “a” 

is the tumor length and “b” is the diameter.45 The survival 

percentages of the mice were recorded in both treated and 

untreated groups during the 120 days of treatment.

Statistical methods
The results were expressed as the mean ± SD. One-way 

analysis of variance and two-tailed tests were utilized for all 

statistical analyses performed with GraphPad Prism software, 

Version 4.0 (GraphPad Software, Inc., La Jolla, CA, USA). 

P-values ,0.05 were considered statistically significant.

Results
Humanized mice models
In order to generate humanized mice, we treated NOD/SCID 

mice with 25  mg/kg busulfan in order to destroy the 

murine bone marrow. WBCs strongly decreased from 

1,788±665 cells/µL to 763±571 cells/µL, while in control 

mice, WBCs did not significantly change (1,659±571 cells/µL 

to 1,518±207  cells/µL). Busulfan also strongly decreased 

CD4 cells from 11.26%±2.45% to 1.83%±0.70%. However, 

the percentage of CD8 cells nonsignificantly reduced com-

pared with that before busulfan injection.

Ten NOD/SCID mice in the experimental group were 

injected with HSC via the tail vein, and ten NOD/SCID 

mice in the control group were injected with PBS. HSCs 

were counted based on the expression of CD45+CD34+ and 

colony-forming unit assay (Figure 1).

HSC transplantation caused many biological effects 

on mice, including an increase in body weight, changes in 

WBCs, existence of human leukocytes in murine periph-

eral blood, HSC homing in murine bone marrow, and 

multiple lineage differentiation of human HSCs in mice. 

Importantly, the HSC transplantation extended the survival 

of transplanted mice.

The results showed that experimental mice significantly 

increased their body weight, compared with that of control 

mice, especially in the first 3  weeks (the body weight 

increased from 23.18±0.15  g to 24.22±0.32  g in the first 

week and increased again to 24.68±0.27  g in the second 

week after HSC transplantation). However, after 4 weeks 

of transplantation, the body weight suddenly decreased 

from 24.14±0.48 g to 21.94±1.6 g. The WBCs in experi-

mental mice significantly decreased from the first week to 

the second week (3,504±420 cells/µL to 975±218 cells/µL). 

However, after the second week, the WBCs gradually 

increased and reached 1,947±566 cells/µL but then gradually 

decreased to 825±188 cells/µL at the fourth week.

By investigating the existence of human leukocytes 

(CD45 cells) (Figure 2), the results showed that after 2 weeks, 

the human leukocytes slightly increased, but after that this 

percentage rapidly increased up to the fourth week. How-

ever, the human CD45 cell percentage changed between the 

ten mice with large amplitude. The highest percentage of 

human CD45 leukocyte in peripheral blood achieved 37% 

in WBCs isolated from peripheral blood at day 28 after HSC 

transplantation.

After 28 days of transplantation, transplanted mice were 

used to evaluate the existence of CD34 cells in bone marrow 

(Figure 2C and D). After staining with anti-human CD34-

FITC, the results showed that 100% of mice had HSC hom-

ing to the bone marrow. Compared with the total of HSCs 

in bone marrow, the results showed that the highest human 

HSCs in bone marrow achieved 38.58% (n=3). In addition, 

the existence of different kinds of human leukocytes was 

investigated, using CD3, CD4, CD8, CD19, CD45, and 

CD56 as markers (Figure 2E–J). The results showed that 

after 35 days of transplantation, the leukocytes appeared in 

the peripheral blood, and the percentages of which rapidly 

increased in 42 days, 49 days, and 55 days.

The function of human B-cells was also evaluated using 

human IgG in peripheral blood. The human IgG concentra-

tions at 42 days, 49 days, and 55 days were 78±9.6 μg/mL, 

89±13.1 μg/mL, and 110±15.6 μg/mL, respectively. How-

ever, the HSC transplantation significantly reduced survival 

in mice. Compared with the control group, after 120 days, 

there were 20% of mice alive, while only 6.67% of mice alive 

in the experimental group. HSC transplantation also caused 

mice to die earlier than in the control group. In fact, 75 days 

after transplantation, only ~26.67% of HSC-transplanted 
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Figure 1 HSC analysis.
Notes: Samples of MNCs containing HSCs CD34 and CD45 populations were analyzed by flow cytometry. The MNC population was gated in R1 based on FSC and SSC (A), 
and the expression of CD34 (B) and CD34 versus CD45 (C) was analyzed. These HSCs could form CFUs in culture (D) (scale bar 100 µm).
Abbreviations: HSCs, hematopoietic stem cells; MNCs, mononuclear cells; FSC, forward scatter; SSC, side scatter; CFUs, colony-forming units; FITC, fluorescein 
isothiocyanate; APC, antigen-presenting cell.

mice were still alive, while 73.33% of control mice were 

still alive.

BC humanized mice
At day 30 after HSC transplantation, humanized mice were 

injected with 1×106 BCSCs into the fat pad. The results 

showed that 100% of humanized mice formed tumors, and 

invasion appeared at day 60 after BCSC transplantation 

(Figure 3A and B). More importantly, our results showed 

that BCSCs invade into the bones of 100% of the mice 

(Figure 3C). The results presented in Figure 3D–E clearly 

showed that the BCSC transplantation also caused mice to 

die earlier than in the control group.

UCB-derived DCs
To match HLA between DCs and leukocytes in human-

ized mice, both DCs and HSCs were isolated from human 

UCB. MNCs isolated from human UCB were induced by 

GM-CSF, IL-4, and BCSC-derived antigens for 10  days. 

The results are presented in Figure 4 and show that the DCs 

exhibited important characteristics of functional DCs. Spe-

cifically, they expressed some costimulator markers, such 

as CD40, CD80, CD86, and HLA-DR. After phagotogizing 

with BCSC antigen, they strongly expressed CD40, CD80, 

CD86, and HLA-DR (Figure 4E–H). More importantly, 

they successfully stimulated the allogenic T-lymphocytes 

(Figure 4I) and produced IL-12 (Figure 4J).
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Figure 2 Humanized mice after 28 days of human HSC transplantation.
Notes: Existence of human CD45 leukocytes in murine peripheral blood (A and B). The homing of human HSCs (CD45+CD34+) into mouse bone marrow (C and D). 
Existence of subtype population of human leukocytes in murine blood included CD8 cells (E), CD4 cells (F), CD3 cells (G), CD19 cells (H), CD45 cells (I), and 
CD56 cells (J).
Abbreviations: HSCs, hematopoietic stem cells; FSC, forward scatter; SSC, side scatter; APC, antigen-presenting cell.

DC vaccination lengthened the survival 
of BC humanized mice
Changes in tumor size
In our previous study, we found that the tumors in NOD/SCID 

metastasized after 30 days of treatment. Therefore, in this 

study, we only monitored the tumor size after treatment with 

DCs in the first month (30 days) and from day 30 to 75 days 

of treatment; the efficiency of treatment was evaluated by 

the survival percentage of mice.

In the first month, tumors clearly responded with DC 

treatment. Before treatment, the tumor size was about 

0.0954±0.0046 cm3 when injected with 1×106 BCSCs into 

the fat pad. These tumors strongly increased in size in control 

mice, while they slowly increased their size in the treated 

groups. In fact, at day 30, the tumor size in the control 

mice increased from 0.044±0.003 cm3 to 0.745±0.114 cm3, 

while in treated mice, the tumor size slightly increased from 

0.043±0.007 cm3 to 0.196±0.091 cm3. Taken together, we 

found that the tumor size increased eight times in control 

mice in the first month, while the tumor size only doubled 

in treated mice.

Changes in mice body weight in control 
and treated groups
The results showed that there was a slight change in the 

weight of the treated mice compared with that of control 

mice. Specifically, in control mice, the weight was main-

tained around 25 g during the first 30 days of treatment, while 

in treated mice, the weight of the mice slightly increased in 

week 1 after vaccinations and the mice maintained the weight 

during the first month. In the next month, weights of the mice 

gradually decreased, particularly in mice that eventually died. 
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In almost all cases, the deceased mice weighed between 15 g 

and 20 g in body weight.

BCSC-primed DCs vaccination changed the survival 
time of treated mice
All mice were monitored during the 120 days from the first 

day of the experiment. Figure 5 showed that the BCSC-

primed DCs changed the percentage of survival time of 

treated mice (P,0.05). In fact, after 87 days of experiment, 

70% of treated mice prolonged their survival, while only 

40% of mice survived in the control group. There was 10% 

(one of ten mice) of mice in the treated group still alive after 

120 days of monitoring, while 100% of mice in the control 

group died.

Discussion
BC is one of the most common cancers in women and is 

the second leading cause of death in women. Despite recent 

advances in the treatment of this disease, the percentage of 

relapse remains high. In particular, the existing therapies are 

unable to cure patients with metastases. Therefore, novel 

therapies are needed to overcome the current paradigm. 

DC vaccination has been suggested as a suitable strategy for 

the prevention of relapse in combination with radiation and 

chemotherapies. Therefore, DC vaccination has been used 

in the treatment of some diseases, included BC.

However, a recent analysis about DC vaccination in BC 

treatment showed that the efficacy of this therapy is much lower 

compared with the same in other cancers, such as prostate can-

cers or melanoma cancer. We proposed that the treatment effi-

cacy depended on antigens used to induce DCs. This study aimed 

to investigate the treatment efficacy of BC using BCSC-derived 

antigen-primed DCs in the BC humanized mice models.

In the first experiment, the humanized mice models 

were produced by human HSC transplantation to replace the 

mouse’s blood system. HSCs were collected from human 

UCB. NOD/SCID mice were transplanted with HSCs 

according to a previously reported dose.46,47 The analyzed 

results showed that we successfully destroyed the mice bone 

marrow using busulfan. Although many previous studies used 

radiation to remove the murine HSCs, a recent publication 

showed that busulfan was a suitable method to remove the 

murine HSCs in humanized model production.48–51 In this 

study, we showed that busulfan could efficiently destroy 

the murine bone marrow. Some previous studies also suc-

ceeded to produce humanized models with busulfan as a bone 

marrow-destroying agent.48,50

Although radiation can absolutely kill the murine 

HSCs, this method can cause a high percentage of death in 

Figure 3 Breast tumor-bearing humanized mice.
Notes: Humanized mouse with breast tumor under white light (A) and under 
GFP excitation (B). Humanized mouse with metastasis to bone (C). The Kaplan–
Meier test of survival percentage of humanized mice bearing tumors showed that 
humanized mice bearing tumors had significantly decreased survival percentage 
compared to humanized mice (D) and were confirmed by Log-rank test and Gehan-
Breslow-Wilcoxon test (E).
Abbreviations: FITC, fluorescein isothiocyanate; sig, significantly; GFPs, green 
fluorescent proteins.
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weight of the mice increased after mice receiving human 

HSCs, suggesting that the human HSCs could maintain a 

healthy hematopoietic system in the mouse. This observation 

was confirmed by the existence of human CD45 cells in the 

peripheral blood, and this cell population gradually increased 

after 2  weeks of HSC transplantation. More importantly, 

in the WBCs in the peripheral blood, there were .50% 

of cells expressing CD45, which was slightly higher than 

was reported in a previous study.48 According to Hayakawa 

et al, after receiving 2×106 HSCs for 5–8 weeks, ~60% of 

human CD45 cells were detected in the peripheral blood 

of the mice.

The gold standard in HSC transplantation is homing 

of HSC to bone marrow to recover the blood system. The 

Figure 4 UCB-derived DCs.
Notes: Expression of specific markers of DCs before being induced with GM-CSF and IL-4 (A–D) and after being induced with GM-CSF and IL-4 and BCSC antigen (E–H). 
MNCs included with GM-CSF and IL-4 and BCSC antigen strongly expressed the DC markers such as CD40, CD80, CD86, and HLA-DR. These cells also successfully 
stimulated T-lymphocytes (I) and produced IL-12 (J). Error bars were calculated as standard errors for triplicate.
Abbreviations: UCB, umbilical cord blood; DCs, dendritic cells; GM-CSF, granulocyte macrophage colony-stimulating factor; IL, interleukin; BCSC, breast cancer stem cell; 
MNCs, mononuclear cells; HLA, human leukocyte antigen; iDC, immature dendritic cell; mDC, mature dendritic cell.

mice. According to Hayakawa et al,48 a radiation dose of 

91.7 cGy/min significantly reduced mice survival. Hayakawa 

et al used busulfan to replace the radiation and showed 

higher efficacy in humanized mice creation. In our study, 

at a dose of 25 mg/kg of busulfan, mice had a significant 

reduction in body weight, as well as a reduction in WBCs. 

The results showed that busulfan exhibited its effects on the 

blood system. In fact, busulfan is an alkylation agent that 

interferes with the cell division, especially HSCs in murine 

bone marrow.49,52 By flow cytometry analysis, the results also 

showed that busulfan efficiently reduced the CD4 T-cells 

compared with CD8 T-cells.

Human HSC transplantation to busulfan-treated NOD/

SCID mice rescued the murine bone marrow. In fact, body 
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results showed that .50% of CD34+ cells in bone marrow 

were human CD34+ cells. The existence of human CD34+ 

cells in bone marrow helped peripheral blood CD45+ cells 

increase with time. More importantly, human HSCs in the 

bone marrow successfully differentiated into leukocytes, 

including T-cells (CD3, CD4, CD8, CD45), B-cells (CD19), 

and natural killer cells (CD56). In peripheral blood, human 

IgG was also detected by ELISA, demonstrating that human 

B-cells were functional. Taken together, these results indicate 

that we successfully produced humanized mice.

Subsequently, BCSCs with GFP as a reporter were 

injected into the fat pad to produce the BC humanized 

models. In line with the characteristics of BCSCs, the injected 

cells formed tumors in humanized mice. Based on GFP sig-

nal, after 30 days, dead mice revealed that the breast tumors 

had metastasized into the bone.

The results showed that BCSC-derived antigen-primed 

DC vaccination significantly inhibited the tumor growth 

and mice survival. The first evidence of the effects of the 

DC vaccination was tumor regression, compared with con-

trol mice. While the tumor size significantly increased in 

the control group, tumors in the treated mice maintained 

or slightly increased in size. The beneficial effect of DC 

vaccination was also recorded via body weight. In treated 

mice, their body weight increased. The most important 

results of BCSC-derived antigen-primed DC vaccination 

was that the BC mice survival was significantly prolonged 

after vaccination.

The main limitation of this study was noncomparison of 

treatment efficacy between BCSC-derived antigen-primed 

DCs and BC cell-derived antigen-primed DCs in breast 

tumor-bearing humanized mice models. However, these 

results showed that targeting BCSCs exhibited a good effect 

on inhibiting tumor progression and prolonged survival of 

breast tumor-bearing humanized mice models.

These results indicated that DCs successfully presented 

BCSC-derived antigens to other WBCs, such as T-cells 

and B-cells. These activated WBCs attacked tumor cells 

or BCSCs and inhibited the tumor progression, as well as 

tumor invasion. In a recent study, Kai et al used LBH589 

and salinomycin to target BCSCs in mice model.38 They 

showed that in xenograft mouse models treated with 

LBH589 and salinomycin, the drug combination effectively 

and synergistically inhibited tumor growth of ALDH1-

positive cells. Using another strategy to target BCSCs, 

Marcato et al successfully inhibited the BCSCs by oncolytic 

reovirus. Oncolytic reovirus has the potential to induce 

tumor regression in BC.53 Targeting BCSCs by Ad.mda-7 

also showed that Ad.mda-7 inhibited tumor growth associ-

ated with a decrease in proliferation and angiogenesis in 

nude mice models.54

Conclusion
Targeting BCSCs is an important strategy to treat BC. DC 

therapy is a promising alternative approach to targeting 

BCSCs. This study showed that DC-primed BCSC-derived 

antigens efficiently inhibited the tumor progression and pro-

longed the survival of BC mice. Moreover, this study also 

showed that the BC humanized mice models were feasible 

models to study and evaluate the DC therapy. Although 

further studies need to be performed to determine the mecha-

nism and side effects of BCSC-targeting DC-based therapy, 

these results suggest that BCSC-derived antigen-primed DC 

therapy is a promising therapy for BC treatment.
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