
The choroidal vasculature is essential when it comes to 
bringing oxygen and nutrients to the functioning retina and 
evacuating debris resulting from the normal visual cycle. 
Choroidal thinning is a common feature in many human eye 
diseases, including high myopia [1,2] and retinitis pigmentosa 
[3,4], and has been reproducibly observed with age [5-7]. 
However, the association between choroidal thinning and 
age-related macular degeneration (AMD) remains controver-
sial. Some authors have reported the loss of choriocapillaries 
in eyes with exudative AMD [8], and choroidal thinning has 
been detected in some studies [9-11]. Choroidal thinning 
has also been associated with geographic atrophy (GA), the 
dry form of late AMD [12-15]. A morphometric analysis 
by Ramrattan et al. more than two decades ago showed a 
decrease in choriocapillary density and diameter with age and 
in GA, but choroidal thinning was only significant with age 
[6]. Moreover, it has been reported that the choriocapillaries 
and choroid are thinner in areas where the RPE has degener-
ated [8]. However, all studies agree that aging is associated 

with significant choroidal thinning [16-18]. The exact mecha-
nisms behind choroidal thinning with age or disease are not 
clear.

The RPE is a monolayer of pigmented cells situated 
between photoreceptors and Bruch’s membrane; its plays an 
essential role in the visual cycle. RPE65, which is also called 
11-cis retinol isomerase and is strongly expressed in the RPE, 
participates in the production of 11-cis retinal [19], which is 
essential for photoreceptor function [20]. Mutations in the 
RPE65 gene cause progressive photoreceptor degeneration 
[21,22] and adult RPE65−/− mice develop degenerative RPE 
changes that are also observed in aged wild-type mice to a 
lesser degree [23]. The RPE also plays an important role in 
the maintenance of the choroid, secreting angiogenic factors 
such as vascular endothelial growth factor and cyclooxy-
genase-2 [24,25]. The primary insult in GA appears to be at 
the level of the RPE and the choriocapillaris [8,26], with the 
most obvious change being the patchy loss of RPE visible in 
fundoscopy.

No treatment for GA exists at the moment [27]. GA is 
a complex multifactorial event influenced by aging [28], 
smoking history [29], oxidative stress [30], and genetic 
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polymorphisms [31-33]. Moreover, macrophage recruitment 
plays a role in the physiopathology of GA [34]. Recently, 
animal and human studies have also suggested that T lympho-
cytes directed toward the retina or the RPE/choroid interface 
could be involved in the pathogenesis of AMD [35,36]. In 
mice, a microarray study of gene expression has shown 
that several mRNAs specific to T cells (CD3, CD8, T-cell 
receptor) and T cell–chemoattractants (CXCL9, CXCL10) 
are overexpressed in the RPE/choroid complex and retina 
during aging [37]. In addition, it has been reported that 
moderate light challenge induces mild T-cell infiltration in 
albino rats [38]. Recently, Cruz-Guilloty et al. have observed 
carboxyethylpyrrole (CEP)-specific T cells in the eyes of 
CEP-immunized mice in vivo [39]. In humans, lymphocytes, 
including CD8+ cells, have been observed in the choroid of 
eyes from AMD patients [40,41].

In the present study, we investigated the potential asso-
ciation between T-cell recruitment and RPE and choroidal 
thinning and dysfunction in aged mice and a model of photo-
oxidative stress. Using flow cytometry, we demonstrated that 
T cells are indeed recruited in the choroid of mice following 
aging or light exposure. Increased numbers of T lymphocytes 
were correlated with enhanced levels of the lymphocyte-
chemoattractant cytokine CXCL10 alone or in association 
with CXCL9. Moreover, the influx of T lymphocytes was 
associated with choroidal thinning and a reduction of RPE65 
mRNA expression or RPE thinning. Our results suggest that 
T lymphocytes could participate in choroid/RPE alterations 
and consequent degeneration associated with age or following 
photo-oxidative stress.

METHODS

Animals: C57BL/6J mice (without the retinal degeneration 8 
[Rd8] mutation) were obtained from Janvier Labs (Le Genest 
St Isle, France). All animals were housed in cyclic 12h:12h 
normal animal facility conditions (50–250 lux) with food 
and water available ad libitum. Animal experiments were 
approved by the local Institutional Animal Care and Use 
Committee and all studies were performed in accordance with 
the Association for Research in Vision and Ophthalmology 
(ARVO) Statement for the Use of Animals in Ophthalmic and 
Vision Research. Animals used for aging experiments were 
between 12 and 18 months old.

The light-challenge model: Three-month-old C57BL/6J mice 
were adapted to complete darkness for 6 h and pupils were 
fully dilated with 1% atropine (Novartis, Nanterre, France). 
Mice were then exposed to green light-emitting diode (LED) 
light (4500 Lux, JP Vezon Équipements, Chamalières, 
France) for 4 days and subsequently kept in cyclic 12h:12h 

normal animal facility conditions. The typical dominant LED 
wavelength is 505 nm (min = 500 nm; max = 510 nm). RPE 
and choroidal layer thicknesses were assessed histologically 
at 21 days after light exposure.

Flow cytometry: Animals, anesthetized using intraperitoneal 
(IP) pentobarbital (100 mg/kg), were perfused with a Dulbec-
co's PBS 1X (NaCl 137 mmol/l, KCl 2.7 mmol/l, Na2HPO4 
10 mmol/l, KH2PO4 1.8 mmol/l) intracardiac injection to 
eliminate the blood before enucleation. The isolated fresh 
RPE/choroid complex or inner retina was digested in a 3 ml 
digestion cocktail (0.05% Liberase [Sigma-Aldrich], 0.025 U/
ml DNase I [Sigma-Aldrich, St Quentin Fallavier, France]) 
at 37  °C for 30 min before being passed through a cell 
strainer to obtain a single cell suspension. After washing and 
centrifugation, cells were incubated in ice-cold PBS medium 
containing 5 mM EDTA (Sigma), 1% fetal calf serum (FCS), 
3% normal rat and mouse serum, and 10% mouse Seroblock 
FcR (anti-CD16/CD32, Abd Serotec, Kidlington, UK). Cells 
were then stained with anti-CD3-PerCPCy5.5, CD4-PE, and 
CD8-allophycocyanin (APC; BD Biosciences, Le Pont de 
Claix, France) to discriminate the lymphocyte main subpopu-
lations (CD4+ “helper” and CD8+ “cytotoxic” cells); they were 
analyzed using an LSRII Flow Cytometer (BD Biosciences). 
First, cells were analyzed using the forward-scattered light 
(FSC) parameter, which is proportional to cell-surface size, 
and the side-scattered light (SSC) parameter, which is propor-
tional to cell granularity. Doublet cell exclusion gates were 
applied so that each dot on flow cytometry corresponded 
to a unique cell. Next, cells with the morphometric char-
acteristics of lymphocytes were analyzed for expression of 
the T-lymphocyte marker CD3+ and for their CD8 and CD4 
expressions using Flow Jo V7.9 software. The number of 
cells per run was between 500,000 and 1,000,000 for pooled 
retinas and about 500,000 for pooled choroids.

Histology: Eyes were fixed in 0.5% glutaraldehyde and 
4% paraformaldehyde for 2 h, dehydrated, and mounted 
in Historesin (Leica, Nanterre, France). Five-micrometer 
oriented sections crossing the inferior pole, optic nerve, 
and superior pole were cut and stained with toluidine blue. 
Photomicrographs were taken along the whole section and 
all thicknesses were measured every 400  µm between 
-3,000 µm and +3,000 µm (distance from the optic nerve, 
0 µm). Images were captured with a DM5500 microscope 
(Leica) and analyzed using Metamorph software (Molecular 
Devices). Choroidal and RPE thicknesses were measured and 
evaluated as the area under the curve (AUC).

Enzyme-linked immunosorbent assay: Murine CXCL9 and 
CXCL10 concentrations were measured in retina and choroid 
lysates using multiplex assay following the manufacturer’s 
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protocol (Luminex, Biosource, Saint Aubin, France). For the 
aging protocol, we used eight eyes from eight different mice 
per group in two independent experiments. For the illumina-
tion protocol, we used four eyes from four mice per group in 
two independent experiments.

RNA isolation and quantitative PCR: Total RNA was isolated 
with Nucleospin RNAII (Macherey Nagel, Hoerdt, France). 
Single-stranded cDNA was synthesized from total RNA 
(pretreated with DNaseI amplification grade) using oligo-dT 
as a primer and SuperScript® reverse transcriptase (RT) (Life 
Technologies, Saint Aubin, France). Subsequent RT–PCR was 
performed using cDNA, SYBR® green Gene Expression 
Master Mix (Life Technologies) and primers (0.5 pmol/ml). 
Results were normalized via the expression of β-actin. PCR 
reactions were performed in 45 cycles of 15 s at 95 °C and 45 
s at 60 °C. The primers used for PCR were as follows: Actin 
forward primer, 5′-AAG GCC AAC CGT GAA AAG AT-3′; 
Actin reverse primer, 5′-GTG GTA CGA CCA GAG GCA 
TAC-3′; RPE65 forward primer, 5′-TGT GGC AAG AGC 
CAG ATT C-3′; and RPE65 reverse primer, 5′-GCT CAC 
CAC CAC ACT CAG AA-3′.

Statistics: Graph Pad Prism 6 (GraphPad Software, La Jolla, 
CA) was used for data analysis and graphic representation. 
All values are reported as means ± standard error of the mean 
(SEM). Statistical comparisons used unpaired t tests, non-
parametric Mann–Whitney, or one-way analysis of variance 
(ANOVA) followed by Tukey multiple comparison post hoc 
tests, as indicated in the figure legends, and p values less than 
0.05 were considered statistically significant. RPE, choroidal, 
and outer nuclear layer (ONL) thicknesses were calculated as 
AUCs and tested as described above.

RESULTS

T cells are recruited in the choroid/RPE complex in aged 
C57BL/6J mice: First, flow cytometry analysis (representative 
dot plots in Figure 1A) was performed on retinal and choroid/
RPE suspensions of young (3 months old) and aged (12–18 
months old) C57BL/6J mice (Figure 1B-C). Choroidal CD3+ 
T cells were predominantly CD8+, wShereas the number of 
choroidal CD4+ cells did not change significantly (Figure 1B, 
n= 4-6 pooled sample; ANOVA then Tukey test). As observed 
in the choroid, CD8+ cells represented the main population of 
T cells recruited in retinas of aging C57BL/6 mice (Figure 
1C, n= 4-6 pooled sample; ANOVA then Tukey test), but the 
amount of lymphocytes was lower by far than in the RPE/
choroid complex. Protein expression of the lymphocyte-
chemoattractant CXCL10, but not CXCL9, measured by 
enzyme-linked immunosorbent assay (ELISA) in RPE 
choroidal extracts, was significantly increased in the eyes of 

aged mice (Figure 1D n= 8/group; Mann-Whitney test). These 
results show a significant, preferential recruitment of CD8+ T 
cells in the choroid/RPE complex during aging in C57BL/6 
mice (the experiments were repeated three times).

The RPE and choroid are thinner in aged than in young 
C57BL/6 mice: Next, we studied the effects of aging on 
C57BL/6J mouse eyes. We compared the number of photo-
receptor nucleic rows in the ONL, choroidal thickness, and 
RPE thickness in young and old mice (Figure 1E-F). Photo-
micrographs were taken at an equal distance from the optic 
nerve on histological sections (Figure 1E-F). There was no 
statistical difference in the number of nuclei of photore-
ceptors between old and young mice (data not shown). In 
contrast, the RPE cell layer was statistically thinner in old 
C57BL/6 mice compared to young mice (Figure 1G, young n= 
4, aged= 10; Student t test). When restricted to the “central” 
retina, RPE thickness calculated as the AUC was still signifi-
cantly reduced with age (Figure 1G). Moreover, analysis of 
RPE65 mRNA levels (Figure 1H, n= 5-6/group; Student t test) 
showed a drastic reduction (10-fold) in RPE65 mRNA expres-
sion in the RPE/choroid complex of old C57BL/6 mice. The 
RPE showed patchy depigmentation in 18-month-old mice 
(Figure 1F), but not in young mice (Figure 1E). Furthermore, 
we observed a significant reduction of choroidal thickness 
in old mice compared to young mice (Figure 1I, young n= 
4, aged= 10; Student t test). When restricted to the central 
retina, choroidal thickness calculated as the AUC was no 
longer significantly reduced with age (Figure 1I); only an 
age-related tendency was found (p = 0.07). Taken together, 
our observations show that the observed T-cell accumulation 
was associated with RPE and choroidal thinning and likely 
impaired RPE function, as the RPE65 mRNA expression was 
severely reduced.

T-cell recruitment in the choroid/RPE complex in light-chal-
lenged mice: Oxidative stress is one of the recognized risk 
factors of various ocular diseases [30,42-45]. To determine 
whether oxidative stress per se could induce T-cell recruit-
ment, we induced oxidative stress through light exposure of 
3-month-old C57BL/6 mice (continuous 4,500 lux of green 
light for 4 days), which does not in itself induce photoreceptor 
degeneration in pigmented mice, as previously described [34]. 
Illumination accelerates retinal disorders [46] and induces 
mild T-cell recruitment in the retina of albino rats [38]. Flow 
cytometry analysis performed on choroid/RPE and retinal 
cell suspensions from two eyes confirmed T-cell recruitment 
(these experiments were repeated three times). As observed 
in aged mice, recruited T cells in choroids following illu-
mination were predominantly CD8+ cells (Figure 2A, n= 
4-6 pooled sample; ANOVA then Tukey test), whereas the 
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number of CD4+ T cells did not significantly increase. In 
retinal cell suspensions, significantly more T cells (CD4+ and 
CD8+) were detected in the retinas of illuminated mice than 
in non-illuminated control mice (Figure 2B, n= 4-6 pooled 
sample; ANOVA then Tukey test). Similar to our observation 
in aged mice, the number of T cells recruited in the retina was 
much lower than that detected in the choroid. Importantly, 
the expressions of the lymphotactic CXCL9 and CXCL10 

chemokines increased significantly after 4 days of illumina-
tion (Figure 2C, n= 4/group; Mann-Whitney test).

Light challenge reduces RPE65 mRNA expression and 
choroidal thicknesses: The influence of light challenge on 
photoreceptor degeneration and RPE/choroid homeostasis 
was evaluated. Photomicrographs were taken at equal 
distance from the optic nerve on histological sections of 

Figure 1. Recruitment of T cells 
in aged C57BL/6 mice and effects 
in the chorioretinal layer. A: Flow 
cytometry analysis. Representative 
dot plots of CD4 and CD8 expres-
sion in CD3+-gated cells from cell 
suspensions of pooled choroid/
RPE complexes from two eyes 
of 18-month-old C57BL/6 mice. 
SSC-A: Side-scattered light–area; 
FSC-H: Forward-scattered light–
height; APC: Allophycocyanin; 
PE: Phycoerythrin. B-C: Absolute 
quantification of CD4 and CD8+ T 
cells in pooled choroid/RPE layers 
from young or aged C57BL/6 mice 
(B). Absolute quantification of CD4 
and CD8+ T cells in pooled inner 
retina from young or aged C57BL/6 
mice (C; n = 4–6 pooled sample, 
analysis of variance (ANOVA) 
and Tukey test). D: CXCL9 and 
CXCL10 protein expression in eyes 
from young and aged mice (n = 8/
group, Mann–Whitney test) 4 days 
after the onset of illumination. E-F: 
Representative photomicrograph 
of 3-month-old C57BL/6 retina 
(E). Representative photomicro-
graph of a retina taken at the same 
distance from the optic nerve of an 
18-month-old C57BL/6 mouse (F). 
G: RPE thickness in µm2 (-3,000 
μm: inferior pole, +3,000 μm: 
superior pole, 0 μm: optic nerve) 
in young (n = 4) and old C57BL/6J 
mice (n = 10). Area under the curve 
(AUC) in young and old C57BL/6 

mice (Student t test) in the whole retina and restricted to the central retina. H: Quantitative PCR of RPE65 mRNA of young and aged 
C57BL/6 mice (n = 5–6 per group, Student t test). I: Choroidal thickness in µm2 (-3,000 μm: inferior pole, +3, 000 μm: superior pole, 0 μm: 
optic nerve) in young (n = 4) and old C57BL/6J mice (n = 10). AUC in young and old C57BL/6 mice (Student t test) in the whole retina and 
restricted to the central retina. ONL: Outer nuclear layer; ret; Retina; cho: Choroid, rpe; Retinal pigment epithelium. All scale bars represent 
20 µm. All values are represented as mean ± standard error of the mean (SEM), *p≤0.05, **p≤0.01, ***p≤0.001. 
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Figure 2. Recruitment of T cells in illuminated C57BL/6 mice and effects in the chorioretinal layer. A-B: Number of CD4+ and CD8+ in 
pooled choroidal (A) and pooled retinal (B) cell suspensions from non-illuminated (NI) versus illuminated (d14) C57BL/6 mice (n = 4–6/
group; ANOVA and Tukey test). C: CXCL9 and CXCL10 protein expression in eyes from non-illuminated and light-challenged mice (n 
= 4/group, Mann–Whitney test) 4 days after the onset of illumination. D-E: Representative photomicrographs taken 1,000 μm from the 
optic nerve of a non-illuminated mouse (E) and from a C57BL/6 mouse 21 days following illumination (D). Scale bar: 20 µm. F: RPE 
thickness in µm2 in non-illuminated (n = 4) versus illuminated C57BL/6 mice (n = 7). Area under the curve (AUC) in illuminated and non-
illuminated C57BL/6 mice (Student t test) in the whole retina and restricted to the central retina. G: Quantitative–PCR of RPE65 mRNA of 
non-illuminated versus illuminated C57BL/6 mice (n = 5–6 per group, Student t test). H: Choroidal thickness in µm2 (-3,000 μm: inferior 
pole, +3,000 μm: superior pole, 0 μm; optic nerve) in young (n = 4) and old C57BL/6J mice (n = 7) in the whole retina and restricted to 
the central retina. The AUC in illuminated and non-illuminated C57BL/6 mice (Student t test). ONL: Outer nuclear layer; ret: Retina; cho: 
Choroid; rpe; Retinal pigment epithelium. All scale bars represent 20 µm. All values are represented as mean ± standard error of the mean 
(SEM), *p≤0.05, **p≤0.01, ***p≤0.001.
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non-illuminated (Figure 2D) and illuminated C57BL/6 mice 
(Figure 2E). As previously reported [47], photoreceptor 
nucleic rows did not change following light exposure (data not 
shown). The RPE was not significantly thinner in illuminated 
mice compared to control mice (Figure 2F, non-illuminated 
n= 4, illuminated n= 7; Student t test) if we analyzed the 
AUC between -3,000 µm and +3,000 µm (distance from 
the optic nerve). When restricted to the central retina, RPE 
thickness calculated as the AUC was significantly reduced in 
light-challenged compared to non-illuminated mice (Figure 
2F). Illuminated C57BL/6 mice displayed a twofold-reduced 
expression of RPE65 mRNA compared to non-illuminated 
controls (Figure 2G, n= 5-6/group; Student t test). Choroids 
were significantly thinner in illuminated compared to 
non-illuminated mice (Figure 2H, non-illuminated n= 4, 
illuminated n= 7; Student t test). When restricted to the 
central retina, choroidal thickness calculated as the AUC 
was still significantly reduced with light challenge (Figure 
2H). In conclusion, recruitment of T cells in the choroid/RPE 
complexes and retinas of light-challenged mice was associ-
ated with choroidal thinning and reduction of RPE65 mRNA 
expression.

DISCUSSION

Using flow cytometry, we demonstrated that normal aging 
(Figure 1), as well as light challenge (Figure 2), induces T-cell 
recruitment in the choroid and retina of pigmented C57BL/6 
mice. These observations are in agreement with previous 
reports from gene expressions studies in aged, pigmented 
mice [37], as well as with observations from immunohisto-
chemistry of the retina in albino rats following moderate light 
challenge [38]. During both aging and oxidative stress, we 
observed that T-cell recruitment was predominantly located 
in the choroid rather than in the retina. Our flow cytometric 
analysis also demonstrated that most T cells expressed CD8 
rather than CD4. Moreover, we report here that T-cell recruit-
ment correlates with increased expression of the lymphotactic 
protein CXCL10 alone (aging) or in conjunction with CXCL9 
(light challenge). This increase of lymphotactic chemokines 
might participate in the observed T-cell accumulation.

More importantly, we also report that aging and light-
induced oxidative stress induce alterations of the choroid/
RPE complexes in mice. Indeed, both aging and light chal-
lenge induce choroidal thinning. Interestingly, thinning of the 
choroid has been reported in humans with age [5-7]; it has 
also been observed in the dry form of AMD [12,13,15].

We noted a reduction in the thickness of the RPE layer in 
aging mice. This observation is in agreement with findings of 
flattened RPE cells, displaying variable sizes and shapes of 

their nuclei, in OXYS rats (a model of accelerated male senes-
cence) compared to age-matched Wistar rats [48]. We also 
observed a drastic reduction (10 times) of the RPE65 mRNA 
expression in aging compared to young mice. Interestingly, 
adult RPE65−/− mice have been shown to develop degenerative 
RPE changes that are also observed in aged wild-type mice to 
a lesser degree [23]. It is therefore tempting to speculate that 
the observed age-dependent decrease in RPE65 expression in 
wild-type mice participates in the degenerative RPE changes. 
These findings confirm that aging itself induces general 
alterations of the entire choroid/RPE complex. In our photo-
oxidative stress model, we noted a tendency toward diminu-
tion in the RPE thickness, but this did not reach significance. 
However, there was a twofold reduction of the RPE65 mRNA 
expression following light challenge. Possibly, increasing the 
time or intensity of light exposure could reduce the RPE layer 
thickness significantly. Here, we used RPE65 mRNA level as 
a marker of RPE function. Its decrease reflects age- and light-
induced RPE dysfunction, but we do not show or propose 
that RPE65 mRNA levels are directly responsible for RPE 
thinning or eventual electroretinogram (ERG) changes.

In aging and following light challenge, the RPE/choroid 
complex alterations were associated with cytotoxic T-cell 
influx, as discussed above. It is tempting to speculate that 
the chronic presence of cytotoxic T cells in the choroid 
participates in the observed choroidal thinning and RPE65 
mRNA expression differences. Further studies are needed 
to determine the role and precise mechanisms of action of 
T lymphocytes. One hypothesis could involve interleukin 
(IL)-17 production by T cells, which could participate in RPE 
atrophy [49], but other studies have shown that cytotoxic T 
cells could also kill RPE cells via Fas/Fas Ligand (Fas/FasL 
or CD95/CD95L) interaction [50]. Interestingly, Gregerson 
et al. [51] showed that cytotoxic CD8+ lymphocytes could 
kill murine RPE cells in vitro via the induction of apoptosis. 
Furthermore, CD8+ cells have been shown in the choroid of 
frozen sections of donor eyes with drusen and fibrovascular 
scarring [52]. The recent proteomic comparison between 
thick and thin RPE/choroids from donor eyes by Sohn et al. 
[13] demonstrated lower levels of serine protease inhibitors 
(SERPINs) in thin RPE/choroids. Low protease inhibitor 
levels could allow recruited cytotoxic T cells to exert their 
deleterious effects by allowing, for example, granzyme-
dependent fibronectin cleavage of choroidal endothelial cell 
membranes [53].

The association of cytotoxic T lymphocytes with 
choroidal thinning needs further development to decipher 
the precise mechanisms of lymphocyte-dependent choroid/
RPE complex thinning and alterations with age and during 
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photo-oxidative stress. However, from these observations 
and data from the literature, we propose that the modulation 
of T lymphocyte recruitment or activation might be a novel 
strategy to reduce the choroid/RPE dysfunctions observed in 
several eye diseases.
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