

OPEN 🗟 ACCESS

Crystal structure of bis{*N*-[2-(dimethylamino)ethyl]quinolin-8-amine- $\kappa^3 N, N', N''$ }nickel(II) dichloride 3.5-hydrate

Benson M. Kariuki^a and Abdul-Razak H. Al-Sudani^{b*}

^aSchool of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, Wales, and ^bDepartment of Chemistry, College of Science, Baghdad University for Women, Baghdad, Iraq. *Correspondence e-mail: alsudani@uobaghdad.edu.iq

Received 10 August 2014; accepted 22 August 2014

Edited by G. Smith, Queensland University of Technology, Australia

In the title compound, $[Ni(C_{13}H_{17}N_3)_2]Cl_2\cdot 3.5H_2O$, the geometry of the NiN₆ complex cation is slightly distorted octahedral, with a facial arrangement of the two tridentate *N*-[2-(dimethylamino)ethyl]quinolin-8-amine ligands around the metal ion. The asymmetric unit consists of two independent complex half-molecules located on centres of inversion, together with two chloride counter-anions and 3.5 water molecules of solvation, one of which is disordered across an inversion centre. In the crystal, $O-H\cdots O$, $O-H\cdots Cl$ and $N-H\cdots Cl$ hydrogen-bonding interactions form a three-dimensional network structure.

Keywords: crystal structure; *N*-[2-(dimethylamino)ethyl]quinolin-8-amine; nickel(II) complex; hydrogen bonding.

CCDC reference: 1020674

1. Related literature

For background to N-containing ligands, including quinoline derivatives, see: Kizirian (2008); Miodragovic *et al.* (2008); Puviarasan *et al.* (2004); Singh *et al.* (2008); Zhang *et al.* (2009). For complexes incorporating *N*-[2-(dimethylamino)ethyl]-quinolin-8-amine, see: Al-Sudani & Kariuki (2013); Al-Sudani (2014).

2. Experimental

2.1. Crystal data [Ni(C₁₃H₁₇N₃)₂]Cl₂·3.5H₂O $M_r = 623.26$ Triclinic, $P\overline{1}$ a = 10.6940 (2) Å b = 11.8612 (4) Å c = 12.1088 (3) Å $\alpha = 90.520$ (1)° $\beta = 101.181$ (2)°

2.2. Data collection

Nonius KappaCCD diffractometer Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) $T_{min} = 0.857, T_{max} = 0.933$

2.3. Refinement $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.090$ S = 1.03

 $wR(F^2) = 0.090$ S = 1.036714 reflections 383 parameters 12 restraints $V = 1470.39 (7) Å^{3}$ Z = 2Mo K\alpha radiation $\mu = 0.88 \text{ mm}^{-1}$ T = 150 K $0.18 \times 0.16 \times 0.08 \text{ mm}$

 $\gamma = 102.259 \ (2)^{\circ}$

10258 measured reflections 6714 independent reflections 5592 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.023$

H atoms treated by a mixture of independent and constrained refinement
$$\begin{split} &\Delta\rho_{max}=0.46~e~{\rm \AA}^{-3}\\ &\Delta\rho_{min}=-0.59~e~{\rm \AA}^{-3} \end{split}$$

Table 1Hydrogen-bond geometry (Å, °).

$\overline{D-\mathrm{H}\cdots A}$	D-H	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
$N2-H2A\cdots Cl2$	1.00	2.27	3.2038 (18)	155
$N5-H5\cdots Cl1$	1.00	2.33	3.2715 (19)	156
$O1-H1O1\cdots O2^{i}$	0.83(1)	1.71(1)	2.541 (5)	173 (6)
O1−H2O1···O2 ⁱⁱ	0.84 (1)	2.05 (2)	2.863 (5)	165 (6)
O2−H1O2···Cl2 ⁱⁱⁱ	0.84(1)	2.33 (1)	3.162 (3)	172 (4)
O2−H2O2···Cl1 ^{iv}	0.83(1)	2.37 (2)	3.179 (2)	163 (4)
$O3-H1O3\cdots Cl2^{v}$	0.85 (1)	2.38 (1)	3.222 (2)	174 (3)
O3-H2O3···Cl1 ^v	0.85(1)	2.36(1)	3.2008 (19)	170 (3)
O4−H1O4···O1 ^{vi}	0.85 (1)	1.91 (1)	2.755 (5)	177 (4)
$O4-H2O4\cdots Cl1$	0.85 (1)	2.33 (1)	3.180 (3)	173 (3)

Symmetry codes: (i) x, y - 1, z; (ii) -x, -y + 1, -z + 2; (iii) -x, -y + 1, -z + 1; (iv) x, y, z + 1; (v) -x + 1, -y + 1, -z + 1; (vi) x, y + 1, z - 1.

Data collection: *COLLECT* (Nonius, 2000); cell refinement: *SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *DENZO* (Otwinowski & Minor, 1997) and *SCALEPACK*;

program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1993); program(s) used to refine structure: *SHELXL2013* (Sheldrick, 2008); molecular graphics: *Mercury* (Macrae *et al.*, 2008), *ORTEP-3 for Windows* (Farrugia, 2012) and *CHEMDRAW Ultra* (Cambridge Soft, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2010).

Acknowledgements

Gratitude is expressed to Professor P. G. Edwards of the School of Chemistry, Cardiff University, for the opportunity for ARHAS to work in his laboratory as an academic visitor for many years, without which this work would not have been accomplished, as well as for his invaluable advice and financial support.

Supporting information for this paper is available from the IUCr electronic archives (Reference: ZS2312).

References

- Al-Sudani, A.-R. H. (2014). Acta Cryst. E70, m1.
- Al-Sudani, A.-R. H. & Kariuki, B. M. (2013). Acta Cryst. E69, m491-m492.
- Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
- Cambridge Soft (2001). CHEMDRAW Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Kizirian, J.-C. (2008). Chem. Rev. 108, 140-205.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Miodragovic, D. U., Mitic, D. M., Miodragovic, Z. M., Bogdanovic, G. A. & Vitnik, Z. (2008). *Inorg. Chim. Acta*, **361**, 86–94.
- Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Puviarasan, N., Arjunan, V. & Mohan, S. (2004). Turk. J. Chem. 28, 53-65.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Singh, A. K., Kumari, S. & Kumar, K. R. (2008). Polyhedron, 27, 181-186.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Zhang, J.-A., Pan, M., Zhang, J.-Y., Kang, B.-S. & Su, C.-Y. (2009). Inorg. Chim. Acta, 362, 3519–3525.

supporting information

Acta Cryst. (2014). E70, m339-m340 [doi:10.1107/S1600536814019035]

Crystal structure of bis{*N*-[2-(dimethylamino)ethyl]quinolin-8-amine- $\kappa^3 N, N', N''$ }nickel(II) dichloride 3.5-hydrate

Benson M. Kariuki and Abdul-Razak H. Al-Sudani

S1. Comment

As stated previously, (Al-Sudani & Kariuki, 2013), metal complexes of N-containing ligands occupy an important position in coordination chemistry (Singh *et al.*, 2008; Miodragovic *et al.*, 2008; Zhang *et al.*, 2009). Some quinoline-containing ligands show interesting biological activities (Puviarasan *et al.*, 2004). 8-[2-(dimethylamino)ethylamino]-quinoline (NN'N"), is an asymmetric and potentially tridentate chelating ligand with the same donor atoms. With zinc (Al-Sudani, 2014) and cadmium ions (Al-Sudani & Kariuki, 2013), it forms neutral 1:1 metal to ligand mole ratio complexes with monomeric distorted square-pyrimidal and dimeric distorted octahedral geometries, respectively.

In the nickel(II) complex with the ligand 8-[2-(dimethylamino)ethylamino] quinoline, the title compound, $C_{26}H_{34}N_6Ni \cdot 2Cl \cdot 3.5(H_2O)$, is ionic with a 1:2 metal to ligand mole ratio and has a slightly distorted bis-tridentate NiN₆ octahedral coordination [Ni—N bond length range, 2.0777 (16)–2.2397 (17) Å] (Fig. 1). The asymmetric unit consists of two independent half molecules with the Ni²⁺ ions (Ni1 and Ni2) located on centres of inversion, as well as two chloride anions and 3.5 water molecules, one of which (O1) is disordered across an inversion centre. A network of O—H···O, O—H···Cl and N—H···Cl hydtrogen-bonding interactions are present in the crystal structure (Table 1) giving a three-dimensional network (Fig. 2). In the three complexes with this ligand (Zn, Cd and Ni), the unequivelant nitrogen donor atoms of the ligands are arranged facially around the metal ion.

S2. Experimental

To a stirred methanoic solution (30 ml) containing a slight excess of the ligand (NN'N") (0.9 g; 0.0042 mol) kept under a positive nitrogen pressure, a methanoic solution (20 ml) of NiCl₂. 6H₂O (0.47 g; 0.002 mol) was slowly added. The resulting brownish violet solution was stirred at room temperature overnight. A small amount of anhydrous MgSO₄ was added and the reaction solution was stirred for a further one hour. After the removal of the drying agent by filtration, the solvent was removed by vacuum. The solid was washed twice with a small amount of diethyl ether (15 ml) to remove any of the unreacted ligand and was then dried under vacuum at 50 °C. The mass of the collected solid was 0.5 g which, based on the molecular formula of [Ni(NN'N")2] Cl₂ represented a yield of *ca*. 45%. A suitable light brown–violet block shaped crystal of the title complex was obtained *via* slow diffusion of diethyl ether into a small amount of an acetonitrile solution of the complex as [Ni(NN'N")2] Cl₂·3.5H₂O. In the process of measuring the melting point, the colour of the crystalline brown–violet solid changed to pale green and finally to very dark green. The dark green material was identified as a bimetallic complex of the formula [Ni(NN'N")Cl₂]₂ which decomposed at *ca*. 240 °C.

S3. Refinement

H atoms were positioned geometrically (C—H = 0.95–0.99 Å and N—H = 1.00 Å) and refined using a riding model, with $U_{iso}(H)$ constrained to be 1.2 times U_{eq} of the bonded atom except for the methyl groups where it was 1.5 times with free rotation about the C—C bond. The geometry of the water molecules was constrained during refinement with O—H = 0.84 (2) Å and $U_{iso}(H) = 1.5$ times $U_{eq}(O)$.

Figure 1

The asymmetric of the title complex showing atom labels and 50% probability displacement ellipsoids. Hydrogen atoms have been omitted.

Figure 2

Packing in the crystal structure showing the O—H···O, O—H···Cl and N—H···Cl interactions as dotted lines.

Bis{N-[2-(dimethylamino)ethyl]quinolin-8-amine- $\kappa^3 N, N', N''$ }nickel(II) dichloride 3.5-hydrate

Crystal data	
[Ni(C ₁₃ H ₁₇ N ₃) ₂]Cl ₂ ·3.5H2O $M_r = 623.26$ Triclinic, $P\overline{1}$ a = 10.6940 (2) Å b = 11.8612 (4) Å c = 12.1088 (3) Å a = 90.520 (1)° $\beta = 101.181$ (2)° $\gamma = 102.259$ (2)° V = 1470.39 (7) Å ³	Z = 2 F(000) = 658 $D_x = 1.408 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 5592 reflections $\theta = 2.0-25.2^{\circ}$ $\mu = 0.88 \text{ mm}^{-1}$ T = 150 K Block, violet $0.18 \times 0.16 \times 0.08 \text{ mm}$
Data collection	
Nonius KappaCCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator CCD slices, ω and φ scans	Absorption correction: multi-scan (<i>DENZO/SCALEPACK</i> ; Otwinowski & Minor, 1997) $T_{min} = 0.857, T_{max} = 0.933$ 10258 measured reflections 6714 independent reflections 5592 reflections with $I > 2\sigma(I)$

$R_{\rm int} = 0.023$	$k = -14 \rightarrow 15$
$\theta_{\rm max} = 27.7^{\circ}, \theta_{\rm min} = 2.0^{\circ}$	$l = -15 \rightarrow 15$
$h = -13 \rightarrow 13$	

Refinement

Refinement on F^2 Hydrogen site location: mixed Least-squares matrix: full H atoms treated by a mixture of independent $R[F^2 > 2\sigma(F^2)] = 0.039$ and constrained refinement $wR(F^2) = 0.090$ $w = 1/[\sigma^2(F_o^2) + (0.0261P)^2 + 1.4643P]$ *S* = 1.03 where $P = (F_0^2 + 2F_c^2)/3$ 6714 reflections $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.46 \text{ e } \text{\AA}^{-3}$ 383 parameters 12 restraints $\Delta \rho_{\rm min} = -0.59 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	v	7	Uice*/Ucc	Occ. (<1)
$\overline{C1}$	0 1605 (2)		0 70508 (18)		
	0.1003 (2)	-0.1282	0.70598 (18)	0.0202(3)	
	0.0799	-0.1382	0.7160 0.78625 (10)	0.031°	
02	0.2743 (2)	-0.0947 (2)	0.78055 (19)	0.0333 (3)	
H2	0.2703	-0.1398	0.8505	0.040*	
C3	0.3911 (2)	-0.0301(2)	0.7709 (2)	0.0336 (5)	
H3	0.4685	-0.0283	0.8255	0.040*	
C4	0.3964 (2)	0.0340 (2)	0.67356 (19)	0.0277 (5)	
C5	0.27726 (19)	0.02971 (18)	0.59635 (17)	0.0212 (4)	
C6	0.27629 (19)	0.09175 (18)	0.49678 (18)	0.0224 (4)	
C7	0.3910 (2)	0.1567 (2)	0.4765 (2)	0.0302 (5)	
H7	0.3908	0.1983	0.4098	0.036*	
C8	0.5094 (2)	0.1622 (2)	0.5540 (2)	0.0358 (6)	
H8	0.5881	0.2080	0.5391	0.043*	
C9	0.5123 (2)	0.1027 (2)	0.6499 (2)	0.0340 (5)	
Н9	0.5928	0.1075	0.7012	0.041*	
C10	0.1447 (2)	0.00486 (19)	0.31787 (17)	0.0254 (4)	
H10A	0.2263	0.0272	0.2886	0.030*	
H10B	0.0709	0.0142	0.2578	0.030*	
C11	0.1257 (2)	-0.11934 (19)	0.34988 (18)	0.0248 (4)	
H11A	0.1214	-0.1698	0.2831	0.030*	
H11B	0.2010	-0.1288	0.4083	0.030*	
C12	-0.1075 (2)	-0.1898 (2)	0.29630 (19)	0.0314 (5)	
H12A	-0.0959	-0.2577	0.2559	0.047*	
H12B	-0.1096	-0.1262	0.2454	0.047*	
H12C	-0.1897	-0.2090	0.3233	0.047*	
C13	0.0092 (2)	-0.25829 (19)	0.45980 (19)	0.0298 (5)	
H13A	0.0202	-0.3208	0.4115	0.045*	

H13B	-0.0719	-0.2827	0.4879	0.045*
H13C	0.0834	-0.2401	0.5237	0.045*
C14	0.4792 (2)	0.57059 (19)	0.24055 (17)	0.0241 (4)
H14	0.4000	0.5922	0.2081	0.029*
C15	0.5159 (2)	0.5735 (2)	0.35907 (18)	0.0279 (5)
H15	0.4634	0.5988	0.4049	0.034*
C16	0.6272 (2)	0.5397 (2)	0.40723 (18)	0.0285 (5)
H16	0.6525	0.5411	0.4870	0.034*
C17	0.7048 (2)	0.50270 (19)	0.33842 (17)	0.0239 (4)
C18	0.66485 (19)	0.50777 (17)	0.21999 (16)	0.0204 (4)
C19	0.7417 (2)	0.47741 (18)	0.14687 (17)	0.0215 (4)
C20	0.8527 (2)	0.43944 (19)	0.18998 (18)	0.0262 (5)
H20	0.9051	0.4199	0.1409	0.031*
C21	0.8896 (2)	0.4292 (2)	0.30789 (19)	0.0285 (5)
H21	0.9649	0.4001	0.3369	0.034*
C22	0.8183 (2)	0.4607 (2)	0.37999 (18)	0.0268 (5)
H22	0.8451	0.4544	0.4588	0.032*
C23	0.2283(2)	0.4009 (2)	0.01160 (18)	0.0269 (5)
H23A	0.1344	0.3883	-0.0234	0.032*
H23B	0.2369	0.4071	0.0944	0.032*
C24	0.2821 (2)	0.2997 (2)	-0.02055(19)	0.0278 (5)
H24A	0.2325	0.2276	0.0047	0.033*
H24B	0.2705	0.2922	-0.1036	0.033*
C25	0.4344(2)	0.2817 (2)	0.15013 (18)	0.0282 (5)
H25A	0.3904	0.2006	0.1522	0.042*
H25B	0.3936	0.3307	0.1910	0.042*
H25C	0.5269	0.2920	0.1856	0.042*
C26	0.4790 (2)	0.2333 (2)	-0.0273 (2)	0.0321 (5)
H26A	0.5716	0.2419	0.0070	0.048*
H26B	0.4702	0.2500	-0.1072	0.048*
H26C	0.4323	0.1539	-0.0203	0.048*
Cl1	0.17945 (7)	0.69447 (6)	0.09796 (5)	0.04344 (16)
C12	0.17828 (6)	0.32313 (5)	0.30115 (5)	0.03642 (14)
N1	0.15965 (16)	-0.03312 (15)	0.61464 (14)	0.0205 (3)
N2	0.15207 (16)	0.08100 (15)	0.41938 (14)	0.0203 (3)
H2A	0.1392	0.1590	0.3958	0.024*
N3	0.00298 (16)	-0.15441 (15)	0.39384 (14)	0.0216 (4)
N4	0.54994 (16)	0.53923 (15)	0.17267 (14)	0.0211 (4)
N5	0.30146 (16)	0.51031 (16)	-0.02755(14)	0.0220 (4)
Н5	0.2917	0.5784	0.0167	0.026*
N6	0.42293 (17)	0.31473 (15)	0.03107 (14)	0.0235 (4)
Ni1	0.0000	0.0000	0.5000	0.01664 (9)
Ni2	0.5000	0.5000	0.0000	0.01794 (9)
01	0.0938 (4)	0.0324 (3)	0.9528 (3)	0.0467 (9)
H1O1	0.059 (6)	-0.0378 (15)	0.943 (6)	0.070*
H2O1	0.055 (6)	0.065 (4)	0.992 (5)	0.070*
02	0.0033 (3)	0.8165 (2)	0.91596 (19)	0.0614 (6)
H1O2	-0.038 (4)	0.778 (3)	0.8572 (18)	0.092*

0.5 0.5 0.5

H2O2	0.034 (4)	0.776 (3)	0.966 (2)	0.092*
O3	0.78812 (19)	0.40276 (17)	0.65477 (15)	0.0400 (4)
H1O3	0.794 (3)	0.4737 (10)	0.670 (2)	0.060*
H2O3	0.804 (3)	0.374 (2)	0.7181 (14)	0.060*
O4	0.2998 (2)	0.9624 (2)	0.0870 (2)	0.0639 (6)
H1O4	0.238 (3)	0.987 (3)	0.046 (3)	0.096*
H2O4	0.274 (4)	0.8898 (11)	0.093 (4)	0.096*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0267 (11)	0.0283 (12)	0.0244 (10)	0.0095 (9)	0.0033 (9)	0.0018 (9)
C2	0.0372 (13)	0.0379 (14)	0.0260 (11)	0.0161 (11)	-0.0010 (10)	0.0061 (10)
C3	0.0295 (12)	0.0382 (14)	0.0310 (12)	0.0154 (10)	-0.0074 (10)	-0.0024 (10)
C4	0.0236 (10)	0.0261 (12)	0.0328 (11)	0.0112 (9)	-0.0018 (9)	-0.0048 (9)
C5	0.0179 (9)	0.0204 (10)	0.0250 (10)	0.0067 (8)	0.0009 (8)	-0.0034 (8)
C6	0.0195 (10)	0.0204 (10)	0.0281 (10)	0.0074 (8)	0.0033 (8)	-0.0003 (8)
C7	0.0246 (11)	0.0251 (12)	0.0426 (13)	0.0062 (9)	0.0097 (10)	0.0040 (10)
C8	0.0190 (10)	0.0296 (13)	0.0577 (16)	0.0031 (9)	0.0074 (10)	-0.0013 (11)
C9	0.0198 (10)	0.0329 (13)	0.0470 (14)	0.0097 (9)	-0.0028 (10)	-0.0054 (11)
C10	0.0273 (11)	0.0286 (12)	0.0221 (10)	0.0071 (9)	0.0085 (8)	0.0006 (9)
C11	0.0247 (10)	0.0276 (12)	0.0245 (10)	0.0089 (9)	0.0073 (8)	-0.0033 (9)
C12	0.0305 (12)	0.0312 (13)	0.0302 (12)	0.0068 (10)	0.0007 (9)	-0.0094 (10)
C13	0.0395 (13)	0.0204 (11)	0.0320 (12)	0.0101 (9)	0.0095 (10)	-0.0006 (9)
C14	0.0229 (10)	0.0261 (11)	0.0249 (10)	0.0083 (9)	0.0058 (8)	0.0012 (9)
C15	0.0315 (12)	0.0333 (13)	0.0224 (10)	0.0100 (10)	0.0104 (9)	0.0000 (9)
C16	0.0331 (12)	0.0327 (13)	0.0198 (10)	0.0073 (10)	0.0053 (9)	0.0009 (9)
C17	0.0251 (10)	0.0234 (11)	0.0220 (10)	0.0046 (8)	0.0024 (8)	0.0027 (8)
C18	0.0199 (9)	0.0187 (10)	0.0203 (9)	0.0025 (8)	0.0003 (8)	0.0015 (8)
C19	0.0225 (10)	0.0205 (10)	0.0210 (10)	0.0045 (8)	0.0032 (8)	0.0025 (8)
C20	0.0250 (11)	0.0266 (11)	0.0278 (11)	0.0075 (9)	0.0049 (9)	0.0039 (9)
C21	0.0234 (11)	0.0312 (12)	0.0311 (11)	0.0105 (9)	0.0003 (9)	0.0074 (9)
C22	0.0273 (11)	0.0297 (12)	0.0207 (10)	0.0057 (9)	-0.0012 (8)	0.0062 (9)
C23	0.0221 (10)	0.0345 (13)	0.0253 (10)	0.0069 (9)	0.0065 (8)	0.0096 (9)
C24	0.0245 (11)	0.0268 (12)	0.0287 (11)	0.0002 (9)	0.0027 (9)	0.0039 (9)
C25	0.0331 (12)	0.0265 (12)	0.0268 (11)	0.0087 (9)	0.0074 (9)	0.0078 (9)
C26	0.0436 (14)	0.0224 (12)	0.0353 (12)	0.0120 (10)	0.0143 (11)	0.0018 (9)
Cl1	0.0589 (4)	0.0479 (4)	0.0332 (3)	0.0311 (3)	0.0112 (3)	0.0026 (3)
Cl2	0.0428 (3)	0.0371 (3)	0.0393 (3)	0.0192 (3)	0.0201 (3)	0.0156 (3)
N1	0.0195 (8)	0.0222 (9)	0.0202 (8)	0.0077 (7)	0.0013 (7)	-0.0009 (7)
N2	0.0191 (8)	0.0208 (9)	0.0216 (8)	0.0067 (7)	0.0029 (7)	0.0015 (7)
N3	0.0221 (8)	0.0204 (9)	0.0223 (8)	0.0060 (7)	0.0031 (7)	-0.0016 (7)
N4	0.0222 (8)	0.0229 (9)	0.0183 (8)	0.0057 (7)	0.0032 (7)	0.0013 (7)
N5	0.0224 (8)	0.0249 (9)	0.0196 (8)	0.0075 (7)	0.0037 (7)	0.0026 (7)
N6	0.0257 (9)	0.0212 (9)	0.0235 (9)	0.0062 (7)	0.0039 (7)	0.0035 (7)
Ni1	0.01521 (17)	0.01787 (19)	0.01697 (17)	0.00518 (13)	0.00185 (13)	0.00047 (13)
Ni2	0.01852 (18)	0.02006 (19)	0.01495 (17)	0.00518 (14)	0.00156 (13)	0.00111 (14)
01	0.056 (2)	0.028 (2)	0.051 (2)	0.0087 (18)	0.0000 (19)	-0.0011 (17)

supporting information

O2 O3	0.0768 (16) 0.0440 (10)	0.0634 (15) 0.0422 (11)	0.0489 (12) 0.0364 (9)	0.0309 (13) 0.0131 (9)	0.0067 (11) 0.0102 (8)	0.0157 (11) 0.0017 (8)
	0.0583 (14)	0.0596 (15)	0.0636 (15)	0.0000 (12)	0.0018 (11)	-0.0004 (12)
Geome	etric parameters (A	ĺ, º)				
C1-N	J1	1.322 (3)		C19—N5 ⁱ	1.	.448 (3)
C1-C	22	1.407 (3)		C20—C21	1.	419 (3)
C1—H	H1	0.9500		C20—H20	0.	.9500
C2—C	C3	1.365 (3)		C21—C22	1.	.362 (3)
С2—Н	12	0.9500		C21—H21	0.	.9500
С3—С	24	1.412 (3)		С22—Н22	0.	9500
С3—Н	13	0.9500		C23—N5	1.	.499 (3)
C4—C	C9	1.412 (3)		C23—C24	1.	.515 (3)
C4—C	25	1.418 (3)		С23—Н23А	0	.9900
C5—N	J1	1.378 (3)		С23—Н23В	0	.9900
С5—С	26	1.418 (3)		C24—N6	1.	.486 (3)
С6—С	27	1.370 (3)		C24—H24A	0.	.9900
C6—N	J2	1.450 (3)		C24—H24B	0	.9900
С7—С	28	1.411 (3)		C25—N6	1.	.486 (3)
С7—Н	17	0.9500		C25—H25A	0.	9800
C8—C	29	1.364 (4)		C25—H25B	0.	.9800
C8—H	18	0.9500		C25—H25C	0.	.9800
С9—н	19	0.9500		C26—N6	1.	480 (3)
C10—	-N2	1.498 (3)		C26—H26A	0.	9800
C10—	-C11	1.508 (3)		C26—H26B	0.	.9800
C10—	H10A	0.9900		C26—H26C	0.	.9800
C10—	H10B	0.9900		N1—Ni1	2.	.0909 (17)
C11—	N3	1.491 (3)		N2—Ni1	2	1189 (16)
C11—	H11A	0.9900		N2—H2A	1.	.0000
C11—	H11B	0.9900		N3—Ni1	2.	.2374 (17)
C12—	-N3	1.485 (3)		N4—Ni2	2.	.0778 (16)
C12—	H12A	0.9800		N5-C19 ⁱ	1.	448 (3)
C12—	H12B	0.9800		N5—Ni2	2.	.1143 (17)
C12—	H12C	0.9800		N5—H5	1.	.0000
C13—	-N3	1.481 (3)		N6—Ni2	2.	.2397 (17)
C13—	H13A	0.9800		Ni1—N1 ⁱⁱ	2.	.0909 (17)
C13—	H13B	0.9800		Ni1—N2 ⁱⁱ	2.	.1189 (16)
C13—	H13C	0.9800		Ni1—N3 ⁱⁱ	2.	.2373 (17)
C14—	-N4	1.319 (3)		Ni2—N4 ⁱ	2.	.0777 (16)
C14—	C15	1.411 (3)		Ni2—N5 ⁱ	2.	.1144 (17)
C14—	H14	0.9500		Ni2—N6 ⁱ	2.	2397 (17)
C15—	·C16	1.361 (3)		01—H101	0.	.833 (10)
C15—	H15	0.9500		O1—H2O1	0.	.836 (10)
C16—	C17	1.411 (3)		O2—H1O2	0	.835 (10)
C16—	H16	0.9500		O2—H2O2	0.	.833 (10)
C17—	-C22	1.414 (3)		O3—H1O3	0.	.846 (10)
C17—	-C18	1.420 (3)		O3—H2O3	0.	846 (10)

C18—N4	1.380 (3)	O4—H1O4	0.848 (10)
C18—C19	1.411 (3)	O4—H2O4	0.854 (10)
C19—C20	1.370 (3)		
N1—C1—C2	123.5 (2)	H23A—C23—H23B	108.2
N1—C1—H1	118.2	N6-C24-C23	111.42 (18)
C2—C1—H1	118.2	N6-C24-H24A	109.3
C3—C2—C1	119.1 (2)	C23—C24—H24A	109.3
C3—C2—H2	120.5	N6—C24—H24B	109.3
C1—C2—H2	120.5	C23—C24—H24B	109.3
C2—C3—C4	119.9 (2)	H24A—C24—H24B	108.0
С2—С3—Н3	120.1	N6—C25—H25A	109.5
С4—С3—Н3	120.1	N6—C25—H25B	109.5
C9—C4—C3	124.0 (2)	H25A—C25—H25B	109.5
C9—C4—C5	118.6 (2)	N6—C25—H25C	109.5
C3—C4—C5	117.4 (2)	H25A—C25—H25C	109.5
N1—C5—C6	117.79 (18)	H25B—C25—H25C	109.5
N1—C5—C4	122.12 (19)	N6—C26—H26A	109.5
C6—C5—C4	120.09 (19)	N6—C26—H26B	109.5
C7—C6—C5	119.51 (19)	H26A—C26—H26B	109.5
C7—C6—N2	123.0 (2)	N6—C26—H26C	109.5
C5—C6—N2	117.51 (17)	H26A—C26—H26C	109.5
C6—C7—C8	120.5 (2)	H26B—C26—H26C	109.5
С6—С7—Н7	119.8	C1—N1—C5	117.98 (18)
С8—С7—Н7	119.8	C1—N1—Ni1	128.92 (14)
C9—C8—C7	120.8 (2)	C5—N1—Ni1	112.58 (13)
С9—С8—Н8	119.6	C6—N2—C10	110.88 (16)
С7—С8—Н8	119.6	C6—N2—Ni1	109.03 (12)
C8—C9—C4	120.5 (2)	C10—N2—Ni1	106.62 (12)
С8—С9—Н9	119.7	C6—N2—H2A	110.1
С4—С9—Н9	119.7	C10—N2—H2A	110.1
N2-C10-C11	109.39 (17)	Ni1—N2—H2A	110.1
N2-C10-H10A	109.8	C13—N3—C12	106.35 (17)
C11-C10-H10A	109.8	C13—N3—C11	108.99 (16)
N2-C10-H10B	109.8	C12—N3—C11	108.26 (16)
C11—C10—H10B	109.8	C13—N3—Ni1	112.67 (13)
H10A—C10—H10B	108.2	C12—N3—Ni1	116.48 (13)
N3—C11—C10	110.47 (17)	C11—N3—Ni1	103.85 (12)
N3—C11—H11A	109.6	C14—N4—C18	118.37 (17)
C10-C11-H11A	109.6	C14—N4—Ni2	129.17 (14)
N3—C11—H11B	109.6	C18—N4—Ni2	111.46 (13)
C10—C11—H11B	109.6	C19 ⁱ —N5—C23	111.93 (16)
H11A—C11—H11B	108.1	C19 ⁱ —N5—Ni2	107.77 (12)
N3—C12—H12A	109.5	C23—N5—Ni2	106.88 (12)
N3—C12—H12B	109.5	C19 ⁱ —N5—H5	110.1
H12A—C12—H12B	109.5	C23—N5—H5	110.1
N3—C12—H12C	109.5	Ni2—N5—H5	110.1
H12A—C12—H12C	109.5	C26—N6—C25	106.69 (17)
			. ,

H12B—C12—H12C	109.5	C26—N6—C24	108.98 (17)
N3—C13—H13A	109.5	C25—N6—C24	108.49 (16)
N3—C13—H13B	109.5	C26—N6—Ni2	113.21 (13)
H13A—C13—H13B	109.5	C25—N6—Ni2	117.61 (13)
N3—C13—H13C	109.5	C24—N6—Ni2	101.49 (13)
H13A—C13—H13C	109.5	N1 ⁱⁱ —Ni1—N1	180.00 (9)
H13B—C13—H13C	109.5	N1 ⁱⁱ —Ni1—N2	99.10 (6)
N4—C14—C15	123.0 (2)	N1—Ni1—N2	80.90 (6)
N4—C14—H14	118.5	N1 ⁱⁱ —Ni1—N2 ⁱⁱ	80.90 (6)
C15—C14—H14	118.5	N1—Ni1—N2 ⁱⁱ	99.11 (6)
C16—C15—C14	119.5 (2)	N2—Ni1—N2 ⁱⁱ	180.00 (7)
C16—C15—H15	120.3	N1 ⁱⁱ —Ni1—N3 ⁱⁱ	88.88 (6)
C14—C15—H15	120.3	N1—Ni1—N3 ⁱⁱ	91.12 (6)
C15—C16—C17	119.85 (19)	N2—Ni1—N3 ⁱⁱ	97.02 (6)
C15—C16—H16	120.1	N2 ⁱⁱ —Ni1—N3 ⁱⁱ	82.98 (6)
C17—C16—H16	120.1	N1 ⁱⁱ —Ni1—N3	91.12 (6)
C16—C17—C22	124.18 (19)	N1—Ni1—N3	88.88 (6)
C16—C17—C18	117.32 (19)	N2—Ni1—N3	82.98 (6)
C22—C17—C18	118.50 (19)	N2 ⁱⁱ —Ni1—N3	97.02 (6)
N4—C18—C19	118.02 (17)	N3 ⁱⁱ —Ni1—N3	180.0
N4—C18—C17	121.87 (18)	N4 ⁱ —Ni2—N4	180.0
C19—C18—C17	120.10 (19)	N4 ⁱ —Ni2—N5	81.04 (6)
C20—C19—C18	119.92 (19)	N4—Ni2—N5	98.96 (6)
C20-C19-N5 ⁱ	122.84 (18)	N4 ⁱ —Ni2—N5 ⁱ	98.96 (6)
C18—C19—N5 ⁱ	117.24 (18)	N4—Ni2—N5 ⁱ	81.04 (6)
C19—C20—C21	120.1 (2)	N5—Ni2—N5 ⁱ	180.0
С19—С20—Н20	120.0	N4 ⁱ —Ni2—N6	89.87 (6)
C21—C20—H20	120.0	N4—Ni2—N6	90.13 (6)
C22—C21—C20	120.8 (2)	N5—Ni2—N6	84.17 (7)
C22—C21—H21	119.6	N5 ⁱ —Ni2—N6	95.83 (7)
C20—C21—H21	119.6	N4 ⁱ —Ni2—N6 ⁱ	90.13 (6)
C21—C22—C17	120.5 (2)	N4—Ni2—N6 ⁱ	89.87 (6)
C21—C22—H22	119.7	N5—Ni2—N6 ⁱ	95.83 (7)
C17—C22—H22	119.7	N5 ⁱ —Ni2—N6 ⁱ	84.17 (7)
N5—C23—C24	109.85 (17)	N6—Ni2—N6 ⁱ	180.00 (4)
N5—C23—H23A	109.7	H1O1—O1—H2O1	110 (3)
C24—C23—H23A	109.7	H1O2—O2—H2O2	113 (2)
N5—C23—H23B	109.7	H1O3—O3—H2O3	105 (2)
C24—C23—H23B	109.7	H1O4—O4—H2O4	108 (2)

Symmetry codes: (i) –*x*+1, –*y*+1, –*z*; (ii) –*x*, –*y*, –*z*+1.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
N2—H2A····Cl2	1.00	2.27	3.2038 (18)	155
N5—H5…Cl1	1.00	2.33	3.2715 (19)	156
O1—H1 <i>O</i> 1···O2 ⁱⁱⁱ	0.83 (1)	1.71 (1)	2.541 (5)	173 (6)

O1—H2 <i>O</i> 1····O2 ^{iv}	0.84 (1)	2.05 (2)	2.863 (5)	165 (6)
$O2-H1O2\cdots Cl2^{v}$	0.84 (1)	2.33 (1)	3.162 (3)	172 (4)
O2—H2 <i>O</i> 2···Cl1 ^{vi}	0.83 (1)	2.37 (2)	3.179 (2)	163 (4)
O3—H1 <i>O</i> 3····Cl2 ^{vii}	0.85 (1)	2.38 (1)	3.222 (2)	174 (3)
O3—H2O3···Cl1 ^{vii}	0.85 (1)	2.36(1)	3.2008 (19)	170 (3)
O4—H1O4···O1 ^{viii}	0.85 (1)	1.91 (1)	2.755 (5)	177 (4)
O4—H2 <i>O</i> 4···Cl1	0.85 (1)	2.33 (1)	3.180 (3)	173 (3)

Symmetry codes: (iii) *x*, *y*-1, *z*; (iv) -*x*, -*y*+1, -*z*+2; (v) -*x*, -*y*+1, -*z*+1; (vi) *x*, *y*, *z*+1; (vii) -*x*+1, -*y*+1, -*z*+1; (viii) *x*, *y*+1, *z*-1.