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Neurons have complex axonal and dendritic morphologies that are the structural building
blocks of neural circuits. The traditional method to capture these morphological structures
using manual reconstructions is time-consuming and partly subjective, so it appears impor-
tant to develop automatic or semi-automatic methods to reconstruct neurons. Here we
introduce a fast algorithm for tracking neural morphologies in 3D with simultaneous detec-
tion of branching processes. The method is based on existing tracking procedures, adding
the machine vision technique of multi-scaling. Starting from a seed point, our algorithm
tracks axonal or dendritic arbors within a sphere of a variable radius, then moves the sphere
center to the point on its surface with the shortest Dijkstra path, detects branching points
on the surface of the sphere, scales it until branches are well separated and then continues
tracking each branch. We evaluate the performance of our algorithm on preprocessed data
stacks obtained by manual reconstructions of neural cells, corrupted with different levels
of artificial noise, and unprocessed data sets, achieving 90% precision and 81% recall
in branch detection. We also discuss limitations of our method, such as reconstructing
highly overlapping neural processes, and suggest possible improvements. Multi-scaling
techniques, well suited to detect branching structures, appear a promising strategy for
automatic neuronal reconstructions.
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INTRODUCTION
Revealing the structure of the neural circuits is an important chal-
lenge in neuroscience and could illuminate the understanding of
their function. To document and measure the structure of neu-
rons one traditionally uses manual reconstructions using a Camera
Lucida or a computerized version of it. This time-tested method,
however, is slow and laborious and it is common, even for a skilled
researcher, to spend more than a week reconstructing the axonal
arbor of a single neuron. This constitutes a significant bottleneck
for the exploration of the structure of many neural circuits, partic-
ularly those, such as the neocortex, that could have many dozens of
different cell types. Moreover, reconstructions of the same neuron
by different researchers (or even by the same researcher) often dif-
fer, particularly when comparing the fine axonal branches (Yuste
laboratory, unpublished observations).

The introduction of novel imaging techniques has opened the
way for the design of automatic, or semi-automatic reconstruct-
ing methods, using stacks of microscopic images (Vasilkoski and
Stepanyants, 2009; Yuan et al., 2009; Donohue and Ascoli, 2011),
which are often preprocessed (Lichtman and Denk, 2011; Lu,
2011; Svoboda, 2011). Several different types of automated meth-
ods have been developed for neuronal reconstructions (Donohue
and Ascoli, 2011), using two types of algorithms: skeletonization-
based and tracking-based (Vasilkoski and Stepanyants, 2009; Yuan
et al., 2009). The first class of algorithms extracts neural skeletons

from grayscale (Yuan et al., 2009) or binary images (Cesar et al.,
1997; Falco et al., 2002; Janoos et al., 2008), for example, using
active contour models (Schmitt et al., 2004). However, this requires
prior knowledge from the user, who has to first define the loca-
tion of start and end points and branching points. Tracking
algorithms, on the other hand, do not require user input and
recursively find points belonging to structure boundaries and
centerlines (Can et al., 1999; Al-Kofahi et al., 2002), or apply
graph-based methods, like Dijkstra’s (1959) with either local or
global search procedures. As an example of a local procedure,
Wang et al. (2007) developed a dynamic tracking algorithm in
3D space that traverses along the axonal path while evaluating
local properties such as smoothness, proximity, and continuity.
In contrast, Dijkstra-based global tracking methods normally find
the shortest paths between characteristic points of neural skele-
ton, such as branching points, start, and end points (Peng et al.,
2010). For example, Gonzalez et al. (2010) built a graph-based
procedure to find paths between points of maximal local “den-
driteness,” called anchor points, detected using 3D steerable filters.
The topology of the structure was then captured by selecting the
minimum-cost tree, spanning the subset of the anchor points.
Finally, some global tracking procedures do not use graph-based
procedures. For example, Srinivasan et al. (2010) proposed a novel
algorithm for tracking axons that incorporates a diffusion-based
method.
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The accurate detection of branches is one of the larger dif-
ficulties in neuronal reconstructions. The majority of existing
algorithms either focus entirely on tracking straight segments or
treat branching points simply as the intersection of two or more
straight segments (Wang et al., 2011). The importance of detect-
ing branchpoints was emphasized in Al-Kofahi et al. (2008), who
introduced a generalized likelihood ratio test, defined on a spatial
neighborhood of each candidate point, in which likelihoods were
computed using a ridge-detection approach. As an alternative,
Vasilkoski and Stepanyants (2009) proposed a voxel-coded pro-
cedure, designed for de-noised and preprocessed images, in which
centers of intensity of consecutively coded wave fronts that scan the
structure are connected into a branch structure that corresponds
to the coarse trace of neurite, before an active contour method is
applied for further refinement. These branchpoints were defined
as the centers of intensity of the front regions, further divided in
subsequent steps.

Based on this earlier work, we have developed a novel algo-
rithm to track neurons using a procedure that simultaneously
detects branching regions (as opposed to branching points, see
below). Our main contribution is to introduce multi-scale tech-
niques, combining both local and global information, for auto-
matic detection and separation of branches. Our algorithm does
not rely on ridge information, requires only a single initializa-
tion by the user and appears robust on tests on noisy data-
bases. One limitation is its poor results on highly overlapping
neural processes, a general problem when using blurred images
where processes that are very close to each other, seem to
intersect.

MATERIALS AND METHODS
ORIGINAL DATA SETS
The data sets used in this study come from the DIADEM chal-
lenge (Brown et al., 2011; Gillette et al., 2011), downloaded from
http://www.diademchallenge.org/. Specifically, we used data from
olfactory projection fibers, a neocortical layer 6 neuron, cere-
bellar climbing fibers and a hippocampal CA3 interneuron. All
data sets were originally manually reconstructed in 3D into .SWC
files.

GENERATING SYNTHETIC DATA SETS
A neural tracking method typically consists of a preprocessing
module and a tracking module. Our focus was on using multi-
scaling for automatic neural tracking. Because of this, we chose a

synthetic data set, assumed to have been preprocessed. However,
differently from Vasilkoski and Stepanyants (2009) we assumed
that the image still contains noise (modeled as “salt and pep-
per” noise). In addition, we also evaluated it on unprocessed data
sets. We directly followed the procedure described in Vasilkoski
and Stepanyants (2009), except that we operated with intensity
values in the range of [0, 255] rather than fluorescence values.
Thus, we assigned to each volume voxel overlapping with the
trace the intensity value IN = 255 and to all other voxels the
intensity IB = 0, following the assumption that neurite fluores-
cence is uniformly distributed. The obtained function I (x, y, z)
[where I (x0, y0, z0) is the intensity value at point (x0, y0, z0) of
the volume] was then convolved with the Gaussian point spread
function:
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with equal standard deviation σx = σy = σz = σ in all 3D, in order
to simulate light scattering in the tissue and in the microscope.
The convolution operation produced the expected photon counts
in the image stack:
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The actual photon count n(x, y, z) was then randomly generated
for each voxel from the corresponding Poisson distributions:
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To compensate for holes inside the neurite structure, we binarized
each frame with a 0 threshold and then applied morphological
closure. The obtained result was multiplied by 255 and added
back to the volume. This way voxels inside the neurite that had
intensity value 0 were set to intensity value 255. This procedure
however did not eliminate large loops such as those created by
two separate branches that may touch. Finally, to simulate noisy
conditions we added to each frame of the image “salt and pepper”
noise (generated using Matlab function imnoise) of level d, where
d stands for the fraction of voxels corrupted with noise. This type
of noise is inherent to confocal and wide field microscopy imaging

FIGURE 1 | Exemplar frame showing fragment of neural structure corrupted with different levels of noise d : (A) d = 0, (B) d = 0.01, (C) d = 0.07, (D)

d = 0.22.
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(http://www.olympusmicro.com/primer/digitalimaging/deconvo
lution/deconintro.html). We experimentally observed that a noise
level d = 15–20% was the threshold above which a human
expert finds manual reconstruction highly difficult or impossible
(Figure 1). Thus we inferred realistic scenarios enabling human
experts to make reconstruction as characterized by a noise level
between 0 and 15–20%.

FIGURE 2 | Spanning graph around a seed point. Graph consists of
vertices connected to seed Vc (blue and red) and disconnected Vd (yellow).
Subset of Vc are candidates (red) lying within a margin m from the surface
of the sphere. Green point is the newly chosen seed point.

SPANNING GRAPH AROUND THE SEED POINT
Figures 2 and 3 illustrate the process of tracking procedure
described below. The algorithms starts tracking the neuron from
a defined seed point. Let s0 be the seed point at time t = 0. This
point is determined by the user and can be situated anywhere on
the neural tree. A sphere of the radius R is then spanned around
the seed point where R is also determined by the user. We empir-
ically verified that choosing R to be const ∗ σ where const range
from 2 to 5 gave better results. Let V denotes the voxels within
the sphere. We created a directed graph G = (V, E), where set V
becomes the set of graph vertices and E is the set of graph edges.
The edge between two vertices i and j is created if and only if the
following conditions are satisfied:

dx
(
i, j
)2 + dy

(
i, j
)2 ≤ 2 and dz (i, j) ≤ Fd

where dx, dy, and dz are Euclidean distances respectively in x, y,
and z between vertices and Fd is the distance in pixels between two
consecutive frames of the volume, provided with the data set. The
weight of the edge is determined as the weighted sum (this weight
is then used to compute the length of Dijkstra path between any
two vertices):

c1dx (i, j) + c2dy (i, j) + c3
dz (i, j)

Fd
+ c4

dc (i)

exp(1)

where dc (i) = exp
(

I max −I (i)
Imax

)2
, i is the voxel that is the head of

the directed edge, I (i) is the intensity value of that voxel and I max

FIGURE 3 | Multi-scaling procedure.The center of the sphere is the currently
analyzed seed point (green). Graph vertices connected or disconnected from
the seed point are respectively blue and yellow. (A) No branching detected.

(B) First iteration of scaling. (C) Second iteration of scaling. (D) Last (in this
case third) iteration of scaling. Green points from among the candidates (red)
are the newly chosen seeds, starting from which each branch will be tracked.
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is the brightest intensity (and can be set to the brightest inten-
sity in the sphere or in the entire volume). dc capture how far the
intensity of the target voxel (head of the directed edge) is from the
brightest intensity.

SELECTING NEW SEED POINT IN THE ABSENCE OF BRANCHING
The new selected seed point is chosen from among the set of
candidates Scan defined as follows:

Scan =
{

v ∈ Vc : R2 ≥ dx
(
v , st )2 + dy

(
v , st )2

+ dz
(
v , st )2

> (R − m)2
}

where Vc consists of vertices connected to the seed, m denotes the
margin such that the voxel within margin m from the sphere’s
surface are all considered valid candidates, st denotes current seed
point. The new seed point optimizes the objective function, that
we call the point score, over each candidate point, s ′, within Scan:
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T

is used to account for the different inter-

voxel distance in different dimensions, g 1 and g 2 are coefficients
determining the contribution of each term to the total score for
the candidate point and D is the length of the Dijkstra path. �
is the operand of the elementwise product between two vectors.
The first term is the normalized weight of Dijkstra path from the
candidate to the seed point and the second term is the normalized
angle between the two vectors: the one from the previous seed
point to the current one and the second one from the current seed
point to the candidate point. In the first iteration the cosine of this

angle is set to 1 for all candidates. The candidate chosen as the new
seed point is the one with the minimal score.

While tracking the straight neural segment, we use the approach
similar to Wang et al. (2007) where the global solution for the
shortest path problem like Dijkstra’s algorithm whose computa-
tional complexity is at least O(E +V log V ) is further simpli-
fied to the dynamic and local optimization problem with linear
computational complexity.

BRANCHING DETECTION AND MULTI-SCALING
The algorithm then initialized a multi-scaling procedure. We
defined the spread of points in the set P as:

spread (P) = max(p1,p2∈p,p1 �= p2)

∥∥p1 − p2
∥∥

R

and defined the branching region as the spherical region of
radius R spanned around currently analyzed seed point for which
spread (Scan) is above some threshold. In order to detect the
branching region, the algorithm in each step analyses the nor-
malized spatial spread of points in the set Scan, spread (Scan) by
comparing it with the user-predefined threshold thr, typically in
our experiments set to 2σ/R. If the normalized spatial spread is
larger than the threshold, the algorithm enters the “danger” mode.
In this mode the algorithm first decomposed Scan to a set of con-
nected components (connected component is a set of voxels in
Scan such that each voxel has at least one voxel from Scan in its
26-voxel neighborhood). Let CCi denote ith connected compo-
nent of Scan, let ci be its voxel with the minimal point score
and let K be the number of connected components found. The
algorithm computes the spatial spread of each of the connected
components. If at least one connected component has a spread
larger than user-predefined value thr, the algorithm starts to scale
the sphere. In each step the sphere radius is incremented by 1,
the graph is rebuilt, and sets Scan and CC are recomputed. Scal-
ing takes place until all connected components has spread smaller
than the value of threshold thr or until the maximum number
of scaling iterations itermax was reached. The voxel ci with mini-
mal score of each connected component i ∈ K becomes new seed

FIGURE 4 | Maximum intensity projection image (MIP) of: olfactory projection fibers (A) OP1; (B) OP2; (C) OP3 with superimposed reconstruction. No
multi-scaling was applied to obtain reconstructions.
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point in the corresponding connected component and ideally the
new axon branch. Figure 3 illustrates the multi-scaling procedure.
Since the branching possibly generates two new seed points, we
keep the table of seed points STAB, from which we delete cur-
rently processed seed point while keeping all those that should be
processed in the future.

Even if an expert manually reconstructs the neuron, the precise
branching point location is still subjective to the expert judg-
ment and may vary between experts. Thus, rather than the precise
location of detecting branchpoints, we focused on regions of rea-
sonable size parametrized by R, where branching is likely. Ideally,
the true branch point and the seed point for which the scaling is ini-
tialized (interpreted as the branching point detected by our algo-
rithm) should lie as close as possible and this indeed is often the
case as shown in our experiments. The importance of multi-scaling
is emphasized in Figure 4 where we show the unsatisfactory results
of tracking exemplary neurons without applying multi-scaling.

FIGURE 5 | An example of the behavior of similarity factors (similarity

factor type 1 S type 1 and similarity factor type 2 S type 2) on simple planar

example.

Algorithm 1
INPUT: R, thr, STAB=[s0], itermax
while (STAB is non-empty)

(1) s=the last element in table STAB
remove s from STAB
i=0

(2) span the sphere of radius R around s
build graph G(V, E)

run Dijkstra algorithm
select set of candidates Scan
if (spread (Scan)≤thr)

assign to each candidate a score
choose s = argmins′ ∈ Scan (score(s’))
go to (2)

else
decompose Scan to a set of connected
components {CC}
if (∀i spread (CCi)<thr)

STAB=STAB ∪ c1 ∪ c2 ∪ ... ∪ cK
go to (1)

elseif (i ≤ itermax)
R = R+1
i = i+1
go to (2)

Finally, we estimated the proximity between reconstructed and
manual traces by computing the average and variance of the
distance between the reconstructed points and their closest ground
truth points. However, the provided ground truth datasets were
not consistent in terms of the density of reconstructed points,

FIGURE 6 | Similarity factors for all data sets, from left to right

respectively: olfactory projection fibers: OP1, OP2, OP3, neocortical layer

6 axons, cerebellar climbing fibers, and hippocampal CA3 interneuron.

The results are averaged over the topologies obtained with noise levels: 0,
0.01, 0.03, 0.05, 0.07, 0.09, 0.1, and 0.15. Last two bars show average
similarity factors over all datasets.
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since, in some cases, manually reconstructed points were densely
located on the tree but in others there were significant sections
without reconstruction points.

RESULTS
We used synthetic data sets obtained from manual reconstructions
from four different types of neurons: olfactory projection fibers
(3 datasets), neocortical layer 6 axons (14 datasets), cerebellar
climbing fibers (1 dataset), and hippocampal CA3 interneuron
(14 datasets). The value of σ for the data generation was cho-
sen to be the average radius of the structure computed from
ground truth provided in .SWC files, and set it to 1 if the aver-
age was 0. Next we ran our algorithm on the data, with added
salt and pepper noise of different density d where d represents
the fraction of voxels corrupted with noise. We examined 10
different levels of noise [0, 0:01, 0:03, 0:05, 0:07, 0:09, 0:1, 0:15,
0:2, 0:22] and averaged the results over topologies obtained with

noise levels: 0, 0.01, 0.03, 0.05, 0.07, 0.09, 0.1, and 0.15. Finally
we tested our data on two “real” data sets, olfactory projec-
tion fibers: OP1 and OP3, that were slightly preprocessed. We
employed several measures of the quality of obtained reconstruc-
tions: similarity factors, number of end points, length of automatic
and manual reconstruction and precision, recall, and accuracy
of the branching region detection. We additionally report the
reconstruction time.

SIMILARITY FACTOR
We generated two volumes: Vm, obtained from the ground truth
.SWC file, and Vr, obtained from .SWC file with the tree recon-
structed by our algorithm, using the following procedure. We
reconstructed tree skeletons using linear interpolation between
tree nodes (saved in .SWC files) and then blurred the obtained
results using averaging filter of size 2σ + 1. The similarity factors

FIGURE 7 | Comparison between number of end points (A) and traces

length (B) between reconstructed topology and ground truth. The results
for reconstructed topology are averaged over the topologies obtained with
noise levels: 0, 0.01, 0.03, 0.05, 0.07, 0.09, 0.1, and 0.15.
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FIGURE 8 | (A) Maximum intensity projection of cerebellar climbing fibers with superimposed reconstruction (A1) and zoomed fragment (A2). (B) Ground truth
(B1) and (B2).

are defined as:

Stype 1 =
∑

x ,y ,z Vm(x , y , z) ∗ Vr (x , y , z)∑
x ,y ,z Vr (x , y , z) ∗ Vr (x , y , z)

Stype 2 =
∑

x ,y ,z Vm(x , y , z) ∗ Vr (x , y , z)∑
x ,y ,z Vm(x , y , z) ∗ Vm(x , y , z)

Type 1 similarity measures how well reconstructed topology
matches the ground truth topology and type 2 similarity mea-
sures how well ground truth topology matches the reconstructed
one. Figure 5 shows the simple example of the planar behavior of
similarity factors. The closer to 1 both factors are simultaneously,
the more the reconstruction resembles the ground truth (notice
however that factors can be either higher or lower than 1 but the
perfect reconstruction achieves value 1 for both factors). Figure 6
shows the values of similarity factors for all data sets. On average
the values of similarity factor type 1 was equal to 0.86 and the sim-
ilarity factor type 2 was equal to 0.87. We noticed that both factors
together capture well the level of consistency between ground truth
topology and reconstructed topology. We empirically verified that

the source of the majority of differences come from the fact that
our algorithm occasionally misses very short branches or branch
tips (of length less than R) as well as short branches located in the
very close vicinity of much longer branches, due to the fact that
the multi-scaling is performed until all branches are well separated.
This limitation could be solved by terminating the multi-scaling
process as soon as at least one branch is separated from others.

NUMBER OF END POINTS AND TRACE LENGTH
Since we observed that our algorithm occasionally misses very
short branches (of length less than R) as well as those located in
the very close vicinity of much longer branches, we wanted to
verify how this in practice affects the quality of reconstruction.
We therefore compared the number of end points and the length
of reconstructed and ground truth topology (Figure 7, following
the approach in Vasilkoski and Stepanyants, 2009). In both cases
we found very high correlation, 0.9355 and 0.9996, respectively.
However, in some cases the difference between the number of
endpoints was significant, as it is seen on Figure 7. Particularly
for cerebellar climbing fibers, the data set containing the largest
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tree with 92 end points, the difference was as high as 40, although,
surprisingly, the lengths differ slightly. We verified that the main
reason of differences between the number of end points was that
the synthetic trees contain loops. The algorithm usually split them
into two that contributes by a factor of 2 to the total number of
end points. We conjecture that this issue can be partly alleviated
by loop elimination processes. But in any case, the reconstruction

FIGURE 9 | Possible situations when algorithm initialize multi-scaling:

(A–C) true positives; (D) false positive (false alarm).

error such as loop splitting affects the tree topology only slightly
as can be seen by high similarity factors (type 1: 1 and type 2:
0.7) or directly in Figure 8 showing the detected and ground truth
reconstruction.

PRECISION, RECALL, AND ACCURACY
To judge the quality of the detection of branching regions, we

measured precision: p = tp

tp+fp
, recall: r = tp

tp+fn
, and accuracy:

a = tp+tn

tp+tn+fp+fn
, where tp is the number of true positives or the

number of correctly detected branching regions (the ones that
contain true branching points; Figures 9A–C), tn the number
of true negatives (correct detection of non-branching regions),
fp the number of false positives (the ones that do not contain
true branching points: Figure 9D), fn the number of false neg-
atives (missed branchings), and tn the number or true negatives
(correction detection of non-branching regions). tp and fp were
computed by counting the number of seed points of the recon-
structed topology for which the multi-scaling procedure was ini-
tialized, whose Euclidean distance to the closest true branching
point is respectively no more than R (for tp) or more than R (for
fp). tn was set to 0 since we have no fair measure of proximity
between our traces and the ground truth as it was mentioned in
the end of section 2.5. fn was computed by counting the num-
ber of branching points of the true topology, whose Euclidean
distance to the closest seed point of reconstructed topology for
which the multi-scaling procedure was initialized was more than
R. Figure 10 shows the values of precision, recall, and accuracy
for all data sets. The average precision obtained by our algo-
rithm is 0.9, the average recall is 0.81 and the average accuracy
is 0.75.

FIGURE 10 | Precision, recall, and accuracy for all data sets, from left to

right respectively: Olfactory projection fibers: OP1, OP2, OP3, neocortical

layer 6 axons, cerebellar climbing fibers, and hippocampal CA3

interneuron. The results for reconstructed topology are averaged over the
topologies obtained with noise levels: 0, 0.01, 0.03, 0.05, 0.07, 0.09, 0.1, and
0.15. Last two bars show average similarity factors.
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FIGURE 11 | Maximum intensity projection of: (A) neocortical layer 6 axons; (B) olfactory projection fibers OP1; (C) OP2; (D) OP3; with superimposed

reconstruction (A1–D1) and ground truth (A2–D2). Each color represents a different tree.

In Figures 8, 11, and 12 we show the results of our tracking
algorithm on most of the synthetic data sets we used in the study
with noise level d = 0 (up to the level d = 0.15 the reconstructions
were highly similar) and the ground truth for comparison. For

neocortical layer 6 axons and hippocampal CA3 interneuron we
show all trees on one MIP image, though each was reconstructed
separately. We however also did tracked all trees in the same volume
together. We followed the simple heuristics that no tree can split
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FIGURE 12 | (A) Maximum intensity projection of hippocampal CA3 (each color represents a different tree; each tree was reconstructed separately) with
superimposed reconstruction (A1) and zoomed fragment (A2). (B) Ground truth (B1) and (B2).

into more than two branches (detecting three branches indicates
that two trees must have intersected and the algorithm chooses
the middle branch since it is most probably the tree continuation).
Finally, the performance of our algorithm measured using simi-
larity factor, number of end points, trace length, precision, recall,
or accuracy was still consistently satisfactory for noise level as high
as d = 0.15, which represents a fairly noisy condition as shown in
Figure 1.

RECONSTRUCTION TIME
Figure 13 shows the reconstruction time (CPU time in seconds)
with respect to total length of neural topology (noise level 0) and
number of end points (noise level also 0). We report the number
of end points instead of the number of branches in order to be
consistent with the analysis in Vasilkoski and Stepanyants (2009).
Both the number of end points and trace length affect the tracking
time, but the more end points, or the longer the structure is, does
not necessarily requires more time to track the structure. In fact,
we found that the most time-consuming step was the scaling, so
all branching points that required multiple scaling contribute to
the significant increase of the tracking time. The average recon-
struction time for all data sets was 5 min, excluding cerebellar
climbing fibers for which the reconstruction time was as high
as 3.22 h. The program speed could be dramatically improved

by optimizing the software implementation (for example, in a
C/C++ environment). Finally, tracking time increased with noise
level (Figure 13).

PERFORMANCE ON REAL DATA SETS
We also performed experiments on real data sets (Figure 14).
We chose olfactory projection fibers OP1 and OP3, fluores-
cence images that were de-noised using simple preprocessing tool,
although we preserved the structure blurring. For each volume,
we constructed a binary mask by thresholding each frame with
an empirically determined threshold (0:035) and filtering it with
median filter of size 5. We multiplied the original volume by the
obtained 3D mask and applied a local thresholding step, dividing
the volume into blocks of size 10 × 10 × 5 (in x, y, z respectively)
and computing the mean m intensity in each of those blocks. We
next set to 0 all voxels in each block whose intensity was lower
than 0.8 ∗ m. Next we applied our tracking algorithm (Table 1).
The quality of reconstruction was worse than those for synthetic
images, especially for OP1. For this data set the main challenge
was the presence of many regions of densely packed branches due
to poor preprocessing. For OP3, on the other hand, the overall
performance is quite satisfactory. More advanced preprocessing
could enable the algorithm to achieve higher performance for real
data sets.
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FIGURE 13 | (A) Reconstruction time in seconds with respect to the length of reconstructed trace. (B) Reconstruction time in seconds with respect to the
number of end points of reconstructed trace. The results are averaged over the topologies obtained with noise levels: 0, 0.01, 0.03, 0.05, 0.07, 0.09, 0.1, and
0.15.

DISCUSSION
High-throughput, automatic 3D reconstructions of neuronal
structures could enable a quantitative description of the structure
of neural circuits. The use of image stacks has enabled the develop-
ment of many novel methods for automatic reconstructions, some
of which focus on image preprocessing to improve image quality,
whereas others use tracking procedures to reveal the neurite topol-
ogy. Most tracking algorithms either rely on ridge information
(not suitable for blurred images) or on simplified assumptions,
ignoring noise. Also, most tracking procedures do not explicitly
address branch detection, but focus instead on relatively simple
neural segments.

As an alternative, here we present a new algorithm for track-
ing the neural structure in 3D with simultaneous detection of
branching regions that does not rely on edge information and
is robust to the presence of noise in the image. Our method
tolerates a noise level up to 15%, a level beyond which even
trained human subjects may have difficulty performing manual
reconstruction. Our algorithm achieved a promising performance
(80–90% precision/recall) in detecting branching regions. The

method combines some of the techniques previously used for
3D neural tracking with multi-scaling, a technique that orig-
inated in computer vision, that enables combination of both
global and local image information. The obtained results indi-
cate that our reconstructions are very similar to ground truth
reconstruction generated by the human experts. Even though
most reconstructions were performed on synthetic data, prelim-
inary experiments suggest that it is possible to use the algorithm
also for real data sets that are first preprocessed to remove the
blurriness. It is also worth mentioning that it is not necessary
to force the neuronal structure to be continuous after prepro-
cessing since our method can be easily extended to handle small
gaps in the structured to be traced, by modifying the local graph
construction step.

In addition to the new algorithm, we have presented a com-
prehensive performance evaluation of synthetic data sets with
controlled levels of noise based on a few well-defined metrics.
Although there is no single best metric that can replace human
judgments, some of our metrics are novel, such as similarity factors
and sensitivity to noise.
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FIGURE 14 | (A1,B1) Maximum intensity projection image (MIP) of olfactory projection fibers OP1 and OP3 respectively after preprocessing, (A2,B2) binarized
MIP of OP1, OP3 respectively (C1,D1) Maximum Intensity Projection Image (MIP) of reconstructed topology of OP1, OP3, (C2,D2) Ground truth.

Table 1 | Values of similarity factor type 1 (S1) and 2 (S2), number of

end points for reconstructed topology/ground truth (EP), length in

voxels of reconstructed topology/ground truth (L), precision (p), recall

(r), and accuracy (a) in detecting branches for olfactory projection

fibers OP1 and OP3.

OP1 OP3

S1 0.4136 0.64

S2 0.6696 0.6543

EP r./g. t. 20/49 16/14

L r./g. t. 1439.1/1895.5 608.8/784.9

p 0.8750 1

r 0.4667 0.6

a 0.4375 0.6

One limitation of our algorithm is its poor results on highly
overlapping neural processes, a general problem when using highly
blurred images where processes that are very close or touch each
other, seem to intersect. Distinguishing between bifurcations or
crossings in such cases is confusing even for the experienced
human operator (Senft, 2011) and, in fact, this is believed to be the
hardest challenge in automated tracing (Lu et al., 2009; Ropireddy

et al., 2011). To the best of our knowledge, existing reconstruc-
tion systems use manual feedback provided by a human expert
to assist the computer algorithm in these ambiguity situations.
Furthermore, in these cases, tracking is often preceded by several
preprocessing steps (i.e., Luisi et al., 2011; Narayanaswamy et al.,
2011; Ropireddy et al., 2011). The reason why tracking procedures
performs poorly in these situations is because, on blurred images,
close processes look like intersecting ones and blurred branches of
a same process lying close tend to form loops. One solution could
be to develop a preprocessing platform to reduce the amount of
image blurriness and the number of loops. Finally, the lack of the
determination of the precise branching location can be perceived
as the second limitation of the algorithm. In future extension of
this work, this problem could be solved by downscaling the sphere
after the initial process of scaling to separate the branches.

In summary, our results indicate that multi-scaling is a promis-
ing approach for the automation and improvement of the qual-
ity of reconstruction of neural morphologies and should be
investigated in more depth.
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