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Abstract: Background: It is important to be able to predict, for each individual patient, the likelihood
of later metastatic occurrence, because the prediction can guide treatment plans tailored to a specific
patient to prevent metastasis and to help avoid under-treatment or over-treatment. Deep neural
network (DNN) learning, commonly referred to as deep learning, has become popular due to its
success in image detection and prediction, but questions such as whether deep learning outperforms
other machine learning methods when using non-image clinical data remain unanswered. Grid
search has been introduced to deep learning hyperparameter tuning for the purpose of improving its
prediction performance, but the effect of grid search on other machine learning methods are under-
studied. In this research, we take the empirical approach to study the performance of deep learning
and other machine learning methods when using non-image clinical data to predict the occurrence of
breast cancer metastasis (BCM) 5, 10, or 15 years after the initial treatment. We developed prediction
models using the deep feedforward neural network (DFNN) methods, as well as models using nine
other machine learning methods, including naïve Bayes (NB), logistic regression (LR), support vector
machine (SVM), LASSO, decision tree (DT), k-nearest neighbor (KNN), random forest (RF), AdaBoost
(ADB), and XGBoost (XGB). We used grid search to tune hyperparameters for all methods. We
then compared our feedforward deep learning models to the models trained using the nine other
machine learning methods. Results: Based on the mean test AUC (Area under the ROC Curve) results,
DFNN ranks 6th, 4th, and 3rd when predicting 5-year, 10-year, and 15-year BCM, respectively, out of
10 methods. The top performing methods in predicting 5-year BCM are XGB (1st), RF (2nd), and
KNN (3rd). For predicting 10-year BCM, the top performers are XGB (1st), RF (2nd), and NB (3rd).
Finally, for 15-year BCM, the top performers are SVM (1st), LR and LASSO (tied for 2nd), and
DFNN (3rd). The ensemble methods RF and XGB outperform other methods when data are less
balanced, while SVM, LR, LASSO, and DFNN outperform other methods when data are more
balanced. Our statistical testing results show that at a significance level of 0.05, DFNN overall
performs comparably to other machine learning methods when predicting 5-year, 10-year, and
15-year BCM. Conclusions: Our results show that deep learning with grid search overall performs at
least as well as other machine learning methods when using non-image clinical data. It is interesting
to note that some of the other machine learning methods, such as XGB, RF, and SVM, are very strong
competitors of DFNN when incorporating grid search. It is also worth noting that the computation
time required to do grid search with DFNN is much more than that required to do grid search with
the other nine machine learning methods.

Keywords: deep learning; DNN; machine learning; breast cancer; metastasis; metastatic breast cancer;
prediction; non-image; clinical; EHR

1. Background

In 2020, female breast cancer surpassed lung cancer as the most commonly diagnosed
cancer worldwide, with an estimated 2.3 million new cases in 2020 [1]. Breast cancer remains
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one of main cancer-related causes of death in women globally [2] and was responsible for
685,000 deaths worldwide in 2020 [1]. Breast cancer is the second leading cause of cancer
death among US women after lung cancer, estimated to account for 43,600 deaths in 2021 [3–5].
It is the number one cause of cancer-related deaths for US women aged 20 to 59 [6].

Women rarely die of breast cancer confined to the breast or draining lymph nodes;
rather, they die mainly due to metastasis, a condition in which cancer spreads to other vital
organs, such as the lung and brain. Metastatic breast cancer (MBC) is the cause of over
90% of breast cancer related deaths [7] and remains a largely incurable disease. Although
most newly diagnosed breast cancer cases are not metastatic, all patients are at risk of
developing metastatic cancer in the future, even if they are free of cancer for years after
the initial treatment. The ability to effectively predict, for each individual patient, the
likelihood of later metastatic occurrence is important, because the prediction can guide
treatment plans tailored to a specific patient to prevent metastasis and to help avoid under-
or over-treatment.

Clinicians face uncertainty in determining the ideal treatment course for individual
patients with breast cancer. For example, image-guided core needle biopsy of the breast is a
common procedure that can return non-definitive results in 5% to 15% of women. In these
cases, it is difficult to determine the subtype of the breast cancer. Variation in breast cancer
subtypes has been known to be associated with a patient’s drug response, progression of the
tumor, and survival of the patient [8,9]. There can also be significant uncertainty about the
treatment and prognosis for breast cancer. For example, HER2-amplified breast cancer is a
subtype with poor prognosis if untreated, but targeted therapeutic trastuzumab (Herceptin)
has vastly improved the survival rate of such patients. Although Herceptin is used in the
therapy of all patients with HER2-amplified tumors, only some respond. Furthermore, it is
expensive and can cause cardiac toxicity [10]. Therefore, it is important to limit its usage to
patients who are likely to benefit from it. Furthermore, histology alone does not predict
long term outcome well, as most breast cancers are considered localized to the breast at the
time of diagnosis, with most of these patients ‘cured’ upon excision. Still, up to one third of
these patients will suffer distant recurrences, often after many years [11]. As treatments are
toxic, clinical decisions need to account for prognostic predictors of outcome.

Various learning methods have been developed and applied in biomedical predic-
tion [12–18]. For instance, machine learning and language processing have been used to
identify breast cancer local recurrence [12]. A logistic regression model was developed for
cancer classification and prediction [13]. Various machine learning methods were used for
predicting ubiquitination sites by training models from physicochemical properties of protein
sequences data [14]. Bayesian network learning was used to model miRNA–mRNA interac-
tions that cause phenotypic abnormality in breast cancer patients [15]. The risk prediction of
prostate cancer recurrence was investigated through regularized rank estimation in partly
linear AFT (accelerated failure time) models using high-dimensional gene and clinical
data [16]. An automatically derived class predictor was presented to determine the class
of new leukemia cases based on gene expression monitoring by DNA micro-arrays [17].
An effective hybrid approach for selecting marker genes was developed for phenotype
classification using micro-array gene expression data [18].

A neural network (NN) is one of the machine learning methods that can be used to
conduct prediction and classification. A NN consists of layers of artificial neurons, also
called nodes, structurally mimicking, in a sense, the impulse propagation mechanism in
the human nervous system [19,20], so it is also called an artificial neural network (ANN).
The traditional ANNs contain three layers arranged in a feedforward manner: an in-
put layer, a hidden layer, and an output layer. Another type of neural network called
multilayer perceptron (MLP) closely resembles the traditional ANNs structure-wise. ANNs
can be used for unsupervised learning on unlabeled data or supervised learning on labeled
data. Deep learning is the use of neural networks composed of more than one hidden layer,
which are also referred to as deep neural networks (DNNs) [21–23].
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Artificial neural networks (ANNs), including DNNs, are widely used in science and
information technology due to their notable properties, including parallelism, distributed
storage, and adaptive self-learning capability [24–29]. They have also been used in health
care, including cancer diagnosis and prediction. For example, an ANN was developed to
help diagnose breast cancer based on the age of the patient, mass shape, mass border, and
mass density; it achieved high predictive accuracy [29]. A noise-injected neural network
was designed for breast cancer diagnosis and prognosis using expression data [29]. A hybrid
neural network and genetic algorithm method was applied to breast cancer detection [26].
In another study, an ANN was used to reduce the number of gene signatures for the
classification of breast cancer patients and the prediction of clinical outcomes, including
the capability to accurately predict breast cancer metastases [25]. The DNN has obtained
significant success in commercialized applications, such as voice and pattern recognition,
computer vision, and image processing [27,30–35]. However, its power has not been fully
explored or demonstrated in clinical applications, such as the prediction of breast cancer
metastasis (BCM). This is because the sheer magnitude of the number of variables involved
in these problems presents formidable computational and modeling challenges [36].

Precision medicine promises to help us improve patient outcomes by tailoring health-
care to the individual patient [37]. The electronic health record (EHR), a widely available
data resource, has been underutilized for the purpose of tailoring therapies and providing
prognostic information. An EHR database contains abundant data about patients’ clinical
features, disease status, interventions, and clinical outcomes, affording us the opportunity
to provide highly personalized medicine beyond only looking at the genomic level. It is
believed that “coupled with new analytics tools, they open the door to mining information
for the most effective outcomes across large populations” [10]. Such data are invaluable to
tailoring diagnosis and prognoses to individual with diseases such as breast cancer.

The LSDS (Lynn Sage Dataset) was a de-identified and publicly available clinical
dataset about breast cancer that was created and published via previous studies [38,39].
It was curated using clinical data from the Lynn Sage Database (LSDB) hosted at Lynn
Sage Comprehensive Breast Center at Northwestern Memorial Hospital and the EHR data
hosted at The Northwestern Medicine Enterprise Data Warehouse (NMEDW), Northwest-
ern University, Feinberg School of Medicine and Northwestern Memorial HealthCare.
The LSDS consists of records on 6726 breast cancer patients, which span 03/02/1990 to
07/28/2015. The dataset contains 61 patient features, including breast cancer metastasis
and its follow-up [38,39]. Three LSM (LSDS for Metastasis) datasets were retrieved from
LSDS, which focus on 5-, 10-, and 15-year BCM status, respectively [38,39]. A detailed
description of the three LSM datasets are presented in the Methods Section.

In this research, we took the empirical approach to study the performance of DFNN
models when predicting BCM using clinical data. Note that we describe the structure of
our feedforward deep learning models in detail later in the Methods Section, and we refer
to these models as the DFNN (deep feedforward neural network) models throughout the
text. We applied DFNN method to learn prediction models from LSM datasets. These
models can be used to predict 5-, 10-, and 15-year BCM. The performance of a DFNN
model is affected by the number of hidden layers and number of nodes per hidden layer,
which are called hyperparameters. In addition, there are other hyperparameters that can
be used to adjust the prediction performance of deep learning. For example, “epochs”
is a hyperparameter we consider. One epoch means a deep learning model is trained
by each of the training set samples exactly once. The learning might not converge when
epochs is too low, and model overfitting tends to get severe when it is too high. Tuning
hyperparameters is the process of identifying the set of hyperparameter values that are
expected to produce the best prediction model out of all sets of hyperparameter values
examined. Grid search is designed to conduct hyperparameter tuning in a systematic way
by going through a possible set of hyperparameter values automatically during learning.
In this study, we optimized DFNN model performance by conducting hyperparameter
tuning via grid search.
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To evaluate the performance of the DFNN, we compared our DFNN models with the
ones that we trained using nine other well-known machine learning methods. We applied
hyperparameter tuning and grid search to optimize model performance for each of the
nine comparison methods. We conjectured that the performance of our DFNN models
with grid search would be comparable to that of other machine learning methods when
predicting the binary status of BCM. We posit this conjecture, because deep learning is a
very powerful tool for prediction and has been successful in other applications, such as
image recognition [35,40–48]. In this study, we use the DFNN models to predict 5-, 10-, and
15-year BCM by learning from non-image clinical EHR data. Through literature searching,
we found some deep learning related studies that use image data to predict BCM [41–45],
but we have not found a study that resembles ours.

2. Methods
2.1. Datasets

In this study, we used three LSM datasets about breast cancer metastasis: LSM-5Year,
LSM-10Year, and LSM-15Year. Missing data were filled in using the nearest neighbor (NN)
imputation algorithm [39]. Metastatic case counts of each of the three datasets are shown
in Table 1. Each of the three datasets contains 32 variables: 31 predictors and the target
variable “metastasis.” Using LSM-5Year as an example, as described in [39], the value “yes”
was assigned to “metastasis” if the patient metastasized within 5 years of initial diagnosis,
the value “no” to “metastasis” if it was known that the patient did not metastasize within
5 years. The 31 predictors are defined in Table S1. Our objective was to learn and optimize
prediction models from LSM datasets using DFNN and 9 other machine learning methods,
and then to compare the performance of these models.

Table 1. Case counts of the LSM datasets (#: number).

Total # of Cases # Positive Cases # Negative Cases

LSM-5year 4189 437 3752

LSM-10year 1827 572 1255

LSM-15year 751 608 143

2.2. Feedforward Neural Networks

Our DFNN models are fully connected feedforward neural networks composed of
more than one hidden layer. Figure 1 shows the general structure of a feedforward deep
neural network that contains n hidden layers and an output layer that has two nodes. The
inputs to the neural network are the observed values of the predictor variables in the dataset,
while the outputs are the values of the target variable. In this research, we have 31 predictor
variables, so m, the number of nodes in our input layer, is equal to 31. X0 represents the node
for the bias passing from the input layer to the first hidden layer. The activation function
f (x) of a node determines the value to be passed to the next node based on the value of
the current node x. We used a rectifier linear unit (ReLU), in which f (x) = max(0, x) , as
the activation function in the input layer [36–49]. Since our datasets only contain positive
values, by using ReLU as the activation function, all input values to our neural network
model are directly passed to the hidden layers. In Figure 1, the first hidden layer has p
hidden nodes, the second hidden layer has q hidden nodes, and the nth hidden layer has
r hidden nodes, indicating each hidden layer is allowed to have a different number of
hidden nodes. We used ReLU as the activation function in each of the hidden layer(s) to
avoid the vanishing gradient problem [36–49]. w[1]

ij (i = 0, 2, . . . , m; j = 1, 2, · · · , p)
represents the connecting weights between the input layer and the first hidden layer,
w[2]

jk (j = 0, 1, 2, · · · , p; k = 1, 2, · · · , q) represents the connecting weights between the

first hidden layer and the second hidden layer, and w[n+1]
st (s = 0, 2, · · · , r; t = 1, 2)

represents the connecting weights between the last hidden layer and the output layer.
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n is the number of hidden layers. b[1] j(j = 1, 2, · · · , p) represents the biases of the
nodes in the first hidden layer, b[2]k(k = 1, 2, · · · , q) represents the biases of the nodes
in the second hidden layer, and b[n+1]

t(t = 1, 2) represents the biases of the nodes in the
output layer. We have two nodes in the output layer, one for each target value. Recall
that “metastasis” is our binary target variable, which has two values: “yes” or “no”.
We used the binary cross-entropy loss function, and sigmoid activation function in the
output layer [36–49]. In this study, the initial values of weights and bias are provided
by the he_normal weight initializer [50]. He_normal draws samples from a truncated
normal distribution centered on 0 with stddev = sqrt(2 / num_in) where num_in is the
number of nodes in a layer [50]. TensorFlow [51] is an open-source library widely used for
developing deep learning models. Keras is a high-level neural network API built on top
of TensorFlow [52,53]. Our DFNN model learner was coded in Python and implemented
using the Keras and TensorFlow packages.
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2.3. Hyperparameter Tuning with Grid Search

Deep learning is a powerful machine learning method due to its large number of
hyperparameters that can be optimized [40]. See Table 2 for the hyperparameters and their
values that we tested when training our DFNN models. The number of hidden layers and
number of hidden nodes are structural hyperparameters that greatly affect model perfor-
mance, each of which can assume numerous different values. SGD (stochastic gradient
descent) and AdaGrad (adaptive gradient descent) are two commonly used optimizers.
SGD adjusts its learning rate via momentum and decay, the two other hyperparameters
that can be tuned during training. AdaGrad adapts the learning rate to the parameters,
conducting smaller-step updates for parameters linked to frequently appearing features,
and larger-step updates for parameters linked to less frequent features. The learning rate is
a hyperparameter that governs how big of a step it takes each time to update the internal
model parameters (weights and biases) in response to the estimated error during the model
training process. It is used by both the SGD and AdaGrad. The momentum, a moving
average of the gradients, is integrated in SGD to help accelerate the convergence of training.
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The decay is an iteration-based decay factor that can be used to decrease learning rate
in each epoch during the optimization process. It is a hyperparameter incorporated in
both SGD and AdaGrad to help optimize model performance. The batch_size is also a
hyperparameter in Keras, which controls the number of the training samples that are “fed”
to the neural network before internal model parameters are updated. Other hyperparam-
eters, including epochs, dropout rate, L1, and L2, will be discussed in the “Overfitting”
subsection below.

Table 2. Description of the DFNN (deep feedforward neural network) hyperparameters and their
values tested (note: # represents the word “number” in this table).

Hyperparameter Description Values

# of Hidden Layers The depth of a DFNN 1, 2, 3, 4

# of Hidden Nodes Number of neurons in a hidden layer 10, 20, . . . , 70, 75, 80, 90, . . . , 120, 200, 300, . . . , 1100

Optimizer Optimizes internal model parameters towards
minimizing the loss SGD (stochastic gradient descent), AdaGrad

Learning rate Used by both SGD and AdaGrad 0.001 to 0.3, step size: 0.001

Momentum Smooths out the curve of gradients by moving
average. Used by SGD. 0, 0.4, 0.5, 0.9

Iteration-based decay Iteration-based decay; updating learning rate
by a decreasing factor in each epoch 0 0.0001, 0.0002, . . . , 0.001, 0.002, . . . , 0.01

Dropout rate Manage overfitting and training time by
randomly selecting nodes to ignore 0, 0.4, 0.5

Epochs Number of times model is trained by each of
the training set samples exactly once 20, 30, 50, 80, 100, 200, . . . , 800

Batch_size Unit number of samples fed to the optimizer
before updating weights 1, 10, 20, . . . , 100

L1 (Lebesgue 1) Sparsity regularization 0, 0.0005, 0.0008, 0.001, 0.002, 0.005, 0.008, 0.01, 0.02,
0.05, 0, 0.1, 0.2, 0.5

L2 (Lebesgue 2) Weight decay regularization; it penalizes large
weights to adjust the weight updating step

0, 0.0005, 0.0008, 0.001, 0.002, 0.005, 0.008, 0.01, 0.02,
0.05, 0, 0.1, 0.2, 0.5

L1ORL2 Using L1 and L2 combinations to
regularize overfitting L1 only, L2 only, L1 and L2

Hyperparameter tuning is the process of identifying the set of hyperparameter values
that is expected to produce the best prediction model from all sets of hyperparameter
values being examined. Hyperparameter tuning gives us the power to optimize model
performance but tuning a large number of hyperparameters presents a major challenge in
terms of computation time [36,53,54]. Grid search is designed to conduct hyperparameter
tuning in a systematic way by going through each of the sets of hyperparameter values
automatically during the model training process [55]. In addition to grid search, there are
other approaches of hyperparameter tuning, including Bayesian optimization and genetic
algorithm [56]. One of the advantages of grid search is that the hyperparameter settings are
independent. This makes it suitable to conduct parallel computing. Bayesian optimization
and genetic algorithm are both considered as a type of sequential optimization method,
with which the existing results will influence the subsequent model hyperparameter se-
lection [57]. In this research, we focus on testing our central hypothesis, which states that
our feedforward deep learning model with grid search is a competitive machine learning
method when predicting the binary status of BCM.

We tried to improve model performance by conducting grid search implemented in
Python using the scikit-learn package [51,52]. In a grid search, each of the hyperparameters
is given a series of values; the program will then iterate through every hyperparameter
value combination possible to train models. We call a hyperparameter value combination
a hyperparameter setting. We conducted grid search many times, each time focusing
on giving a set of values to each of the hyperparameters. In this research, we took a
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heuristic approach to select the range of hyperparameter values that are fed to a grid search.
The range of values for a hyperparameter are predetermined in various ways, such as
preliminary experiments, literal searching, and computation resource and time limitation
that we have. For example, we decided to focus on checking up to 4 hidden layer models,
because we found that further extending number of hidden layers takes up too much
computing power but with overall worse results based on some preliminary experiments
we conducted. So, the deepest model we trained contains 6 layers, counting the input and
output layer. Another example is that the model performance normally becomes worse
once epochs exceeds 800 based on our preliminary experiments, so we set the maximum
number of epochs to be 800. In each grid search, we randomly chose a set of values from the
range of values for each of the hyperparameters (Table 2) based on the maximum number
of hyperparameter settings that we can handle in reasonable time.

2.4. Overfitting

Overfitting is a phenomenon in which the model performs well on training data but
generalizes poorly to unseen data [58–60]. Overfitting occurs when the model is complex
and has a large number of parameters, such as in a DNN model, but insufficient data to
accurately capture the underlying relationships between the variables [58]. Overfitting
is a common problem in machine learning, and it is overwhelmingly discussed in deep
learning due to its significant effect on the performance of DNN models. A Google search
using “overfitting in deep learning” identified 280,000 articles published between 2015 and
2020. This is not only because we are dealing with a large set of hyperparameters in deep
learning, but also because the number of internal parameters increases dramatically as the
number of hidden layers and the number of hidden nodes per layer increase.

It is not possible to completely eliminate overfitting, but we took multiple approaches
to minimize the effect of overfitting. First, we tuned “dropout rate” and “epochs” to
reduce the effect of overfitting [40]. The “dropout” is a hyperparameter with which
neurons are randomly dropped out during training to reduce time cost and minimize model
overfitting [40]. The epochs is a hyperparameter that helps balance model convergence
and overfitting [59]. It defines the number of times that the entire training data are used by
the learning algorithm during training. One epoch means every sample in the training set
has been used exactly once to update the internal model parameters. Secondly, we tuned
regularization hyperparameters L1 and L2 to reduce overfitting. L1, a factor associated
with LASSO regularization, can be used to remove the effect of the “noisy” input nodes
and make the network less complex [60]. L1 is also called a sparsity regularization factor.
L2 is a regularization factor based on weight-based decay, which penalizes large weights to
adjust the weight updating step during model training [60]. We also introduced another
parameter, named “L1OrL2”, with which we can choose to tune L1 alone, L2 alone, or L1
and L2 simultaneously in a grid search. Finally, we used percent_AUC_diff to quantify and
keep track of the overfitting of a model. The percent_AUC_diff is an output parameter in
our grid search procedure, which represents the percent difference between mean train
AUC and mean test AUC. When we selected the best DFNN models, we not only considered
the mean test AUC values, but also made sure the percent_AUC_diff was less than 5%.

2.4.1. Performance Metrics and 5-Fold Cross-Validation

We designed an output format for grid search and recorded 64 different output values
for each of the models trained in a grid search. Among the output values are information
about the computer system used, computation time, and measures for model performance.
For a given binary diagnostic test, a receiver operator characteristic (ROC) curve plots
the true positive rate against the false positive rate for all possible cutoff values []. The
area under an ROC curve (AUC) measures the discrimination performance of a model.
We conducted a 5-fold cross-validation to train and evaluate each model in a grid search.
The entire dataset was split evenly into 5 portions. The division was mostly executed
randomly, except that each portion had approximately 20% of the positive cases and 20% of



J. Clin. Med. 2022, 11, 5772 8 of 19

the negative cases to ensure that it was a representative fraction of the dataset. Training and
testing were repeated five times. Each time, a unique portion was used as the validation set
to test the model learned from the training set, which combined the remaining four portions.
Training and testing AUCs were reported. The average training and testing AUC across
all five times was also derived and reported. The best-performing set of hyperparameter
values was chosen based on the highest mean test AUC. The best model would be the one
refitted from the entire dataset using the best-performing set of hyperparameters values.
We used this procedure for all methods involved in this study.

2.4.2. Comparison to 9 Other Machine Learning Methods

We compared the performance of the best-performing DFNN model to that of a
representative set of machine-learning methods, each obtained via grid search. The repre-
sentative set of methods include naïve Bayes (NB), logistic regression (LR), decision tree
(DT), support vector machine (SVM), the least absolute shrinkage and selection operator
(LASSO), k-nearest neighbor (KNN), eXtreme gradient boosting (XGB), adaptive boosting
(AdaBoost), and random forest (RF). We used the scikit-learn [51,52] package in Python to
implement these machine learning classifiers. Like neural networks, these methods have
hyperparameters that can be tuned to improve prediction performance. We conducted
grid search for each method using each of the three LSM datasets. Like we did in our
DFNN grid-searches, we conducted 5-fold cross-validation for each set of hyperparameter
values and measured the performance by the AUC. Table 2 provides a summary of the
hyperparameters and their values that we tested for each of these methods.

NB (naïve bayes) [61–64] represents a special type of Bayesian network model. Bayesian
networks (BNs) are used for uncertain reasoning and machine learning in many domains,
including biomedical informatics [62]. A BN (bayesian network) consists of a directed
acyclic graph (DAG) G = (V, E), whose nodeset V contains random variables and whose
edges E represent relationships among the random variables [64]. A BN also includes a con-
ditional probability distribution of each node X∈ V given each combination of values of its
parent nodes. Each node V in a BN is conditionally independent of all its nondescendents
given its parents in the BN. NB is a simplified BN which normally only contains one parent
node and a set of children nodes. In a basic NB model, there is an edge from the parent to
each of the children. When a NB model is used to conduct classification, it is called a NB
classifier. We used the BernoulliNB classifier in this study because we have binary classes.
Alpha is the Laplace smoothing parameter that deals with the problems of zero probability
and regularize complexity, the larger the alpha, the stronger the smoothing and the lower
the complexity of the model. We tested 500 alpha values, which are all positive integers
from 1 to 500.

LR (logistic regression) [65,66] is a supervised learning classification method, which is
normally suitable for binary classification problems. It is named after the logistic function, a
core function of LR for nonlinear transformation on the output value [65]. C is the inverse of
regularization strength (C = 1/λ). Smaller values result in stronger regularization [66]. We
tested 300 evenly spaced values on a logarithmic scale between 10−4 and 104. Regularization
can be used to train models that generalize better on unseen data by preventing the
algorithm from overfitting the training dataset [65,66]. We used either L1 or L2 methods to
regularize the LR model.

DT (decision tree) [67,68] is one of the most widely used machine learning methods.
It contains a tree-like structure in which each internal node represents a test on a feature
and each leaf node represents a class value [67]. It can be used for both classification and
regression tasks. This parameter max_depth indicates how deep the tree can be. The
deeper the tree, the more splits it has, which allows it to capture more information about
the data [68]. We fit a decision tree with depths ranging from 3 to 32. The parameter
min_samples_split governs the minimum number of samples required to split an internal
node. The values we tested in our grid search are 0.1, 0.2, 0.3, 0.4, 0.6, 0.8, and 1. The
parameter max_features indicates the max features when building a decision tree; we tested
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all values: none, ‘log2′, and ‘sqrt’. The parameter max_leaf_nodes controls the maximum
number of leaf nodes of each decision tree, we tested 7, 10, 15, and none. max_depth
and max_leaf_nodes are important hyperparameters to control overfitting. Criterion is a
function for measuring the quality of a split, and we tested both values ‘gini’ and ‘entropy’.

SVM (support vector machine) [69–75] is a machine learning method that identifies
a hyperplane with margins defined by support vectors. Support vectors are a set of data
points that are closer to the hyperplane and can influence both the position and direction of
the hyperplane, which can be used to classify (separate) input samples. SVM can be used
for both regression and classification tasks, and it is widely applied in the later [69–71].
The parameter C trades off misclassification of training examples against simplicity of the
decision surface [72]. Smaller values result in a smoother decision surface, while larger
values give the model more freedom to select more samples as support vectors [72–75]. We
tested values in the range 2−5, 2−3 . . . 215. The parameter γ defines how far the influence
of a single training example reaches (inverse of the radius of influence of samples selected
by the model as support vectors). Low values mean “far” and high values mean “close”.
We tested values in the range 2−15, 2−13 . . . 23.

LASSO (the least absolute shrinkage and selection operator) is a regression-based
method classifier that is capable of conducting variable selection and regularization in
order to enhance prediction performance and control overfitting [76]. The parameter alpha
is the sum of absolute value of coefficients which provides a trade-off between balancing
residual sum of squares and magnitude of coefficients. Alpha can take various values that
are greater than 0. We tested 400 evenly spaced alpha values on a logarithmic scale between
10−5 and 105.

KNN (k-nearest neighbor) [77–79] is a supervised machine learning method that can
be used for both classification and regression tasks. KNN predicts the class value of an
incoming sample by its k-nearest neighboring data points [77]. KNN assumes that cases
with similar covariate values are near to each other. The parameter k_neighbors is the
number of training samples closest in distance to a query point in order to predict the
label of the query. We tested all integers between 1 and 300. The parameter weight is the
weighting criteria used to assign a value to a query point [78,79]. We tested both the two
available values uniform and distance. The value uniform assigns uniform weights to
each neighbor. The value distance assigns weights to neighbors proportional to the inverse
of the distance from the query point, so closer neighbors would weigh more. Metric is a
parameter for choosing the method for calculating distance. We tested all available values,
which are ‘eluclidean’, ‘manhattan’, and ‘chebyshev’.

RF (random forest) [68,80–83] is a typical model of bagging in ensemble learning, the
trainer will randomly select a certain amount of sample data and create a corresponding
decision tree. Many of these decision trees form a random forest [68,80]. An advantage of
RF is that the independent character of each decision tree tends to reduce overfitting [81].
The parameter n_estimators is the number of decision trees in the random forest [83]. We
tested values 10, 50, 60, 70, . . . , 200, and 500; Other parameters come from DT, and we
tested the same values as we did with DT for them.

ADB (adaptive boosting) [82–85] is a typical model of boosting in ensemble learning.
Unlike the RF model, where each decision tree is independent, AdaBoost is a classifier with
cascade structure which means the next learner is based on the result of the previous weak
learner [84]. During the learning process, if the current sample is classified incorrectly,
the degree of difficulty of the sample will increase to make the next learner focus on the
difficult part on which previous model performed poorly [85]. The parameter n_estimators
is the number of weak learners. A model tends to overfit for large values of n_estimators.
The values of n_estimators we tested include 10, 20, . . . , and 100. Learning_rate is used to
shrink the contribution of each classifier. We tested all values from 0.002 to 0.01 with an
increment of 0.001.

XGB (eXtreme gradient boosting) [86–92] is another common approach for boosting
in ensemble learning. Unlike ADB, it uses gradient boosting. The XGB classifier is based on
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the difference between true and predicted values to improve model performance [86–89].
The parameter gamma is a pseudo-regularization hyperparameter in gradient boosting, and
it affects pruning to control the overfitting problem [90–92]. Gamma values we tested are 0,
0.01, 0.1, 0.3, 0.5, and 0.9. The parameter min_child_weight is minimum sum of weights of
all observations of a child node. The larger the value, the more conservative the algorithm
will be. The values tested were 1, 2, 4, and 6. Alpha and lambda are both regularization
hyperparameters which can help control overfitting. The values we tested for each of them
are 1× 10−5, 0.01, 0.1, 1, and 100. The parameter max_depth is the maximum depth of the
individual regression estimators. The values of max_depth we tested were 3, 4, 5, . . . , 30,
31. The learning_rate values we tested were 0, 0.01, 0.1, 0.3, and 0.5.

2.4.3. Statistical Testing

We conducted the Wilcoxon rank sum tests to determine the statistical significance
of the AUC results. We conjectured that deep learning with grid search would perform
comparably to other methods when predicting the binary status of 5-, 10-, and 15-year BCM.
We paired the DFNN with each of the 9 other machine learning methods, and conducted both
the right-tailed (greater) and left-tailed (less) Wilcoxon tests for each pair of the methods and
repeated these tests for each of the three datasets separately. The null hypothesis for all the
Wilcoxon tests is that the two methods perform indifferently. The alternative hypothesis of the
right-tailed Wilcoxon tests is DFNN does better (greater) than the comparison method, and
this is to test whether DFNN performs better than other methods. The alternative hypothesis
of the left-tailed Wilcoxon tests is DFNN does worse (less) than other methods, and this is
to test whether DFNN performs worse than the comparison method. We conducted the
Wilcoxon rank sum test in R using the wilcox.test function included in the R package.

3. Results

Table 3 shows the mean AUCs from 5-fold cross-validation of the best-performing model
for each method and each dataset, selected based the grid search results. Table S3 contains
the results of the right-tailed Wilcoxon rank sum tests in which the alternative hypothesis is
that the first method performs better (greater) than the second method in a pair of methods,
while Table S4 shows the results of the tests in which the alternative hypothesis is the first
method performs worse (less) than the second method. As shown in the first row of Table S3,
X represents the first method and Y represents the second method. For example, in the cell of
row 1 and column 2, DFNN is the first method and NB is the second method. Tables S3 and
S4 include W, the p-value, and the 95% confidence interval (CI) for each of the Wilcoxon tests
we conducted. W is the test statistic used in the Wilcoxon rank sum test.

Table 3. The mean test AUCs and mean train AUCs of the best-performing models (LSM: Lynn Sage
Dataset for Metastasis; DFNN: Deep feedforward neural network; NB: Naïve bayes; LR: Logistic
regression; DT: Decision tree; SVM: Support vector machine; LASSO: Least absolute shrinkage and
selection operator; KNN: K-nearest neighbor; RF: Random forest; ADB: AdaBoost; XGB: XGBoost).

Mean Test AUC/Mean Train AUC LSM-5 Year LSM-10 Year LSM-15 Year

DFNN 0.769/0.806 0.793/0.830 0.842/0.873

NB 0.751/0.753 0.797/0.798 0.763/0.826

LR 0.771 /0.773 0.777/0.809 0.844/0.884

DT 0.762/0.780 0.783/0.827 0.783/0.838

SVM 0.739/0.811 0.771/0.808 0.845/0.867

LASSO 0.772/0.774 0.778/0.806 0.844/0.887

KNN 0.789/0.816 0.793/0.819 0.799/0.832

RF 0.789/0.801 0.804/0.840 0.802/0.849

ADB 0.759/0.754 0.792/0.800 0.796/0.829

XGB 0.793/0.813 0.806/0.845 0.800/0.854
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Table 4 contains the hyperparameter values of the best-performing DFNN models
learned from grid search using each of the three datasets. For example, the best model
trained using the LSM-15year dataset contains 3 hidden layers, and each of them contains
300 hidden nodes; When we selected the best models, we not only considered the mean test
AUC values, but also considered the percent_AUC_diff as defined previously. To identify
the best-performing DFNN model, we first ordered the result table according to the mean
test AUC values going from the highest to lowest. Then we looked at the percent_AUC_diff
values from the top of the ordered results and selected as the best model the first model
whose percent_AUC_diff value was less than 5%. Table 5 shows the average experiment
time per model (in seconds), the number of all models trained via grid search, and total
experiment time (in days) for each method and dataset.

Table 4. The hyperparameter values of the best-performing DFNN models learned from 5-year,
10-year, and 15-year datasets, respectively (LSM: Lynn Sage Dataset for Metastasis).

Hyperparameter Values of
the Best-Performing Model LSM-5 Year LSM-10 Year LSM-15 Year

Number of hidden layers. 2 1 3
Number of hidden nodes {75, 75} {75} {300, 300, 300}

Kernel initializer he_normal he_normal he_normal
Optimizer SGD SGD SGD

Learning rate 0.005 0.01 0.005
Momentum

Beta 0.9 0.9 0.9

Iteration-based decay 0.01 0.01 0.01
Dropout rate 0.5 0.5 0.5

Epochs 100 100 100
L1 (Lebesgue 1) 0 0 0
L2 (Lebesgue 1) 0.008 0.008 0.008

L1 and L2 combined No No No

Table 5. Experiment time per model per dataset, number of models trained, and total experiment
time. (#: number; LSM: Lynn Sage Dataset for Metastasis; DFNN: Deep feedforward neural net-
work; NB: Naïve bayes; LR: Logistic regression; DT: decision tree; SVM: Support vector machine;
LASSO: Least absolute shrinkage and selection operator; KNN: K-nearest neighbor; RF: Random
forest; ADB: AdaBoost; XGB: XGBoost).

Method LSM-5 (Sec) LSM-10 (Sec) LSM-15 (Sec) # of Models
Trained

Total Time
(Days)

DFNN 117.430 45.021 20.212 24,111 50.974
NB 0.060 0.046 0.026 18,109 0.028
LR 0.563 0.353 0.253 22,399 0.303
DT 0.048 0.037 0.032 107,351 0.145

LASSO 0.860 0.372 0.189 1024 0.017
SVM 12.197 2.876 0.362 1799 0.321
KNN 1.636 0.436 0.132 42,341 1.080

RF 0.774 0.603 0.549 27,000 0.602
ADB 0.655 0.508 0.403 13 0.000
XGB 4.710 4.566 3.850 46,980 7.137

We compared side by side the ROC curves of the best-performing models of DFNN
and the nine comparison methods. Figures 2–4 show these comparisons in the prediction
of 5-, 10-, and 15-year BCM, each respectively. Figure 5 contains four panels of boxplots
for comparing mean test AUC values of all methods side by side, one for each dataset
separately and one for all datasets combined. We noticed that for each of the methods,
including deep learning, the prediction performance improves in general as the number of
years it takes to metastasize increases. We also notice that LR, LASSO, SVM, and DFNN
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perform extremely well when predicting 15-year BCM. We demonstrate this using a bar
graph, as shown in Figure 6.
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Figure 2. ROC curves of the best-performing models for all methods, each respectively, for pre-
dicting 5-year metastasis (ROC: receiver operating characteristic; DFNN: Deep feedforward neural
network; NB: Naïve bayes; LR: Logistic regression; DT: Decision tree; SVM: Support vector machine;
LASSO: Least absolute shrinkage and selection operator; KNN: K-nearest neighbor; RF: Random
forest; ADB: AdaBoost; XGB: XGBoost).
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Figure 3. ROC curves of the best-performing models for all methods, each respectively, for predicting
10-year metastasis (ROC: receiver operating characteristic; DFNN: Deep feedforward neural net-
work; NB: Naïve bayes; LR: Logistic regression; DT: Decision tree; SVM: Support vector machine;
LASSO: Least absolute shrinkage and selection operator; KNN: K-nearest neighbor; RF: Random
forest; ADB: AdaBoost; XGB: XGBoost).
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15-year metastasis (ROC: receiver operating characteristic; DFNN: Deep feedforward neural net-
work; NB: Naïve bayes; LR: Logistic regression; DT: Decision tree; SVM: Support vector machine;
LASSO: Least absolute shrinkage and selection operator; KNN: K-nearest neighbor; RF: Random
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4. Discussion

Based on the mean test AUC values shown in Table 3, XGB (1st), RF (2nd), and
KNN (3rd) are the top three methods in predicting 5-year BCM. DFNN ranks 6th and
performs better than NB, DT, SVM, and ADB in this category. When predicting 10-year
BCM, XGB (1st), RF (2nd), and NB (3rd) are the top three performers. DFNN and KNN
tie as the number 4 performers, so DFNN performs better than LR, DT, SVM, LASSO, and
ADB in this category. When predicting 15-year BCM, SVM (1st), LR and LASSO (tie for
2nd) and DFNN (3rd) are the top three performers, so in this category, DFNN outperforms
the other six methods, including NB, DT, KNN, RF, ADB, and XGB.

We notice that in each of the three metastasis categories, the mean test AUC values
of the top performers are quite close to each other. For instance, when predicting 15-year
BCM, the mean test AUC values of the top four performers are 0.842 (DFNN), 0.844 (LR),
0.844 (LASSO), and 0.845 (SVM). We further look at the statistical testing results shown
in Tables S3 and S4 to compare DFNN with each of the nine other machine learning
methods. As shown in Table S3, the p-values we obtained for each pair methods range from
0.111 (DFNN vs. NB) to 0.925 (DFNN vs. KNN) in predicting 5-year BCM, which indicates
that at a significance level of 0.05, we are not confident in rejecting the null hypothesis which
states that DFNN performs no difference from the comparison methods. Table S3 also shows
that DFNN performs better than both LASSO (p-value 0.028) and SVM (p-value 0.028), but no
difference from other methods at a significance level of 0.05 when predicting 10-year BCM.
Again, according to Table S3, DFNN performs better than NB, DT with a p-value of 0.011
and 0.030 each, respectively, but no difference from other methods at a significance level
of 0.05 when predicting 15-year BCM. Based on Table S4, DFNN performs comparably to
any of the other methods at a significance level of 0.05 for any of the three BCM categories.
Overall, our statistical testing results support our conjecture that deep learning with grid
search performs comparably to the other methods when predicting the binary status
of BCM.
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4.1. The Potential Effects of Data Imbalance

As demonstrated in Figure 6, the prediction performance of all methods improves in
general as the number of years to metastasis increases. Data imbalance is normally referred
to the situation when the number of positive cases and the number of negative cases is not
equal when having a binary class. Although in many real datasets the negative cases are
the majority ones, the positive cases are often more of research interests. Concurrently, as
shown in Table 1 and Figure 7, the status of data imbalance has changed significantly as the
number of years to metastasis increases. This may indicate that data imbalance, and more
specifically in our case, the number of positive (metastasized) cases contained in the dataset
has, in general, a positive effect on the prediction performance of these machine learning
methods. Additionally, we observe that the mean test AUCs of DFNN, SVM, LASSO, and
LR, when predicting the 15-year BCM, are significantly higher than that of these methods
when predicting the 5-year and 10-year BCM. An explanation for this is the 15-year dataset
has higher percentage of positive cases than the 5-year and 10-year datasets, as shown in
Figure 7. This may indicate that these four methods are more sensitive to the percentage of
positive cases contained in a dataset than other methods. The two ensemble methods XGB
and RF outperform all other methods when predicting the 5-year and 10-year BCM, for
which the positive class is the minority. This may indicate that these ensemble methods
tend to handle this type of imbalanced data better.
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4.2. Computation Time

Table 5 shows that the average experiment time per model of DFNN is much higher
than that of any other method. This is perhaps because DFNN has a large number of
hyperparameters, and its internal parameters (weights and biases) rapidly increase as the
number of hidden nodes and the number of hidden layers are increased.

5. Conclusions

Based on the statistical testing results, we conclude that at a significance level of 0.05,
DFNN performs comparably to any of the nine other methods when predicting 5-, 10-, and
15-year BCM. This is consistent with our conjecture that deep learning with grid search
performs comparably to the other methods when predicting the binary status of BCM. On
the other hand, it is interesting to learn that some of the other machine learning methods,
such as XGB, RF, and SVM, are very strong competitors of DFNN. Additionally, obtaining
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the best-performing DFNN models required much more computation time than doing so
for the nine comparison methods.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jcm11195772/s1, Table S1: The variables of the LSM datasets.
Table S2: Description of the ML hyperparameters and Their Values Tested. Table S3: Significance test
results: one-tailed (greater) Wilcoxon rank sum tests. Table S4: Significance test results: one-tailed
(less) Wilcoxon rank sum tests.
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