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Abstract: For transcriptomic analysis, there are numerous microarray-based genomic data, especially
those generated for cancer research. The typical analysis measures the difference between a cancer
sample-group and a matched control group for each transcript or gene. Association rule mining is
used to discover interesting item sets through rule-based methodology. Thus, it has advantages to
find causal effect relationships between the transcripts. In this work, we introduce two new rule-based
similarity measures—weighted rank-based Jaccard and Cosine measures—and then propose a novel
computational framework to detect condensed gene co-expression modules (ConGEMs) through
the association rule-based learning system and the weighted similarity scores. In practice, the list of
evolved condensed markers that consists of both singular and complex markers in nature depends
on the corresponding condensed gene sets in either antecedent or consequent of the rules of the
resultant modules. In our evaluation, these markers could be supported by literature evidence,
KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway and Gene Ontology annotations.
Specifically, we preliminarily identified differentially expressed genes using an empirical Bayes test.
A recently developed algorithm—RANWAR—was then utilized to determine the association rules
from these genes. Based on that, we computed the integrated similarity scores of these rule-based
similarity measures between each rule-pair, and the resultant scores were used for clustering to
identify the co-expressed rule-modules. We applied our method to a gene expression dataset for
lung squamous cell carcinoma and a genome methylation dataset for uterine cervical carcinogenesis.
Our proposed module discovery method produced better results than the traditional gene-module
discovery measures. In summary, our proposed rule-based method is useful for exploring biomarker
modules from transcriptomic data.

Keywords: gene co-expression modules; Limma; association rule mining; dynamic tree cut method;
gene expression markers; lung squamous cell carcinoma

1. Introduction

Whole transcriptome data has been growing rapidly over the past two decades. Such data have
been used extensively for detecting the altered expression of genes, leading to one of a set of gene
signatures for complex diseases such as cancer, diabetes, and neurodevelopmental disease [1–7].
Genome-wide analysis of differential mRNA expression has been useful in identifying informative
genes, biological pathways, and molecular networks involved in diseases. To comprehend the
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complexity of the transcriptomic study, microarray labeling data [1,8] are useful. Microarray labeling
essentially measures the difference between a group of cancer samples and a group of control
(non-cancerous) samples for each transcript (gene). Association rules are used to analyze the microarray
labeling data. Association rules are composed of if/then statements that describe the relationship
between an antecedent (if) found in the data and a consequent (then) associated with it. A rule is
associated with various rule-interestingness measures. Among these, support (frequency) and
confidence (strength) are general rule-interestingness measures. The support of an item set is equal to
the number of transactions in which all items belonging to the item set occur simultaneously. An item
set becomes frequent if its support is greater than or equal to any user-specified cutoff value (denoted
as minimum support). The confidence of a rule is the ratio of support of the whole item set to the
support of its left hand side (i.e., antecedent). Strong rules exceed a minimum threshold for support
and confidence [9,10].

Association rule mining [9–11] is a well-known technique for exploring interesting relationships,
associations, or cause–effect structures between various items (genes) in different types of databases
(viz., transactional databases, relational databases, and other types of data repositories). For example,
based upon the idea of strong rules, Agrawal et al. [9] proposed association rules for identifying the
associations between the sale products (items) in the large transactional database documented through
the point-of-sale (POS) systems in supermarkets. For example, a rule {bread, butter} ⇒ {sugar} found
in the record of sale data repository of the supermarket indicates that if a customer purchases bread and
butter simultaneously, it is likely that the customer will also purchase sugar. This type of information is
used to make decisions regarding placement of products as well as promotional pricing. Association
rules are also utilized in various application domains including bioinformatics, web-based mining,
intrusion detection, etc. [1,11]. To generalize, let IT = {i1, i2, ..., in} be an item set (gene set) and
T = {t1, t2, ..., tm} be a set of transactions (samples). Therefore, a rule can be defined such that
A⇒ C. Here A, C ⊆ IT and A

⋂
C = φ. A stands for antecedent (left hand side or LHS), whereas C

refers to consequent (right hand side or RHS). This rule states that if all items belonging to A occur
together, it is likely that all the items belonging to B also occur simultaneously. Similarly, in the case
of the gene expression [12] dataset, a set of genes might occur simultaneously in a sample. Among
them, some might be up-regulated, some down-regulated, whereas the rest are non-differentially
expressed. For example, let {g1+, g2−, g3nonde ⇒ g4−} be an association rule that states that if gene
g1 is up-regulated (represented by “+”), gene g2 is down-regulated (represented by “−”), and gene
g3nonde is non-differentially expressed (“nonde”) in the same sample, it is likely that gene g4 will be
down-regulated.

In network biology, a gene co-expression module refers to a group of genes whose expression
is highly related to the phenotype being studied and whose co-expression is highly related or
significant [13–16]. According to literature, opinions differ on the definition of a gene-module
(e.g., [17–20]). Co-expression is a term that is highly useful in gene-module recognition. Co-expression
between genes states that these gene expression profiles might concurrently rise and fall during
a sub-span of time-series rather than the complete time-series.

Cancer is one of the most prevalent human diseases, and its underlying biology is complex.
Lung squamous cell carcinoma (LUSC) is a cancer subtype found in about 40% of lung cancer patients.
LUSC patients are often diagnosed at a late stage. Various gene-markers have been identified for LUSC
using different genomic and genetic datasets, including somatic mutations (single nucleotide variants,
copy number variations, gene expression, methylation, gene fusion, etc.) and germline mutations (e.g.,
genome-wide association studies) [21]. Many approaches and tools have been used for genetic marker
discovery; however, genetic-rule-module approach—which can improve the correctness and efficiency
of the interactive mechanisms of the genes in the disease phenotypes—has not yet been applied. In this
manuscript, we presented a new computational framework for detecting condensed gene co-expression
modules (ConGEMs) through association rule-based learning. In this framework, we first applied
an empirical Bayes test on the normalized gene expression data through Limma software [22] for
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obtaining differentially expressed genes (DEGs) [1,23] across two types of samples. The DEGs were
then discretized and post-discretized consecutively to convert them into the corresponding boolean
forms. Thereafter, we applied a recent weighted rule mining algorithm, RANWAR [10], for generating
the association rules. We then introduced two novel weighted rank-based similarity measures (viz.,
weighted rank-based Jaccard and Cosine measures) between two rules. Thereafter, we computed the
integrated similarity score of these newly introduced weighted rule-based similarity measures among
the pairwise rules, and then applied the average linkage clustering using the integrated score. Dynamic
tree cut method [24,25] was then utilized on the resultant dendrogram of the clustering for recognizing
co-expressed rule-modules. In addition, we identified the list of evolved condensed markers that
consists of both singular and complex markers in nature depending upon corresponding condensed
genesets in either antecedent or consequent of the rules of the resultant modules. We next evaluated
those genes through literature search, KEGG pathway and Gene Ontology (GO) analyses. Depending
upon these, we assessed our method by both known markers and novel markers. We applied our
framework to a gene expression dataset for LUSC as well as a methylation dataset for uterine cervical
carcinogenesis. Finally, we provided a comparative study between the rule-module identification
in our proposed method and the other traditional gene-module identification measures in terms of
several cluster-validity measures. Moreover, our proposed method is useful for similar datasets in the
study of other respective diseases.

2. Materials and Methods

2.1. Literature Review

Transcriptome study is able to detect genes which are differentially expressed in specific tissues,
and also assists in finding potential disease markers. Microarray labeling data is frequently used for
analyzing the transcriptome. Here, DEGs can be identified using different statistical testing methods,
such as t-test, empirical Bayes test, SAM (significance analysis of microarrays), among others [26].

Detecting genetic markers from genomic data like microarray gene expression has long
been useful in biomedical research [27]. To date, most studies have focused on single gene
analysis [1]. The gene co-expression network of identified genes will represent the blueprint of
the inter-connections between them, along with the molecular regulators (i.e., transcription factors
(TFs) and microRNAs) [28]. A gene co-expression module in network biology refers to a group of genes
whose expression is highly related to the phenotype under examination and whose co-expression
is highly related or significant [13,28]. From the literature, many measures regarding gene-module
detection have already been proposed [29]. The topological overlap measure (TOM) [29] is one such
measure. The TOM score between two nodes (i and j), symbolized as TOM(i, j), is defined as:

TOM(i, j) =





∑
u 6=i,j

X(i,u)X(j,u)+X(i,j)

min{ ∑
u 6=i

X(i,u), ∑
u 6=j

X(j,u)}−X(i,j)+1 , if i 6= j,

1, if i = j,

(1)

where X stands for the corresponding adjacency matrix having binary entries, “1” and “0”. An entry
of “1” states that the two nodes have a direct connection, whereas an entry of “0” signifies that there is
no direct connection between these two nodes.

In addition, in the literature, several updated versions of TOM such as weighted TOM
(wTOM) [25,30], generalized TOM of degree “m” (GTOM0) [31] (where “m” denotes 0, 1, 2, ...) exist.
To compute the wTOM, the Pearson’s correlation coefficient (PCC) or Spearman’s correlation (SC)
is first calculated for all node-pairs. Thereafter, the power by which the adjacency matrix will be
computed from the correlation matrix is determined by soft thresholding [30]. The adjacency matrix is
then computed from the adjacency matrix using that power. After that, wTOM scores are evaluated.
After obtaining the wTOM/GTOMm matrix, the distance matrix is then computed. Average linkage
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clustering and dynamic tree cut are then applied respectively. As a result, gene-modules denoted by
different colors are produced.

While there are many biomarker studies (including some that are gene-module based), little work
has been done based on rule-module detection. Here, a rule comprises several genes. Sethi et al.
(2010) [32] attempted to propose weighted rule-based similarity measures, but they did not apply their
rule-module detection to specific biomarker discovery. Hence, in this manuscript, we adapted the
measures by Sethi et al., and developed a new computational framework—ConGEM—for detecting
condensed co-expressed rule-modules through the modified weighted similarity measures. Thereafter,
we identified the list of evolved condensed markers that consists of both singular and complex
markers in nature depending upon corresponding condensed gene sets in either the antecedent or
consequent of the rules of the resultant modules. Furthermore, we identified the list of evolved
condensed markers consisting of both singular and complex markers depending upon corresponding
condensed genesets in either antecedent or consequent of the rules of the resultant modules. Moreover,
we evaluated the resultant rule-modules through the several standard cluster validity indices such as
Dunn index, Silhouette width, scaled connectivity, clustering co-efficient, etc. Additionally, we included
the comparative study between the resultant rule-modules in our proposed method and the traditional
aforementioned gene-module detection measures such as wTOM, GTOMm (where m = 0, 1, 2, 3).

2.2. Proposed Method of Identifying Condensed Rule-Modules

In this manuscript, we propose a new approach for identifying condensed gene co-expression
rule-modules through rule-based learning. In this regard, we introduced two new similarity measures
(viz., weighted support and weighted cosine) described in Section 2.2.6 inspired by Sethi et al. [32],
and then we applied these measures in our proposed rule-module detection. Moreover, all the major
steps of the proposed methodology are provided briefly in Algorithm 1 for clear visualization. The steps
of the proposed method were:
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Algorithm 1 ConGEM
Inputs: (pvalue_threshold, min_wsupp, min_wcon f , number_ERules),

where pvalue_threshold refers to the user-specified cutoff for the corrected p-value, min_wsupp denotes the user-defined cutoff for (weighted)
support value (i.e., minimum support), min_wcon f stands for the user-defined cutoff for (weighted) confidence value (i.e., minimum confidence),
and number_ERules be the user-notified number of top (experimental) rules on which the similarity matrix will be computed.

Outputs: (Co-expressed rule-modules, Cluster-validity indices, Condensed markers).

1: Normalize the input raw data-matrix gene-wise using zero-mean normalization.

2: Utilize Limma to perform non-parametric empirical Bayes test and correct p-values using Benjamini–Hochberg fdr (false discovery rate)
method consecutively on the normalized data in order to identify differentially expressed genes. Let the resultant matrix having only the
statistically significant genes be symbolized as I.

3: Rank the resultant genes (i.e., ranki) with respect to their corrected p-value in the empirical Bayes test.

4: Assign weight (i.e., wi) to each gene based on its rank ranki .

5: Transpose the normalized matrix I.

6: Discretize the transposed matrix I ′ and identify resultant matrix DI in such a way that if I ′(i, k) >= 0, then DI(i, k)← 1, else DI(i, k)← 0.

7: Double the number of columns (genes) of DI, and then carry out post-discretization step in such a way that if DI(i, k) == 1, then
PDI(i, k) ← 1; and if DI(i, k) == 0, then PDI(i, k) ← 0 for the first half; and thereafter for the second half, DI(i, k) == 1, then
PDI(i, ren + k)← 0; and if DI(i, k) == 0, then PDI(i, ren + k)← 1, where ren is the number of p-value significant genes in the test.

8: Apply RANWAR rule mining algorithm for identifying association rules with user-defined min_wsupp and min_wcon f .

9: Compute the proposed weighted Jaccard (i.e., Wζ) and weighted Cosine (i.e., WCos) similarity values among the pairwise rules of L1.

10: Integrate Wζ and WCos values, and obtain integrated similarity values (i.e., Int_WζCos) for each rule-pair (e.g., r1 and r2). Find dissim
values from these Int_WζCos values.

11: Perform average linkage clustering method using dissim values for each rule-pair, and obtain dendrogram of the clustering.

12: Utilize dynamic tree cut method on the resultant dendrogram, and identify the condensed gene co-expressed rule-modules (ConGEMs).

13: Additionally, determine the frequency of the geneset of each side of every rule in same module, and identify the most frequent geneset from
antecedent as well as the most frequent geneset from consequent for each rule-module.

14: List all the resultant genesets, and then identify the top potential condensed gene expression genesets as top condensed gene expression
markers for the disease.
The condensed marker is based on “geneset equivalent pruning regulations” that are mentioned in the following: (i) Geneset Equivalent
Pruning regulation 1: If there are some genesets whose genes are overlapped with each other (e.g., “a” and “a, b”), and if each of the genesets
have the same frequency, then we consider only the geneset (e.g., “a, b”) that covers all the participating genes belonging to all these
genesets, and subsequently the remaining genesets (e.g., “a”) are eliminated from the list. (ii) Geneset Equivalent Pruning regulation 2: If there
are some genesets whose genes are overlapped with each other (e.g., “a” and “a, b”) and if each of the genesets contain different frequency,
then we consider only the geneset among them which has highest frequency, and subsequently remaining genesets are omitted.

15: Perform literature search as well as KEGG pathway and Gene Ontology analyses for the verification of identified Condensed Markers
(CGMs).

16: Evaluate the rule-module through several standard cluster validity indices such as Dunn index, clustering co-efficient, silhouette width,
scaled connectivity, etc.

2.2.1. Identification of Differentially Expressed Genes

First, some genes having low variance were eliminated from the gene expression data. Thereafter,
we performed zero-mean normalization for the data of these genes so that the scale of the values across
the datasets will be the same. The zero-mean normalization is defined as follows:

x_norm(i, k) =
x(i, k)− µ

σ
, (2)

where x(i, k) denotes the value of the i-th gene at the k-th sample before normalization , x_norm(i, k)
denotes the value of the i-th gene at the k-th sample after normalization, µ and σ depict mean and
standard deviation, respectively, of the data of the i-th gene before normalization.

To identify differentially expressed genes (denoted by DEGs) among samples, an appropriate
statistical test was needed. Since the Limma package—based on empirical Bayes test [22]—performs
well for all sizes of data (i.e., data with small/medium or large sized samples) and any type of data
distribution (normal/non-normal distribution), we have applied it here. The genes were thereafter
ranked by their p-values. See details about Limma and the identification of the differentially expressed
genes in Supplementary File S13.

After obtaining the p-value of the genes, we further computed a Benjamini–Hochberg corrected
p-value (i.e., false discovery rate, FDR) to address the multiple test issues. Now, the genes whose
p-values were less than 0.05 were called as DEGs, whereas remaining genes were simply insignificant
genes, and were thus removed from the experimental analysis. The resultant corrected p-value
significant genes were then ranked with respect to their corrected p-value in the test (e.g., ranki,
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where 1 ≤ i ≤ re_n, and re_n refers to number of p-value significant genes in the test). Let, I be the
data matrix of the resulting genes having size re_n×m, where m is number of samples.

2.2.2. Assigning Gene-Based Weight

In any genome-wide biological data, the importance of all genes in their roles varies substantially.
A weight was assigned to each gene according to its corrected p-value ranking in the Limma test.
The weight of each gene (i.e., wi) was computed by a function of ranki and the lowest rank among the
resultant DEGs (denoted by rankmax), as described below:

wi =
1

rankmax
∗(rankmax− (ranki − 1)). (3)

2.2.3. Discretization

Since I′ (i.e., transposed I matrix) was already normalized using zero-mean normalization,
the remaining step for discretization of I′ was

DI(i, k) =

{
1, if I′(i, k) > 0,

0, if I′(i, k) < 0,
(4)

where DI is the discretized matrix. Let DEGup and DEGdown denote the up-regulated and
down-regulated genes, respectively. Equation (4) demonstrates that any cell-value of I′ that is greater
than the mean value 0 is reassigned to 1 (referred to as DEGup gene), otherwise 0, (referred to as
DEGdown gene).

2.2.4. Post-Discretization

We now have four categories of genes: (i) DEGup (denoted by 1 in DI); (ii) DEGdown (denoted
by 0 in DI); (iii) ∼DEGup; and (iv) ∼DEGdown. As any rule mining technique considers only 1, not 0,
post-discretization was required in order to represent the aforementioned four types of genes using
only two binary digits (i.e., 1 and 0). For the post-discretization, the number of columns (genes) was
doubled while the first half of them denoted the region of DEGup, and the second half of them denoted
the region of DEGdown. For the first half, 1 showed DEGup property, and 0 denoted ∼DEGup property
(see Equation (5)). For the second half, 1 showed DEGdown property, and 0 denoted ∼DEGdown
property (see Equation (6)).

PDI(i, k) =

{
1, if DI(i, k) = 1,

0, if DI(i, k) = 0,
(5)

PDI(i, re_n + k) =

{
0, if DI(i, k) = 1,

1, if DI(i, k) = 0,
(6)

where PDI shows the m× (2∗re_n) post-discretized matrix (see Figure 1). Here, “+” and “−” refer to
up-regulation and down-regulation of any gene, respectively.



Genes 2018, 9, 7 7 of 25

Version December 12, 2017 submitted to Entropy 5 of 23

Sa
m

pl
es
−→

DEGs −→

(D
is

cr
et

iz
at

io
n)

︷ ︸︸ ︷
g1 g2 g3 ...

︷
︸︸

︷ str1 10.24 3.12 14.25 ...
str2 3.26 9.46 12.16 ...
str3 11.24 2.12 12.37 ...
. . . . ... =⇒
snr1 10.34 12.24 2.34 ...
snr2 3.12 12.33 11.54 ...
snr3 11.23 12.64 2.67 ...
. . . . ...

(a)

DEGs
g1 g2 g3 ...

str1 1 0 1 ...
str2 0 1 1 ...
str3 1 0 1 ...
. . . . ...
snr1 1 1 0 ...
snr2 0 1 1 ...
snr3 1 1 0 ...
. . . . ...
•‘1’(red color)≡ DEGup
•‘0’(green color)≡ DEGdown

(b)

⇓ (Post-discretization)

Region of DEGup Region of DEGdown︷ ︸︸ ︷ ︷ ︸︸ ︷
g1+ g2+ g3+ ... g1- g2- g3- ...

Tr
ea

te
d

︷
︸︸
︷ str1 1 0 1 ... 0 1 0 ...

str2 0 1 1 ... 1 0 0 ...
str3 1 0 1 ... 0 1 0 ...
. . . . ... . . . ...

N
or

m
al

︷
︸︸
︷ snr1 1 1 0 ... 0 0 1 ...

snr2 0 1 1 ... 1 0 0 ...
snr3 1 1 0 ... 0 0 1 ...
. . . . ... . . . ...
•‘1’(red color)≡ DEGup •‘1’(green color)≡ DEGdown

•‘0’(no color)≡ ((∼ DEGup)|(∼ DEGdown))

(c)

(Apply RANWAR) ⇐
=

Frequent Itemsets: {g1+, g2-, g5+} {g1+, g6-, g9+} {g3+, g8-, g12+}

⇐
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(Ranking) ⇐
=

Identification of top rules

(d)

Figure 1. An example for performing the post-discretization: sub-figure (a) denotes the initial
matrix containing DEG, (b) represents the matrix after discretization, (c) depicts the matrix after
post-discretization, (d) signifies utilization of association rule mining and identification of top rules,
where “+" refers to up-regulation (also denoted by “1"), and “-" refers to down-regulation (also denoted
by “0".), str denotes diseased/treated samples, and snr denotes normal samples.

Figure 1. An example for performing the post-discretization: sub-figure (a) denotes the initial
matrix containing differentially expressed genes (DEGs); (b) represents the matrix after discretization;
(c) depicts the matrix after post-discretization; (d) signifies the utilization of association rule mining and
the identification of top rules, where “+” refers to up-regulation (also denoted by “1”), and “−” refers
to down-regulation (also denoted by “0”), str denotes diseased/treated samples, and snr denotes
normal samples.

2.2.5. Identification of Weighted Association Rules

After post-discretization, we identified the weighted association rules using a recently published
rule mining technique called RANWAR [10]. The details of RANWAR are depicted in Supplementary
File S16. In brief, user-defined support threshold and confidence threshold (denoted by min_wsupp
and min_wcon f ) were provided to the RANWAR tool, and the gene-association rules identified.
As an example of {g1+, g2− ⇒ g5+}, if gene 1 was upregulated and gene 2 was downregulated
simultaneously in the same data, gene 5 would be upregulated.

2.2.6. Proposed Weighted Rule-Based Similarity Measures

For the purpose of grouping the evolved rules in terms of their similarity values, we proposed
two weighted rule-similarity measures, weighted Jaccard and weighted Cosine, to compute the genes’
correlations on the basis of similarity of two rules (vectors) (e.g., r1, r2). The two rules were as follows:
{ra

1 → rc
1} and {ra

2 → rc
2}.
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Definition 1. The weighted Jaccard measure (i.e., Wζ(r1, r2)) between the two rules is defined as the ratio of
the weighted sum of common genes either on the same side of both of the rules (i.e., left hand side (LHS) or right
hand side (RHS) of both the rules) or on the opposite side (i.e., LHS of one rule and RHS of the other rule) to
the weighted sum of the union of genes existing either on the same side of both rules or on the opposite sides
(Equation (7)).

Wζ(r1, r2) =

(|ra
1∩ra

2 |
∑

p=1
wp +

|rc
1∩rc

2 |
∑

p=1
wp +

|ra
1∩rc

2 |
∑

p=1
wp +

|rc
1∩ra

2 |
∑

p=1
wp

)

(|ra
1∪ra

2 |
∑

p=1
wp +

|rc
1∪rc

2 |
∑

p=1
wp +

|ra
1∪rc

2 |
∑

p=1
wp +

|rc
1∪ra

2 |
∑

p=1
wp

) , (7)

where wp refers to the corresponding weight of the p-th common gene between the two rules.

Definition 2. The weighted cosine measure between the two rules was defined as the ratio of the dot product of
two weighted rule-vectors (i.e.,

−→
W1 for r1, and

−→
W2 for r2) to the multiplication of the length of the two rule-vectors

(Equation (8)).

WCos(r1, r2) =
(
−→
W1 ·
−→
W2)

||−→W1|| ∗ ||
−→
W2||

, (8)

where
−→
W1 = {u1, u2, ..., un, un+1, un+2, ..., u2n} and

−→
W2 = {v1, v2, ..., vn, vn+1, vn+2, ..., v2n}.

Here, the weight of genes for the first half of each vector was for the antecedent of the
corresponding rule, and the weight of genes for the second half of the vector was for the consequent of
the rule; see Equations (9)–(12):

uj =

{
wi, (1 ≤ i ≤ n, j = i), if gi is in LHS of r1

0, if gi is not in LHS of r1

}
. (9)

uj =

{
wi, (1 ≤ i ≤ n, j = n + i), if gi is in RHS of r1

0, if gi is not in RHS of r1

}
. (10)

vj =

{
wi, (1 ≤ i ≤ n, j = i), if gi is in LHS of r2

0, if gi is not in LHS of r2

}
. (11)

vj =

{
wi, (1 ≤ i ≤ n, j = n + i), if gi is in RHS of r2

0, if gi is not in RHS of r2

}
. (12)

Now, the proposed weighted cosine measure between the two rules could also be defined
as follows:

WCos(r1, r2) =

2n
∑

i=1
(ui ∗ vi)

√
2n
∑

i=1
(ui)2

√
2n
∑

i=1
(vi)2

. (13)

To compute the proposed weighted cosine measure, the weight of a common gene was only
considered when the gene existed on the same side of both rules (see Equations (9)–(12)).

Several examples of calculating these two weighted measures are demonstrated in Supplementary
File Figure S15.
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2.2.7. Clustering Rules Using Proposed Weighted Rule-Based Similarity Measures

After identifying the association rules, the similarity values among the pairwise resultant rules
using the proposed weighted rule-based similarity measures (viz., Wζ and WCos) were computed.
Thereafter, these values for each pair of rules have been integrated through the following:

Int_WζCos(r1, r2) = (e1 ∗Wζ(r1, r2) + e2 ∗WCos(r1, r2)) (14)

where Int_WζCos(r1, r2) denotes the integrated similarity value for the rules, r1 and r2; whereas e1

and e2 are two user-defined weights for the Wζ and WCos, respectively, of the rule-pair. Because the
same priorities were needed for both individual measures, e1 = 0.5 and e2 = 0.5. Then, we computed
the corresponding dissimilarity value (i.e., dissim) from each Int_WζCos value; and finally applied the
average linkage clustering method to dissim values in order to group similar rules.

dissim(r1, r2) = (1− Int_WζCos(r1, r2)). (15)

2.2.8. Discovery of Condensed Gene Expression Markers

A dendrogram was obtained using average linkage clustering. Dynamic tree cut method using
color thresholding [24,25] was then utilized on the dendrogram in order to obtain co-expressed
rule-modules. Thereafter, we computed the frequency of the geneset of each side (antecedent as well as
consequent) of every rule belonging to the same rule-module, and identified the most frequent geneset
from antecedent along with the most frequent geneset from consequent for each rule-module. Then,
we listed all resultant genesets and ranked them by their frequency in their corresponding module
from cases highest to lowest. Condensed genesets were identified, and thereafter gene expression
markers were determined from the above genesets.

The condensed gene expression marker is defined as the condensed frequent expression genesets
that follow “geneset equivalent pruning regulations”. These are mentioned in the following:

(i) Geneset Equivalent Pruning regulation 1: If there are some genesets whose genes overlapped each
other (e.g., “a” and “a, b”), and if each of the genesets had the same frequency, then we considered
only the geneset (e.g., “a, b”) that covered all the participating genes belonging to all these
genesets, and subsequently the remaining genesets (e.g., “a”) were eliminated from the list.

(ii) Geneset Equivalent Pruning regulation 2: If there are some genesets whose genes overlapped each
other (e.g., “a” and “a, b”) and if each of the genesets contained a different frequency, then we
considered only the geneset among them which had highest frequency, and subsequently the
remaining genesets were omitted.

Hence, the list of evolved condensed markers consists of both singular and complex markers
depending upon corresponding condensed genesets in either antecedent or consequent of the rules of
the resultant modules.

However, the top markers were then identified. We then performed a literature search as well
as KEGG pathway and Gene Ontology enrichment analyses using the “Enrichr” database [33] for
validating the resultant markers. If any related literature evidence or any related KEGG pathway
or GO-term or both indicating the involvement between the disease and each participating gene
belonging to any marker were found, the marker was treated as “existing”; whereas, if no literature
evidence or pathway or GO-term supporting the association between the disease and any participating
gene of a marker was obtained, the marker was treated as “novel”. Of note, two important articles
related to disease-specific pathway extraction are [34,35]. Finally, the steps of the proposed algorithm
are represented in Figure 2 for better visualization.
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Figure 2. Flowchart of the proposed method.Figure 2. Flowchart of the proposed method, whereas “w.r.t.” denotes “with respect to”.

3. Results and Discussion

In this section, we first describe the source of the LUSC dataset and then provide the experimental
results and discussion.

3.1. Dataset Information

In this paper, we utilize an LUSC dataset (GEO accession ID: GSE10245) [36] that consists
of eighteen squamous cell carcinoma (SCC) samples as diseased/experimental samples and forty
adenocarcinoma (AC) samples as control samples. The dataset consists of a total of 42,450 transcripts.

In addition, we apply a genome-wide DNA methylation profile of uterine cervical carcinogenesis
(GEO accession ID: GSE30760) [37] having 63 cancerous uterine cervix samples (experimental
samples) and 152 normal uterine cervix samples (control samples). The dataset contains a total
of 27,578 transcripts.

3.2. Experimental Results and Discussion

In the first dataset, the genes with lowest variance were discarded. The data of the remaining
genes (29,715 genes) was scaled using zero-mean normalization, and then the Limma package for
performing the empirical Bayes test was applied. Subsequently, we considered the fold change
of each gene along with the p-value provided by the Limma method. In this regard, we set 0.05
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as the p-value cutoff, 1.4 as the upper fold change threshold, and 0.7 as the lower fold change
threshold. We chose only the gene-probe that had the lowest p-value among all the probes for each
gene, and then eliminated the other (redundant) probes of each gene for our experiment. Thereafter,
we computed the Benjamini–Hochberg corrected p-value for each gene, and identified the genes that
had corrected p-value less than 0.05. In this way, we obtained 316 up-regulated (DEGup) genes and 170
down-regulated (DEGdown) genes after filtering the corrected p-value, resulting in a total of 486 DEGs.
We ranked the resultant genes according to their corrected p-values. Thereafter, we generated the
association rules by applying the RANWAR association rule mining technique [10] to the top hundred
genes using thresholds min_wsupp = 0.50 and min_wcon f = 0.70. After that, we utilized the statistics
as mentioned in [38] regarding the distribution of their support and confidence, and produced the
dynamic minimum support and minimum confidence thresholds for each generated rule individually
using that. Next, we ranked the rules with respect to the two consecutive labels, weighted support score,
and weighted confidence score such that all rules would ultimately be ranked based upon weighted
confidence score in descending order, whereas in the case where more than one rule had the same
confidence, those rules were also ranked by weighted support score in descending order. After that,
Wζ, WCos, and Int_WζCos were computed among the pair-wise dynamically selected resultant rules.
We then calculated the corresponding dissimilarity value (i.e., dissim) from each Int_WζCos value,
and then utilized the average linkage clustering technique using dissim values. Thereafter, dynamic
tree cut methodology was utilized on the dendrogram obtained by the average linkage clustering
method for extracting the condensed gene co-expressed rule-modules (ConGEMs). Supplementary
Figure S9 depicts the rule-modules through dynamic tree cut method based on computed dissim scores
for the rules of the LUSC dataset using the proposed method. We obtained 44 rule-modules using
the dynamic tree cut method. Each module is represented by a specific color (Figure S9). The most
frequent geneset from antecedent as well as the most frequent geneset from consequent for each
rule-module was identified. Condensed markers through “geneset equivalent pruning regulations”
were identified from the resultant genesets. The top ten condensed markers for the LUSC dataset
with their corresponding module name and their status are summarized in Table 1. Among the top
ten condensed markers, we found nine (viz., {DST−}, {TP63−}, {BNC1−}, {CLCA2−}, {GJB5−},
{DSC3−, KRT5−}, {CGN+, DSC3−}, {KRT5−, NTRK2−}, and {CGN+, KRT5−}) as “existing”,
while one ({DSC3−, TMEM40−, NTRK2−}) was novel. Table 2 summarizes the biological validation
of the participating genes belonging to the top ten condensed markers.

Table 1. Top ten condensed markers (CGMs) for the lung squamous cell carcinoma (LUSC) dataset.

Rank Condensed Marker (CGM) Module Label Availability of Status of
Biological Evidence Condensed Marker

1 DST- purple (consequent) Available Existing

2 TP63-
blue,
brown (consequent) Available Existing

3 BNC1- pink (consequent) Available Existing

4 CLCA2- yellow (consequent) Available Existing

5 GJB5- dark red (consequent) Available Existing

6 {DSC3-, KRT5-}
dark
turquoise (antecedent) Available for both Existing

7 {CGN+, DSC3-} salmon (antecedent) Available for both Existing

8 {KRT5-, NTRK2-} blue (antecedent) Available for both Existing

9 {CGN+, KRT5-} light green (antecedent) Available for both Existing

10 {DSC3-, TMEM40-, NTRK2-} yellow (antecedent)

Available for DSC3 and
NTRK2, not found for
TMEM40 Novel
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Table 2. Biological validations of individual genes belonging to the CGMs in Table 1 for the
LUSC dataset.

Individual
Gene p-Value Literature

Evidence KEGG Pathway and GO-Terms (p-Value)

DST 9.26 × 10−10 [39–41] GO:BPs: response to wounding (GO:0009611) (p-value = 0.005237) [42],
extracellular matrix organization (GO:0030198) (p-value = 0.006151), extracellular
structure organization (GO:0043062) (p-value = 0.006327) [42];
GO:CCs: extracellular vesicular exosome (GO:0070062) (p-value = 1.02 × 10−7),
extracellular matrix part (GO:0044420) (p-value = 0.001283) [42];
GO:MF: calcium ion binding (GO:0005509) (8.51 × 10−10).

TP63 1.27 × 10−10 [40] GO:BPs: regulation of Notch signaling pathway (GO:0008593) (p-value = 0.024357)
[43], positive regulation of Notch signaling pathway (GO:0045747)
(p-value = 0.040422) [43];
GO:MF: RNA polymerase II transcription regulatory region sequence-specific
DNA binding transcription factor activity involved in positive regulation of
transcription (GO:0001228) (p-value = 0.036160).

BNC1 2.82 × 10−9 [40] GO:BP: response to wounding (GO:0009611) (p-value = 0.005237) [42].

CLCA2 1.28 × 10−10 [2–4,40,41,44,45] KEGG pathways: Pancreatic secretion_Homo sapiens_hsa04972
(p-value = 0.020269), Renin secretion_Homo sapiens_hsa04924
(p-value = 0.037037);
GO:CC: extracellular region (GO:0005576) (p-value = 0.000225) [42].

GJB5 1.94 × 10−10 [40]

CGN 1.96 × 10−10 [46] KEGG pathway: Tight junction_Homo sapiens_hsa04530 (p-value = 0.04347487);
GO:CC: cell-cell junction (GO:0005911) (p-value = 0.000681).

DSC3 3.08 × 10−11 [40,41,45] GO:BPs: cell–cell adhesion via plasma-membrane adhesion molecules
(GO:0098742) (p-value = 1.15978 × 10−10), cell–cell adhesion (GO:0098609)
(p-value = 1.28951 × 10−10);
GO:CCs: extracellular region (GO:0005576) (p-value = 0.000225) [42], cell–cell
junction (GO:0005911) (p-value = 0.000681);
GO:MF: calcium ion binding (GO:0005509) (p-value = 8.51 × 10−10).

KRT5 6.50 × 10−10 [40,41] GO:BP: regulation of Rac GTPase activity (GO:0032314) (p-value = 0.020821),
positive regulation of neuron projection development (GO:0010976)
(p-value = 0.031048);
GO:CC: extracellular vesicular exosome (GO:0070062) (p-value = 1.02 × 10−7).

NTRK2 1.47 × 10−9 [40] GO:BPs: regulation of Rac GTPase activity (GO:0032314) (p-value = 0.020821),
positive regulation of neuron projection development (GO:0010976)
(p-value = 0.031048);
GO:MF: growth factor binding (GO:0019838) (p-value = 0.011462) [42].

TMEM40 1.29 × 10−9 -

“GO” denotes Gene-Ontology.

DST- was the topmost condensed marker with highest frequency. DST- belonged to the
consequent portion of the Purple module. The p-value by Limma method is 9.26 × 10−10. We found
some literature evidence [39,40] supporting the association between the gene and the LUSC. According
to the literature [39], a significant change in the transcriptomic pattern of DST in the diseased
sample-group over the normal sample-group (with significant p-value) was found. It is also
associated with cytoskeletal structure. DST was found to be a biomarker (having significant
p-value) in [40]. The involvement of DST with biological processes “cell adhesion” (GO: 0007155)
and “epidermis development” (GO: 0008544) is also mentioned in [40]. In addition, DST is
involved significantly in several LUSC-related GO-terms; for example, GO:BPs of response to
wounding (p-value = 0.005237) [42], extracellular matrix organization (p-value = 0.006151) and
extracellular structure organization (p-value = 0.006327) [42], GO:CCs of extracellular vesicular
exosome (p-value = 1.02 × 10−7), extracellular matrix part (p-value = 0.001283) [42], and GO:MF
of calcium ion binding (p-value = 8.51 × 10−10). Of note, here the association between the GO:BP
of response to wounding and the disease LUSC is highlighted in [42]. Similarly, the relationship
between the GO:BP of extracellular structure organization and the disease LUSC is also depicted
in [42]. TP63− is the second most prominent condensed marker, having the second-highest
frequency. It falls in the consequent portion of the Blue module as well as the consequent
portion of the Brown module. Its p-value in the Limma method is 1.27 × 10−10. The literature
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evidence that proves the association between TP63 and the disease LUSC is represented in [40].
Additionally, TP63 is associated with several LUSC-related GO-terms—viz., GO:BPs of regulation
of the Notch signaling pathway (p-value = 0.024357) [43] and positive regulation of the Notch
signaling pathway (p-value = 0.040422) [43], GO:MF of RNA polymerase II transcription regulatory
region sequence-specific DNA binding transcription factor activity involved in positive regulation
of transcription (p-value = 0.036160). The next top ranked markers are {BNC1−}, {CLCA2−},
{GJB5−}, {DSC3−, KRT5−}, {CGN+, DSC3−}, {KRT5−, NTRK2−}, {CGN+, KRT5−}, and
{DSC3−, TMEM40−, NTRK2−}, respectively. The connection between BNC1/GJB5 and LUSC
is highlighted in [40], whereas a similar association between CLCA2 and LUSC was found
in [2–4,40,41,44,45]. Furthermore, BNC1 is connected with the disease-related GO:BP of response
to wounding (p-value = 0.005237) [42]. CLCA2 is connected with the related KEGG pathways
and GO-terms; for example, the KEGG pathway of Pancreatic secretion Homo sapiens hsa04972
(p-value = 0.020269), Renin secretion Homo sapiens hsa04924 (p-value = 0.037037), GO:CC of
extracellular region (p-value = 0.000225) [42].

In the case of {DSC3−, KRT5−}, its first participating gene DSC3 is connected with the LUSC
through some literature evidence [40,41,45] and some related GO-terms: viz., GO:BPs of cell–cell
adhesion via plasma-membrane adhesion molecules (p-value = 1.15978 × 10−10) and cell–cell adhesion
(p-value = 1.28951 × 10−10), GO:CCs of extracellular region (p-value = 0.000225) [42] and cell–cell
junction (p-value = 0.000681), and GO:MF of calcium ion binding (p-value = 8.51 × 10−10). Its second
participating gene KRT5 is associated with LUSC through some literature evidence [40,41] and some
related GO-terms: i.e., GO:BPs of regulation of Rac GTPase activity (p-value = 0.020821) and positive
regulation of neuron projection development (p-value = 0.031048), and GO:CC of extracellular vesicular
exosome (p-value = 1.02 × 10−7). Similarly, for {CGN+, DSC3−}, its first participating gene CGN is
linked in the SCC through literature evidence [46] and some pathway and GO-term information, such
as the KEGG pathway of tight junction Homo sapiens hsa04530 (p-value = 0.04347487), and GO:CC of
cell–cell junction (p-value = 0.000681). Its second participating gene DSC3 is connected with LUSC
through [40,41,45] and some related GO-terms: i.e., GO:BPs of cell–cell adhesion via plasma-membrane
adhesion molecules (p-value = 1.15978 × 10−10) and cell–cell adhesion (p-value = 1.28951 × 10−10),
GO:CCs of extracellular region (p-value = 0.000225) [42] and cell–cell junction (p-value = 0.000681),
and GO:MF of calcium ion binding (p-value = 8.51 × 10−10). However, similar related information for
the next ranked condensed markers are demonstrated in Tables 1 and 2.

Notably, the tenth ranked marker (namely, {DSC3−, TMEM40−, NTRK2−}) was the only novel
marker found in the antecedent part of the module in yellow. In this case, the activities of these two
genes (DSC3 and NTRK2) in LUSC are available in the literature and are supported by various related
GO-terms (in Table 2). However, the potential role of TMEM40 is not clear from either our literature
search or pathway/GO analysis. Overall, {DSC3−, TMEM40−, NTRK2−} as a geneset might serve
as a novel marker. Considering that the majority of the top ten markers were known markers, this new
marker ({DSC3−, TMEM40−, NTRK2−}) may be promising and warrant future investigation.

We further compared our method with the method by Su and Pan [40] in Table 2. Interestingly,
most of the genes in Table 2 obtained by our proposed method (i.e., eight out of ten genes) namely
DST, TP63, BNC1, CLCA2, GJB5, DSC3, KRT5 and NTRK2 overlapped the list of marker genes
in [40]. Two genes, CGN and TMEM40 were not found in [40], but the association of the disease with
CGN is identified by Molina-Pinelo et al. [46]. In the case of pathway and GO enrichment studies,
we considered only those KEGG pathways and GO-terms found in the literature that were potentially
associated with the disease. For example, the gene DST is linked to SCC through some disease-related
significant GO:BP terms—namely, extracellular structure organization (GO:0043062) (p-value =
0.006327), response to wounding (GO:0009611) (p-value = 0.005237), and some disease-related
significant GO:CC terms such as extracellular matrix part (GO:0044420) (p-value = 0.001283). All
such information is supported by Ge et al. [42]. On the other hand, Su and Pan [40] mentioned all
these significant GO terms, but they did not provide specific literature evidence. Of note, most of the
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GO terms mentioned in Table 2 obtained by our method were distinct from the identified GO terms
obtained by Su and Pan [40].

In addition, we provided a comparative study of several well-known internal cluster-validity
indices (e.g., average Dunn index (avgDI), average Silhoutte width (avgSW), average scaled
connectivity (avgSC), average cluster coefficient (avgCC), average maximum adjacency ratio
(avgMAR), density, and centralization (Ctlz)) as well as two external cluster-validity indices
(Rand index and adjusted Rand index) between our proposed rule-module discovery method
and the traditional gene-module discovery methods using several existing similarity (connectivity)
measures, such as weighted TOM using Pearson’s correlation co-efficient (i.e., wTOM[pcc]),
weighted TOM using Spearman’s correlation (i.e., wTOM[sc]), generalized TOM of degree 0 using
Pearson’s correlation co-efficient (i.e., GTOM0[pcc]), generalized TOM of degree 0 using Spearman’s
correlation (i.e., GTOM0[sc]), generalized TOM of degree 1 using Pearson’s correlation co-efficient
(i.e., GTOM1[pcc]), generalized TOM of degree 1 using Spearman’s correlation (i.e., GTOM1[sc]),
generalized TOM of degree 2 using Pearson’s correlation co-efficient (i.e., GTOM2[pcc]), generalized
TOM of degree 2 using Spearman’s correlation (i.e., GTOM2[sc]), generalized TOM of degree 3
using Pearson’s correlation co-efficient (i.e., GTOM3[pcc]), and generalized TOM of degree 3 using
Spearman’s correlation (i.e., GTOM3[sc]). Of note, we also collected the actual class-labels of the
features from the partitioning around medoids method [47] by fixing the number of clusters equal to
the number of the modules produced in the dynamic tree cut method.

According to Table 3, there were nine cluster validity indices, each denoting each of the nine
cases. In Table 3, each row stands for each individual validity index. Here, we identified the best
score (bold font) as well as the best method among all the methods (i.e., a total of eleven methods) for
each specific cluster validity index (denoting each row of Table 3. For example, for the validity index,
namely average clustering coefficient (avgCC), 2.53 × 10−1 was the best score among all the other
scores at that row avgCC in Table 3. Thus, the corresponding method (i.e., proposed method here)
was considered the best method for the validity index avgCC. Similarly, for another validity index
(namely centralization), 1.36 × 10−1 was the best score among all the scores at that row representing
the centralization, and wTOM[pcc] was the best scorer for the validity index centralization. Following
this approach, we obtained five such cases (i.e., five cluster validity indices, namely avgDI, avgCC,
avgMAR, Density, and Rand index) for which our method generated best score. There were four
remaining cases or validity indices, among which wTOM[pcc] produced best score for two of them (i.e.,
avgSW and centralization), and GTOM1[sc] yielded the best score for one of the remaining cases (i.e.,
avgSC), whereas all methods failed to produce values for the remaining case (i.e., adjusted Rand index).
Furthermore, “win-draw-loss” was considered and computed for these methods in a pairwise manner.
For example, our method won (i.e., produced better outcome) over each of the methods—namely
wTOM[sc], GTOM0[sc], GTOM1[pcc], GTOM1[sc], GTOM2[sc], and GTOM3[sc]—for seven times,
whereas our method lost (i.e., produced worse outcome) over each of these six methods only once.
Furthermore, the proposed method provided five wins and three losses when compared to wTOM[pcc],
whereas our method produced six wins and two losses over each of GTOM0[pcc], GTOM2[pcc],
and GTOM3[pcc]. Details are shown in the first row of the summary table (Table 9), in which the
number of wins, draws, and losses of our proposed method (denoted in rows) over each of the
other methods (represented in columns) is mentioned. Overall, our method outperformed the other
methods. The dendrograms and the plots of Silhouette width are provided in the Supplementary Files
(Figures S1–S12).

Similar to the first dataset, we applied our proposed method to the second dataset
(uterine cervical carcinogenesis dataset). In this case, we first obtained 9024 hyper-methylated and
4185 hypo-methylated genes by Limma analysis followed by Benjamini–Hochberg p-value multiple
test correction. We ran the RANWAR tool for generating association rules with the Wsupp = 0.50 and
WCon f = 0.70. After that, like the first dataset, we also computed the (dynamic) minimum support and
minimum confidence thresholds for each generated rule separately using the data-distributional theory
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proposed in [38]. Using these dynamically selected rules, we computed the integrated similarity scores
using the proposed weighted Jaccard and weighted Cosine measure. The corresponding distance was
then calculated from the integrated similarity measure. Using the distance, we performed average
linkage clustering and dynamic tree cut, respectively. Of note, we also collected the actual class-labels
of the features from the partitioning around medoids method [47] by fixing the number of clusters
equal to the number of the modules produced in the dynamic tree cut method. As a result, our
method led to a total of 21 rule-modules. In Supplementary Figure S14, these rule-modules were
labeled by color: black, blue, brown, cyan, dark red, green, green-yellow, grey60, light cyan, light
green, light yellow, magenta, midnight blue, pink, purple, red, royal blue, salmon, tan, turquoise,
and yellow, which had 55, 66, 59, 40, 37, 57, 43, 39, 39, 38, 38, 45, 40, 55, 45, 57, 37, 42, 43, 66, and 59
participating rules, respectively. None of the existing methods could generate a sufficient number
of clusters for this dataset: all these methods (see below) either generated a single cluster or no
cluster. For example, each of these methods—wTOM[pcc], wTOM[sc], GTOM0[pcc], GTOM0[sc],
GTOM1[pcc], GTOM2[pcc] and GTOM3[pcc]—extracted single cluster colored turquoise, whereas
all the remaining methods (GTOM1[sc], GTOM2[sc], and GTOM3[sc]) could not generate any cluster.
In terms of performance, our method had better performance over eight others (wTOM[sc], GTOM0[sc],
GTOM1[pcc], GTOM1[sc], GTOM2[pcc], GTOM2[sc], GTOM3[pcc], and GTOM3[sc]) out of the ten
existing methods when we measured by the number of wins, whereas the overall performance of
our method was same as the remaining two methods (wTOM[pcc] and GTOM0[pcc]) as measured
by the numbers of wins and losses. Specifically, the number of “win-draw-loss” of our method
over wTOM[sc], GTOM0[sc], GTOM1[pcc], GTOM1[sc], GTOM2[pcc], GTOM2[sc], GTOM3[pcc],
and GTOM3[sc] was 5-1-3, 6-1-2, 5-1-3, 7-1-1, 5-1-3, 7-1-1, 5-1-3, and 7-1-1, respectively, whereas both of
the remaining methods (wTOM[pcc] and GTOM0[pcc]) had 4-1-4. For the second dataset, the detailed
comparative results of the different cluster-validity index measures between our proposed method and
the other methods were represented in Table 4. Since we obtained more wins overall in the majority of
cases for both datasets, our method was better than any other existing methods.

In addition, we included a simulation study for each of the datasets, and also compared
the performance of our method and the other methods. For this purpose, we first picked up
fifty percent features (genes or rules) from the above resultant set of dynamic rules. Thereafter,
we calculated the integrated similarity scores using the proposed weighted Jaccard and weighted
Cosine measure. The respective distance was then computed from the integrated similarity measure.
Using the distance, we carried out average linkage clustering and dynamic tree cut, respectively,
as we did previously. Then the resultant modules were identified. Of note, we also collected the
actual class-labels of the features from the partitioning around medoids method [47] by fixing the
number of clusters equal to the number of the modules produced in the dynamic tree cut method.
Thereafter, we computed the previously mentioned internal cluster validity indices as well as the
two external validity indices. For the LUSC dataset, the number of “win-draw-loss” of our method
over wTOM[pcc], wTOM[sc], GTOM0[pcc], GTOM0[sc], GTOM1[pcc], GTOM1[sc], GTOM2[pcc],
GTOM2[sc], GTOM3[pcc], and GTOM3[sc] in the first simulation was 5-0-4, 7-0-2, 6-0-3, 7-0-2, 5-0-4,
5-0-4, 5-0-4, 6-0-3, 6-0-3, and 5-0-4, respectively, whereas the same for the second simulation was
6-0-3, 8-0-1, 7-0-2, 8-0-1, 7-0-2, 8-0-1, 7-0-2, 8-0-1, 7-0-2, and 8-0-1, respectively. For the uterine cervical
carcinogenesis, this number for the first simulation was 5-0-4, 5-0-4, 6-0-3, 6-0-3, 6-0-3, 8-0-1, 6-0-3,
7-0-2, 6-0-3, and 7-0-2, respectively, whereas the number for the second simulation was 5-0-4, 6-0-3,
6-0-3, 6-0-3, 6-0-3, 7-0-2, 6-0-3, 7-0-2, 6-0-3, and 7-0-2, respectively. Furthermore, the details of cluster
validity indices in the four simulation studies are depicted in Table 5–8, respectively. The summary
tables containing “win-draw-loss” information for all the datasets are represented in Table 9.
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Table 3. Comparison of proposed rule-based gene-module detection method and other existing geneset-based gene-module detection methods for the LUSC dataset.

Validty Index Proposed wTOM[pcc] wTOM[sc] GTOM0[pcc] GTOM0[sc] GTOM1[pcc] GTOM1[sc] GTOM2[pcc] GTOM2[sc] GTOM3[pcc] GTOM3[sc]

avgDI ⇑ 3.82 × 10−1 Inf Inf Inf Inf - - - - - -

avgSW ⇑ 7.82 × 10−2 9.97 × 10−2 3.94 × 10−2 6.55 × 10−2 2.89 × 10−2 - - - - - -

avgSC ⇓ 6.80 × 10−1 4.24 × 10−1 3.41 × 10−1 3.39 × 10−1 3.02 × 10−1 9.41 × 10−2 6.3 × 10−2 1.66 × 10−1 6.53 × 10−2 1.65 × 10−1 6.53 × 10−2

avgCC ⇑ 2.53 × 10−1 1.52 × 10−1 8.74 × 10−2 1.30 × 10−1 8.64 × 10−2 8.86 × 10−2 5.18 × 10−2 1.47 × 10−1 5.38 × 10−2 1.47 × 10−1 5.38 × 10−2

avgMAR ⇑ 2.99 × 10−1 1.26 × 10−1 8.24 × 10−2 1.24 × 10−1 1.00 × 10−1 - - - - - -

Density ⇑ 2.21 × 10−1 9.83 × 10−2 3.99 × 10−2 6.42 × 10−2 2.90 × 10−2 7.782 × 10−3 3.18 × 10−3 2.40 × 10−2 3.30 × 10−3 2.40 × 10−2 3.30 × 10−3

Centralization ⇑ 1.04 × 10−1 1.36 × 10−1 7.85 × 10−2 1.28 × 10−1 6.83 × 10−2 7.64 × 10−2 4.83 × 10−2 1.24 × 10−1 4.82 × 10−2 1.24 × 10−1 4.82 × 10−2

Rand index ⇑ 2.21 × 10−1 - - - - - - - - - -

Adjusted Rand index ⇑ - - - - - - - - - - -
⇑ signifies that a higher value of the corresponding validity index is better in determining the gene modules, while ⇓ denotes the reverse of the above statement. For
each validity index, an entry denoted with bold font indicates that the corresponding method is the best performer in terms of the corresponding index (row-wise).
wTOM[pcc]: weighted TOM using Pearson’s correlation coefficient; wTOM[sc]: weighted TOM using Spearman’s correlation; GTOM0[pcc]: generalized TOM of
degree 0 using Pearson’s correlation coefficient; GTOM0[sc]: generalized TOM of degree 0 using Spearman’s correlation; avgDI: average Dunn index; avgSW: average
Silhoutte width; avgSC: average scaled connectivity; avgCC: average cluster coefficient; avgMAR: average maximum adjacency ratio.

Table 4. Comparison of proposed rule-based gene-module detection method and other existing geneset-based gene-module detection methods for the cervical
carcinogenesis dataset.

Validty Index Proposed wTOM[pcc] wTOM[sc] GTOM0[pcc] GTOM0[sc] GTOM1[pcc] GTOM1[sc] GTOM2[pcc] GTOM2[sc] GTOM3[pcc] GTOM3[sc]

avgDI ⇑ 3.47 × 10−1 Inf Inf Inf Inf Inf - Inf - Inf -

avgSW ⇑ 1.85 × 10−1 3.13 × 10−1 2.12 × 10−1 9.16 × 10−1 1.61 × 10−1 9.90 × 10−1 - 9.90 × 10−1 - 9.90 × 10−1 -

avgSC ⇓ 7.41 × 10−1 9.99 × 10−1 6.39 × 10−1 9.77 × 10−1 5.49 × 10−1 9.90 × 10−1 1.08 × 10−1 9.90 × 10−1 1.26 × 10−1 9.90 × 10−1 1.27 × 10−1

avgCC ⇑ 2.77 × 10−1 9.64 × 10−1 2.76 × 10−1 9.55 × 10−1 2.58 × 10−1 9.90 × 10−1 1.81 × 10−1 9.90 × 10−1 1.98 × 10−1 9.90 × 10−1 1.99 × 10−1

avgMAR ⇑ 3.25 × 10−1 9.64 × 10−1 2.53 × 10−1 9.52 × 10−1 2.75 × 10−1 - - - - - -

Density ⇑ 1.87 × 10−1 9.64 × 10−1 2.11 × 10−1 9.49 × 10−1 1.59 × 10−1 9.80 × 10−1 1.01 × 10−2 9.80 × 10−1 1.12 × 10−2 9.80 × 10−1 1.26 × 10−2

Centralization ⇑ 1.26 × 10−1 1.04 × 10−2 1.21 × 10−1 2.31 × 10−2 1.33 × 10−1 1.01 × 10−2 8.54 × 10−2 1.01 × 10−2 8.80 × 10−2 1.01 × 10−2 8.84 × 10−2

Rand index ⇑ 4.29 × 10−1 - - - - - - - - - -

Adjusted Rand index ⇑ - - - - - - - - - - -
⇑ signifies that a higher value of the corresponding validity index is better in determining the gene modules, while ⇓ denotes the reverse of the above statement.
For each validity index, an entry denoted with bold font indicates that the corresponding method is the best performer in terms of the corresponding index (row-wise).
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Table 5. Comparison of proposed rule-based gene-module detection method and other existing geneset-based gene-module detection methods in a simulation study
for the LUSC dataset.

Validty Index Proposed wTOM[pcc] wTOM[sc] GTOM0[pcc] GTOM0[sc] GTOM1[pcc] GTOM1[sc] GTOM2[pcc] GTOM2[sc] GTOM3[pcc] GTOM3[sc]

avgDI ⇑ 3.82 × 10−1 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf

avgSW ⇑ 5.91 × 10−2 2.97 × 10−1 - 5.50 × 10−1 - 5.54 × 10−1 2.80 × 10−1 8.66 × 10−1 4.51 × 10−1 8.96 × 10−1 6.11 × 10−1

avgSC ⇓ 6.74 × 10−1 9.01 × 10−1 9.10 × 10−1 9.10 × 10−1 9.10 × 10−1 6.92 × 10−1 5.01 × 10−1 8.83 × 10−1 6.83 × 10−1 9.06 × 10−1 6.81 × 10−1

avgCC ⇑ 2.51 × 10−1 6.55 × 10−1 5.29 × 10−1 5.29 × 10−1 5.29 × 10−1 6.70 × 10−1 5.14 × 10−1 8.71 × 10−1 6.16 × 10−1 8.96 × 10−1 7.20 × 10−1

avgMAR ⇑ 2.98 × 10−1 6.53 × 10−1 5.31 × 10−1 5.31 × 10−1 5.31 × 10−1 - - - - - -

Density ⇑ 2.19 × 10−1 6.50 × 10−1 5.27 × 10−1 5.27 × 10−1 5.27 × 10−1 5.09 × 10−1 1.25 × 10−1 7.95 × 10−1 2.34 × 10−1 8.23 × 10−1 3.38 × 10−1

Centralization ⇑ 1.06 × 10−1 7.41 × 10−2 5.47 × 10−2 5.47 × 10−2 5.47 × 10−2 1.01 × 10−1 9.04 × 10−2 1.04 × 10−1 1.04 × 10−1 8.89 × 10−2 8.89 × 10−2

Rand index ⇑ 7.01 × 10−1 - - - - - - - - - -

Adjusted Rand index ⇑ 3.53 × 10−1 - - - - - - - - - -

⇑ signifies that a higher value of the corresponding validity index is better in determining the gene modules, while ⇓ denotes the reverse of the above statement. For
each validity index, an entry denoted with bold font indicates that the corresponding method is the best performer in terms of the corresponding index (row-wise).
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Table 6. Comparison of proposed rule-based gene-module detection method and other existing geneset-based gene-module detection methods in the second
simulation study for the LUSC dataset.

Validty Index Proposed wTOM[pcc] wTOM[sc] GTOM0[pcc] GTOM0[sc] GTOM1[pcc] GTOM1[sc] GTOM2[pcc] GTOM2[sc] GTOM3[pcc] GTOM3[sc]

avgDI ⇑ 3.81 × 10−1 Inf Inf Inf - - - - - - -

avgSW ⇑ 7.11 × 10−2 1.24 × 10−1 5.51 × 10−2 1.00 × 10−1 - - - - - - -

avgSC ⇓ 6.83 × 10−1 5.50 × 10−1 4.34 × 10−1 4.34 × 10−1 4.34 × 10−1 1.51 × 10−1 9.67 × 10−2 2.37 × 10−1 1.18 × 10−1 2.65 × 10−1 1.14 × 10−1

avgCC ⇑ 2.53 × 10−1 1.96 × 10−1 1.09 × 10−1 1.09 × 10−1 1.09 × 10−1 1.42 × 10−1 7.85 × 10−2 1.98 × 10−1 9.23 × 10−2 2.39 × 10−1 9.87 × 10−2

avgMAR ⇑ 2.99 × 10−1 1.71 × 10−1 1.05 × 10−1 1.05 × 10−1 1.05 × 10−1 - - - - - -

Density ⇑ 2.21 × 10−1 1.42 × 10−1 5.99 × 10−2 5.99 × 10−2 5.99 × 10−2 2.23 × 10−2 7.90 × 10−3 5.02 × 10−2 1.04 × 10−2 6.23 × 10−2 1.09 × 10−2

Centralization ⇑ 1.03 × 10−1 1.21 × 10−1 8.84 × 10−2 8.84 × 10−2 8.84 × 10−2 1.34 × 10−1 7.68 × 10−2 1.68 × 10−1 8.13 × 10−2 1.83 × 10−1 8.79 × 10−2

Rand index ⇑ 7.18 × 10−1 - - - - - - - - - -

Adjusted Rand index ⇑ 1.75 × 10−1 - - - - - - - - - -
⇑ signifies that a higher value of the corresponding validity index is better in determining the gene modules, while ⇓ denotes the reverse of the above statement. For
each validity index, an entry denoted with bold font indicates that the corresponding method is the best performer in terms of the corresponding index (row-wise).



Genes 2018, 9, 7 19 of 25

Table 7. Comparison of proposed rule-based gene-module detection method and other existing geneset-based gene-module detection methods in the first simulation
study for the cervical carcinogenesis dataset.

Validty Index Proposed wTOM[pcc] wTOM[sc] GTOM0[pcc] GTOM0[sc] GTOM1[pcc] GTOM1[sc] GTOM2[pcc] GTOM2[sc] GTOM3[pcc] GTOM3[sc]

avgDI ⇑ 4.23 × 10−1 Inf Inf Inf Inf Inf - Inf - Inf -

avgSW ⇑ 9.33 × 10−2 3.83 × 10−1 1.89 × 10−1 9.07 × 10−1 1.55 × 10−1 9.80 × 10−1 - 9.80 × 10−1 - 9.80 × 10−1 -

avgSC ⇓ 7.45 × 10−1 9.91 × 10−1 6.20 × 10−1 1.22 × 10−1 1.22 × 10−1 9.80 × 10−1 1.22 × 10−1 9.80 × 10−1 1.30 × 10−1 9.80 × 10−1 1.30 × 10−1

avgCC ⇑ 2.59 × 10−1 9.60 × 10−1 2.63 × 10−1 1.20 × 10−1 1.20 × 10−1 9.80 × 10−1 1.20 × 10−1 9.80 × 10−1 1.25 × 10−1 9.80 × 10−1 1.25 × 10−1

avgMAR ⇑ 3.26 × 10−1 9.60 × 10−1 2.39 × 10−1 - - - - - - - -

Density ⇑ 1.89 × 10−1 9.60 × 10−1 1.85 × 10−1 1.49 × 10−2 1.49 × 10−2 9.60 × 10−1 1.49 × 10−2 9.60 × 10−1 1.59 × 10−2 9.60 × 10−1 1.59 × 10−2

Centralization ⇑ 6.47 × 10−2 9.32 × 10−3 1.18 × 10−1 1.12 × 10−1 1.12 × 10−1 2.04 × 10−2 1.12 × 10−1 2.04 × 10−2 1.11 × 10−1 2.04 × 10−2 1.11 × 10−1

Rand index ⇑ 5.24 × 10−1 - - - - - - - - - -

Adjusted Rand index ⇑ 4.55 × 10−1 - - - - - - - - - -
⇑ signifies that a higher value of the corresponding validity index is better in determining the gene modules, while ⇓ denotes the reverse of the above statement.
For each validity index, an entry denoted with bold font indicates that the corresponding method be the best performer in terms of the corresponding index (row-wise).

Table 8. Comparison of the proposed rule-based gene-module detection method and other existing geneset-based gene-module detection methods in the second
simulation study for the cervical carcinogenesis dataset.

Validty Index Proposed wTOM[pcc] wTOM[sc] GTOM0[pcc] GTOM0[sc] GTOM1[pcc] GTOM1[sc] GTOM2[pcc] GTOM2[sc] GTOM3[pcc] GTOM3[sc]

avgDI ⇑ 4.27 × 10−1 Inf Inf Inf Inf Inf - Inf - Inf -

avgSW ⇑ 9.88 × 10−2 3.67 × 10−1 2.78 × 10−1 9.15 × 10−1 2.19 × 10−1 9.80 × 10−1 - 9.80 × 10−1 - 9.80 × 10−1 -

avgSC ⇓ 7.37 × 10−1 9.92 × 10−1 7.62 × 10−1 9.80 × 10−1 9.80 × 10−1 9.80 × 10−1 1.27 × 10−1 9.80 × 10−1 1.47 × 10−1 9.80 × 10−1 1.48 × 10−1

avgCC ⇑ 2.58 × 10−1 9.71 × 10−1 2.43 × 10−1 9.80 × 10−1 9.80 × 10−1 9.80 × 10−1 1.24 × 10−1 9.80 × 10−1 1.36 × 10−1 9.80 × 10−1 1.39 × 10−1

avgMAR ⇑ 3.26 × 10−1 9.71 × 10−1 3.17 × 10−1 - - - - - - - -

Density ⇑ 1.88 × 10−1 9.71 × 10−1 2.77 × 10−1 9.60 × 10−1 9.60 × 10−1 9.60 × 10−1 1.64 × 10−2 9.60 × 10−1 2.00 × 10−2 9.60 × 10−1 2.04 × 10−2

Centralization ⇑ 6.72 × 10−2 7.9 × 10−3 1.23 × 10−1 2.04 × 10−2 2.04 × 10−2 2.04 × 10−2 1.17 × 10−1 2.04 × 10−2 1.21 × 10−1 2.04 × 10−2 1.22 × 10−1

Rand index ⇑ 5.54 × 10−1 - - - - - - - - - -

Adjusted Rand index ⇑ 3.67 × 10−1 - - - - - -
⇑ signifies that a higher value of the corresponding validity index is better in determining the gene modules, while ⇓ denotes the reverse of the above statement.
For each validity index, an entry denoted with bold font indicates that the corresponding method is the best performer in terms of the corresponding index (row-wise).
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Table 9. Summary of comparative performance between our proposed rule-module discovery method (in rows) over the traditional gene-module discovery methods
using several existing similarity measures (in columns) for the original and simulated LUSC dataset (denoted as “LUSC”, “LUSC sm1”, and “LUSC sm2”, respectively)
as well as the original and simulated cervical datasets (referred to as “Cervical”, “Cervical sm1”, and “Cervical sm2”, respectively).

Dataset Method wTOM[pcc] wTOM[sc] GTOM0[pcc] GTOM0[sc] GTOM1[pcc] GTOM1[sc] GTOM2[pcc] GTOM2[sc] GTOM3[pcc] GTOM3[sc]

LUSC Proposed 5-1-3 7-1-1 6-1-2 7-1-1 7-1-1 7-1-1 6-1-2 7-1-1 6-1-2 7-1-1

Cervical Proposed 4-1-4 5-1-3 4-1-4 6-1-2 5-1-3 7-1-1 5-1-3 7-1-1 5-1-3 7-1-1

LUSC sm1 Proposed 5-0-4 7-0-2 6-0-3 7-0-2 5-0-4 5-0-4 5-0-4 6-0-3 6-0-3 5-0-4

LUSC sm2 Proposed 6-0-3 8-0-1 7-0-2 8-0-1 7-0-2 8-0-1 7-0-2 8-0-1 7-0-2 8-0-1

Cervical sm1 Proposed 5-0-4 5-0-4 6-0-3 6-0-3 6-0-3 8-0-1 6-0-3 7-0-2 6-0-3 7-0-2

Cervical sm2 Proposed 5-0-4 6-0-3 6-0-3 6-0-3 6-0-3 7-0-2 6-0-3 7-0-2 6-0-3 7-0-2

The entry at row X under column Y represents the win-draw-loss of X compared to Y.
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The noteworthy difference between our proposed method and an existing technique developed
by Sethi et al. [32] is described in the following. Sethi et al. selected the non-redundant features
(genes) using statistical impurity-based measures (i.e., Gini Index, Max Minority, and Twoing rule
measures), whereas in our proposed method we performed a well-known statistical hypothesis
test—the empirical Bayes test using the Limma package [22]—that was applied to determine the
(non-redundant) differentially expressed genes. In Limma, the null hypothesis is that “there is
no difference between the means of the two groups (diseased group and normal group)”. Since
differentially expressed genes identified by Limma make more sense in gene-based rule-clustering or
in the characterization of disease than the selected genes through the impurity-based measures, our
method is more advantageous than the other. In other words, there are both differentially expressed
genes and non-differentially expressed genes present in the resulting rules by [32], whereas our
method produces only differentially expressed genes, and no non-differentially expressed genes.
The second advantage of our method is that Sethi et al. provides only the rules of genes, whereas our
method provides the rules of genes with their status of differential expression (either up-regulated or
down-regulated).

In addition, we slightly modified the two weighted similarity measures (Jaccard and Cosine). In the
numerator of the weighted Jaccard measure made by Sethi et al., they counted the number of common
genes either on the same side of both the rules (i.e., LHS or RHS of both the rules) or on the opposite
sides (i.e., LHS of one rule and RHS of the other rule) and then added 1 with each count, separately,
then multiplied each resultant value with the weighted-sum of the common genes of each combination
of LHS and RHS of the two rules, and finally summed the weighted-sum of the four combinations of
LHS and RHS of the two rules [32]. The addition of 1 to each count (the number of common genes)
for each of four combinations of LHS and RHS of the two rules is redundant, which was not done in
case of the numerator of the weighted Jaccard measure developed by us. In our case, we determined
the common genes either on the same side of both the rules (i.e., LHS or RHS of both the rules) or on
the opposite sides (i.e., LHS of one rule and RHS of the other rule), and thereafter simply computed
the weighted-sum of the common genes of each combination of LHS and RHS of the two rules. In the
denominator of the weighted Jaccard measure made by Sethi et al., they added an addition of the total
weights of all the present genes of both rules. However, in the denominator of the weighted Jaccard
measure developed by us, we computed the weighted sum of the union of genes existing either on the
same side of both the rules or on the opposite sides. Additionally, the weighted vectors of weighted
Cosine measure are different for our proposed method and the method by Sethi et al. [32].

We used R scripts for statistical tests and gene-module detection, and wrote in-house codes by
MatLab for computing integrated similarity measure. The codes are available upon request.

4. Conclusions

There are many bioinformatics approaches as well as tools for genetic marker discovery.
Genetic-rule-module approach—which can enhance the discovery of the interaction mechanisms
of the genes in disease phenotypes—has not been applied yet. Hence, in this article, we introduced two
new rule-based similarity measures—weighted rank-based Jaccard and Cosine measures—to obtain
similarity scores between pairwise rules. Based on that, we proposed a new computational framework
for identifying condensed gene co-expression modules (ConGEMs). In addition, we detected the
condensed markers from the resultant co-expressed rule-modules. Our application to a real gene
expression dataset for LUSC and a real methylation dataset for uterine cervical carcinogenesis
demonstrated this method to be effective. In LUSC analysis, we obtained a total of 44 rule-modules
(ConGEMs) from the dataset, from which we assessed the corresponding top condensed markers. Our
evaluation of these markers through literature, KEGG pathway, and GO terms suggested that our results
were reliable and likely useful. Specifically, we found a new marker {DSC3−, TMEM40−, NTRK2−},
which is promising based on gene function and related studies. Moreover, a comparative study between
our proposed rule-module discovery method and the traditional gene-module discovery methods using
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several existing similarity (connectivity) measures based upon several well-known cluster validity
indices are also provided. In summary, our method will be useful for identifying rule-modules along
with respective markers from many available genome-based gene expression datasets, and can be
applied to RNA-seq or related expression data.

In addition, there are a couple of related directions that are required to further enhance our
current method to solve more research objectives. Among them, finding significant associations
through graphical model is important. One such method was developed by Scutari and Nagarajan [48].
Other interesting research problems are the impact of noise in biomolecular network or genetic module
on the pairwise dependencies, as well as the conditional dependencies through various motif-based
studies [49], and the functional impact of identifying dense subgraphs in biological network or genetic
module [50]. Since rule-based module discovery has rarely been attempted prior to our work, as future
work, we will design an improved version of the current method using the aforementioned three
research objectives in multi-omics cancer datasets.

Supplementary Materials: The following are available online at https://www.dropbox.com/sh/
uubqg9eq1qpeit3/AADmKhW08s8y7IzEf7joZWHZa?dl=0., Figure S1: Dendrogram of gene-modules
through dynamic tree cut method by wTOM[sc] for the LUSC expression dataset; Figure S2: Plot of Silhouette
width of gene-modules through dynamic tree cut method by wTOM[sc] for the LUSC expression dataset;
Figure S3: Dendrogram of gene-modules through dynamic tree cut method by GTOM0[pcc] for the LUSC
expression dataset; Figure S4: Plot of Silhouette width of gene-modules through dynamic tree cut method by
GTOM0[pcc] for the LUSC expression dataset; Figure S5: Dendrogram of gene-modules through dynamic tree cut
method by GTOM0[sc] for the LUSC expression dataset; Figure S6: Plot of Silhouette width of gene-modules
through dynamic tree cut method by GTOM0[sc] for the LUSC expression dataset; Figure S7: Dendrogram of
gene-modules through dynamic tree cut method by GTOM2[pcc] for the LUSC expression dataset; Figure S8:
Dendrogram of gene-modules through dynamic tree cut method by GTOM2[sc] for the LUSC expression dataset;
Figure S9: Dendrogram of gene-modules through dynamic tree cut method by the proposed method ConGEM
for the LUSC expression dataset; Figure S10: Plot of Silhouette width of gene-modules through dynamic tree
cut method by the proposed method ConGEM for the LUSC expression dataset; Figure S11: Dendrogram of
gene-modules through dynamic tree cut method by wTOM[pcc] for the LUSC expression dataset; Figure S12:
Plot of Silhouette width of gene-modules through dynamic tree cut method by wTOM[pcc] for the LUSC
expression dataset; Text S13: Details about Statistical test for identifying differentially expressed genes; Figure S14:
Dendrogram of gene-modules through dynamic tree cut method by the proposed method ConGEM for the
Uterine cervical carcinogenesis methylation dataset; Figure S15: Several examples of calculating the proposed
weighted measures; Text S16: The details of the used rule mining algorithm.
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