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Abstract (250 words) 22 

In recent years, significant efforts have been made to improve methods for genomic studies of 23 

admixed populations using Local Ancestry Inference (LAI). Accurate LAI is crucial to ensure 24 

downstream analyses reflect the genetic ancestry of research participants accurately. Here, we test 25 

analytic strategies for LAI to provide guidelines for optimal accuracy, focusing on admixed 26 

populations reflective of Latin America’s primary continental ancestries – African (AFR), 27 
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Amerindigenous (AMR), and European (EUR). Simulating LD-informed admixed haplotypes under a 28 

variety of 2 and 3-way admixture models, we implemented a standard LAI pipeline, testing three 29 

reference panel compositions to quantify their overall and ancestry-specific accuracy. We examined 30 

LAI miscall frequencies and true positive rates (TPR) across simulation models and continental 31 

ancestries. AMR tracts have notably reduced LAI accuracy as compared to EUR and AFR tracts in all 32 

comparisons, with TPR means for AMR ranging from 88-94%, EUR from 96-99% and AFR 98-99%. 33 

When LAI miscalls occurred, they most frequently erroneously called European ancestry in true 34 

Amerindigenous sites. Using a reference panel well-matched to the target population, even with a 35 

lower sample size, LAI produced true-positive estimates that were not statistically different from a 36 

high sample size but mismatched reference, while being more computationally efficient. While 37 

directly responsive to admixed Latin American cohort compositions, these trends are broadly useful 38 

for informing best practices for LAI across other admixed populations. Our findings reinforce the 39 

need for inclusion of more underrepresented populations in sequencing efforts to improve reference 40 

panels. 41 

 42 

Introduction 43 

Admixed populations present a challenge in genome-wide analyses, as their genomes contain 44 

components from different continental ancestries, which vary from person to person along the 45 

genome, even if two people have the same overall ancestry proportions. This makes it statistically 46 

challenging to control for population structure, which can bias tests if left uncorrected1,2. Despite 47 

recent advances in complex trait genetics, limitations remain in our understanding of the architecture 48 

of genetic disorders in diverse populations due to their exclusion from many genomic studies3–5. For 49 

example, Latin American (LatAm) populations currently represent only 1.3% of all genome-wide 50 

association studies (GWAS) samples, despite accounting for 8.4% of the world population and 51 

contributing disproportionately to GWAS findings6. As large-scale efforts begin to focus more heavily 52 

on admixed groups, there is an unmet need for the design of well-suited pipelines to appropriately 53 

study these underrepresented populations7.  54 
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Local Ancestry Inference (LAI) is a machine learning approach for assigning each genomic 55 

region to a specific ancestry group by comparing phased genotype data to a reference sample 56 

containing representative phased whole genome sequence data. This method allows the researcher to 57 

assign the ancestral origin for each ancestry component for subsequent analyses, providing a better 58 

framework for control over population structure than only considering global admixture, as is 59 

accomplished with including principal components as covariates in statistical testing. There are 60 

several newly established analysis methods and tools that are tailored to admixed populations that 61 

implement LAI to deconvolute continental ancestry components in admixed samples. This work has 62 

shown that LAI can improve discovery power in genome-wide association studies for identifying 63 

ancestry-specific hits8, improve in polygenic risk scoring9, can be meaningful in evolutionary 64 

research10, assist in characterizing gene-gene interactions11, as well as provide more meaningful 65 

patient stratification in precision medicine12,13. To ensure and maximize the success of improving 66 

accuracy and statistical power in analyses involving LAI for admixed samples, is it paramount that 67 

local ancestry is correctly called in the individual haplotypes. However, limitations in available 68 

reference panels for many understudied populations hinder analysis, and the reference panel 69 

characteristics and algorithm parameters that result in optimal local ancestry inference accuracy across 70 

populations are still not firmly established.  71 

One of the main features affecting LAI analysis is the reference panel used to infer local 72 

ancestry on the target sample. Reference panels are broadly required for genomic pipelines including 73 

LAI, yet are often sparse for admixed populations, particularly those who have some Amerindigenous 74 

(AMR) ancestry. Further, many reference samples are themselves admixed, which complicates 75 

assigning ancestral tracts, often resulting in admixed populations having diminished accuracy if 76 

reference panel homogeneity is assumed. As such, LAI may perform differentially for different 77 

ancestry components or populations such that there is an unmet need in establishing guidelines for 78 

best practice for diverse cohorts who may not have large, well-matched banks of reference samples to 79 

train algorithms on. 80 
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Here, we comprehensively test strategies for conducting LAI using existing reference 81 

resources with simulated "truth" genomic datasets reflective of the demographic history of Latin 82 

America to identify features that result in the best true positive rates. Latin American (LatAm) 83 

populations have a complex ancestry makeup resulting from past admixture events from multiple 84 

continental areas. Though the specific patterns vary between different geographic regions, historical 85 

admixture events generally involved substantial contributions from Amerindigenous (AMR), 86 

European (EUR) and/or African (AFR) populations14–16. Thus, the genomes of Latin American 87 

individuals are complex mosaics of different ancestral tracts that vary in length depending on the 88 

historical timing of when pulses of admixture occurred. We wish to highlight that we only describe 89 

inference of individuals genetic ancestry throughout this manuscript, rather than any metric of self-90 

identification. 91 

In our tests, we modify key parameters affecting LAI performance, including: 1) how well 92 

matched the reference panel is to the sample, 2) the absolute size of the panel, 3) the presence of 93 

admixture in the reference sample, 4) genomic data type/the number of variants (i.e. genotyping 94 

arrays vs whole genome sequencing data), as well as 5) demographic features of the cohort (global 95 

admixture proportions and timing of admixture events), and 6) parameter selection in LAI models 96 

(e.g. window size, number of EM iterations) (Figure 1). This informs best practice for researchers 97 

when conducting LAI on LatAm and other admixed populations to produce the highest accuracy 98 

results. 99 

  100 

Methods 101 

Dataset generation and quality control 102 

To generate both a simulated truth dataset and comparison reference panels, we used data from the 103 

jointly called dataset of 1000 genomes (1KG) and Human Genome Diversity Project (HGDP) on 104 

GRch3817–19. For our three-way admixed analyses, we used data from Amerindigenous populations 105 

from HGDP (Karitiana, Surui, Colombian, Maya, Pima) as well as the Peruvians from Lima, Peru 106 

(PEL) and, in one test, East Asian (EAS) populations from 1KG to capture AMR ancestry. We wish 107 
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to clarify that in this manuscript we use the term ‘AMR’ to refer to the Amerindigenous ancestry 108 

present in modern-day Latin America, rather than as a population label for admixed American 109 

samples, as has been occasionally done in prior efforts. Each of the AMR populations from HGDP 110 

was randomly split in half, with one half used for admixture simulations (N = 31) and the other used 111 

as reference sample for LAI (N=31). To keep sample sizes balanced between ancestries for 112 

simulations, we selected 30 Iberians in Spain (IBS) samples from 1KG to capture southern European 113 

ancestry and 30 Yoruba in Ibadan, Nigeria (YRI) samples from 1KG for western African ancestry. 114 

For the reference panel for LAI, we used the remaining samples from IBS and YRI populations (N=77 115 

each) and the other half of the AMR samples, to represent a common analytic scenario. We filtered to 116 

keep only unrelated individuals and excluded multiallelic or duplicated variants, as well as those with 117 

a missingness rate > 10% and minor allele frequency < 0.5%. Genomic phasing of the complete 118 

dataset was conducted using SHAPEIT420, and after phasing we subset the populations of interest as 119 

described below for our various simulations, with some samples used to model truth individuals and 120 

some used as LAI reference. By using distinct samples for our sample generation and reference panels 121 

we have an unbiased estimate of accuracy, at the cost of reducing the reference sample size. 122 

 123 

Simulating truth admixed haplotypes 124 

Because of the reference sample size limitations, we simulated 60 haplotypes for each admixed 125 

cohort. Sample sizes for the reference component ancestries were selected to be equivalent to avoid 126 

biases due to unbalanced representation, and the terminal node size flag (-n 5) was implemented in 127 

LAI runs to further account for any sample size differences.  128 

Latin America is a highly diverse region, and cohort admixture proportions vary widely 129 

depending on the country and even within each country14,15,16. Here, we simulated cohorts with six 130 

global ancestry patterns based on common ancestry proportions observed across Latin America. 131 

Briefly, in these simulations, one pulse of admixture is simulated at a designated point in time with 132 

specified global ancestry proportions contributed from the relevant source populations, after which 133 

haplotypes taken from the reference dataset are copied from the previous generation until the present, 134 
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with tract switches informed by a recombination map. We used here the hg38 HapMap combined 135 

recombination map which includes representatives from relevant global populations21. This results in 136 

a simulated truth dataset that is highly similar to modern empirical LatAm cohorts but has known 137 

phase and local ancestry which can be used for method benchmarking. 138 

We tested four two-way models of AMR/EUR admixture and two three-way models of 139 

AMR/EUR/AFR admixture. In the two-way models, we compared the effects of ancestry proportions 140 

in models with: average proportions for a two-way LatAm individual (70% AMR/30% EUR, termed 141 

‘average two-way model’)15, even AMR/EUR proportions (‘even model’), and two models to analyze 142 

the effect of extreme ancestry proportions, each with 5% of one ancestry and 95% of the other 143 

(‘extreme models’). This allows us to assess the performance that may be expected in a typical two-144 

way admixed empirical sample, as well as assess features of sample composition influencing accuracy 145 

performance.  146 

For three-way models, we tested a model of average proportions for a three-way admixed 147 

Latin American individual (15% AMR/60% EUR/25% AFR - average proportions for a Brazilian 148 

individual, termed ‘average 3-way model’)22 and an even-proportioned model. Simulations were 149 

conducted using the admix-simu tool23. We simulated the average 3-way model in three different 150 

admixture demographic scenarios, considering a single pulse of admixture at 9 generations, 12, or 17 151 

generations ago14. This allowed us to evaluate the impact of varying tract lengths on true positive LAI 152 

rates. All other models were simulated considering a single pulse of admixture at 9 generations ago 153 

for the sake of comparability. In the simulation of the admixture model that has 3-way average LatAm 154 

proportions and a pulse of admixture 12 generations ago, we used data for all autosomes to obtain the 155 

highest precision. This admixture model was landed upon as it is reflective of the intermediate 156 

admixture pulse in a population migration model for the Brazilian population according to Kehdy et 157 

al., 201514. For all other simulations, we simulated only chromosome 1 for the sake of computational 158 

efficiency.  159 

For comparisons of DNA data generation type, we created a pseudo-genotype array dataset by 160 

selecting all SNVs present in the Global Screening Array (Illumina GSA) from our WGS-density 161 
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simulation reference dataset, a genotyping array that has been regularly used for non-European 162 

datasets. To test the effect of imputation on LAI accuracy, given that imputation is a typical step in 163 

cohort data processing for genomic analyses such as GWAS, we imputed the simulated haplotypes 164 

with SNP array-density sites using the TOPMed panel24 imputation server and filtered imputed sites 165 

with > 0.8 INFO score and MAF > 0.005. 166 

 167 

Local Ancestry Inference 168 

Local Ancestry was deconvoluted using RFMix v1.5.425. We used the TrioPhased option, with a base 169 

window size of 0.2 cM, terminal node size of 5, 2 Expectation–maximization (EM) iterations, with 170 

reference panels reanalyzed in EM to account for any admixture present in the reference (flags -w 0.2, 171 

-n 5, -e 2, and --use-reference-panels-in-EM, respectively), and the number of generations since 172 

admixture was specified depending on the simulation model (9, 12 or 17). For reference panel testing, 173 

we used three different reference panel combinations from HGDP and 1KG (AMR/EUR or 174 

AMR/EUR/AFR) that varied only in the AMR reference samples, given that this group has much less 175 

representation in reference panels relative to the other two ancestries. This was done to benchmark 176 

how variations in the reference for this ancestry impacts LAI accuracy with particular attention to 177 

improving AMR accuracy given the limitations of available reference resources. The three reference 178 

panels for LAI were constructed using, for EUR and AFR components respectively, the remaining 179 

IBS and YRI samples from 1KG not used in the simulations (N IBS = 77, N YRI = 77). For the AMR 180 

component, the three panels varied as follows: 1) Well matched to the target but low sample size: 181 

using the other half of HGDP-AMR samples (N = 30); 2) Medium sample size containing some 182 

admixture in AMR component: using the 1KG sample from Lima, Peru (PEL) (N = 85); 3) Large 183 

sample size but AMR component poorly matched to the target: 1KG-PEL (N = 85) plus 1KG East 184 

Asian (EAS) populations (N = 505). We included the EAS population on panel 3 to capture highly 185 

diverged AMR ancestry considering the demographic history of human migrations, since the 186 

ancestors of modern Amerindigenous peoples of the Americas migrated from East Asia across the 187 

Bering Strait around fifteen thousand years ago26. As such, AMR and EAS ancestry are less diverged 188 
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than other ancestral components, but even so, this composition makes for a poorly matched reference 189 

panel to the target data. Panel 2 represents the procedure most commonly conducted in current 190 

studies. We used the LAI reference panel containing the AMR samples described in panel 1 for all 191 

comparisons that did not involve reference panel testing. 192 

 193 

Statistical Analysis 194 

We quantified the LAI true positive rates (TPR) for each run to assess their respective 195 

performance. We define TPR as follows: for each run we calculated the sums of genomic positions for 196 

which a given ancestry was correctly called compared to the simulated true ancestry for that position, 197 

divided by the total number of positions for that ancestry overall in the cohort, in each simulated 198 

haplotype (Supplementary Figure 1). We analyzed the best-guess ancestry calls output by RFMix, 199 

regardless of confidence (Forward-Backward) estimates. We computed ancestry-specific TPR to 200 

assess if there was differential LAI performance depending on the background truth ancestry and 201 

tested for statistically significant differences using the Wilcoxon rank-sum test. Significance was 202 

considered when the Bonferroni-adjusted p-value (p-adj) < 0.05. 203 

 204 

Results 205 

Impact of demography and ancestry proportions on LAI performance 206 

We compared the effect of different demographic models on LAI performance. Specifically, 207 

we assessed the impact of varying component ancestry proportions in two and three-way models as 208 

well as different generation times since an admixture pulse occurred (considering a single pulse) by 209 

simulating 9, 12 and 17 generations since admixture.  210 

In general, LAI accuracy for a given ancestry increased as that global ancestry proportion 211 

increased (Figure 1, Table 1). A low global ancestry percentage tended both to decrease the accuracy 212 

and result in larger standard deviations, as observed in the “extreme proportions” simulations (95% 213 

EUR/5% AMR and 5% EUR/95% AMR, Figure 1). In all tested models, we additionally observed 214 

significantly lower true positive rates for the AMR component (p-adj < 0.05). This result was 215 
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consistent for all chromosomes and demographic models tested (Figure 1, Figure 2, Supplementary 216 

Table S1).  217 

The number of generations since admixture had a slight impact on TPR, which modestly 218 

decreased in older admixture events (17 generations ago) compared to more recent ones (9 219 

generations ago). We observed statistically significant differences in TPR between the 9 and 12 220 

generations models in the AFR and EUR components, and 12 and 17 generations models in the AFR 221 

component (p-adj < 0.05). In all models the 17 generations since admixture model had the lowest 222 

accuracy (Figure 1-B, Table 1, Supplementary Table S1). This is likely due to increased difficulty in 223 

painting short ancestry tracts; the further back in time a pulse occurred, the shorter the relative 224 

ancestral tracts will be in the current day as recombination breaks ancestral stretches down over 225 

time27. The general trends observed in relative TPR per ancestry proportion were the same regardless 226 

of admixture pulse generation times. 227 

 228 

Impact of reference panel compositions  229 

For benchmarking the performance of different reference panel compositions, we tested 230 

multiple AMR/EUR and AMR/EUR/AFR reference panel combinations comprising individuals from 231 

the Human Genome Diversity Project (HGDP) and the Thousand Genomes Project (1KG). We 232 

organized our test reference panels to reflect: 1) a very well-matched panel but with low sample size; 233 

2) a moderate sized panel that includes admixed individuals in the reference versus restricting to only 234 

homogeneous individuals; or 3) a very large reference but that is poorly matched.  235 

The average TPRs were similar across the three tested reference panels, and had no 236 

statistically significant differences (p-adj <0.05, Figure 2-A, Supplementary table S2), however the 237 

small but well-matched reference panel (N=184) resulted in considerably faster running time 238 

compared to the admixed AMR reference panel (N=239) and the large but unmatched reference panel 239 

(N=659), which took three and sixteen times longer to complete a LAI run for chromosome 1, 240 

respectively. Figure 2-A and Table 1 summarize the TPR results for each reference panel.  241 

 242 
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Impact of genetic data type 243 

We assessed the impact of genetic data type by comparing true positive rates (TPR) of LAI 244 

with simulations generated from WGS-density reference, a subset of SNP array variants, and a dataset 245 

of imputed variants (using the subset of SNP array variants as input), in the average 3-way (15% 246 

AMR/ 60% EUR/ 25% AFR) admixture model simulation considering 12 generations since 247 

admixture. We selected genomic variants targeted by the GSA chip for these tests, as this is a 248 

commonly used array for diverse datasets.  249 

LAI run on the WGS-density simulated dataset achieved better TPR for AFR and EUR 250 

ancestry components than the SNP array-density dataset (p-adj < 0.05), likely due to fuller haplotype 251 

coverage, but was roughly 6 times slower to complete for all autosomes. Imputation slightly improved 252 

LAI calls for these ancestry components compared to the SNP-array only runs, indicating increased 253 

SNP density improved performance. These trends were different in the AMR component, however, in 254 

which we observed no statistically significant differences between either WGS, SNP array and 255 

imputed datasets, and observed a decrease in TPR following imputation (the lowest TPR in this 256 

component), although not statistically significant (Table 1, Figure 2-B, Supplementary table S2). 257 

Additionally, we performed a validation analysis of the imputation accuracy results by selecting only 258 

the original SNP-array sites from the LAI results of the imputed dataset, to observe if imputation 259 

changed LAI on these sites which could lead to changes in accuracy performance. We observed no 260 

significant changes in TPR compared to the full imputed dataset (Supplementary Figure 2). 261 

 262 

RFmix window size parameter changes do not improve LAI accuracy from the default value 263 

As RFmix calls LA with a sliding window approach, we tested whether halving or doubling 264 

the default window size improved calls, which could change results especially at the borders of 265 

chromosomes that may only have anchoring haplotype information on one side of the window.  266 

We found that halving the default window size to 0.1cM did not significantly change TPR for 267 

the AFR and AMR components, and significantly lowered TPR in the EUR component compared to 268 

the default 0.2 cM (p-adj < 0.0001). Doubling the default window size to 0.4 cM significantly 269 
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decreased TPR for the AFR component (p-adj < 1e-5) but did not significantly change for the other 270 

components compared to the default (Figure 2-C, Table 1, Supplementary table S2). As such, we 271 

recommend retaining the default 0.2cM window size for RFmix runs. 272 

We additionally examined the ForwardBackward probability estimates from RFMix to check 273 

how confident the algorithm estimated the wrong calls, as such confidence estimates could be a 274 

readily implemented filter to remove poorly called loci. We observed, however, that miscalls had high 275 

confidence estimates, therefore setting a stringent filter for ForwardBackward probabilities in an 276 

attempt to reduce LAI miscalls would not be sufficient to improve results. 277 

 278 

LAI miscalls are more frequent in certain genomic locations, but vary between cohorts 279 

When miscalls in LAI occurred, we observed that although they may occur at any point in the 280 

genome, they were more frequent around telomere and centromere regions (Figure 3-A, 3-B, 281 

Supplementary figures 3-8). Considering sites with over 10% miscalls in both three-way model runs 282 

and considering a window of 1kb upstream and downstream, we observed that these regions can span 283 

or flank genes (Supplementary tables S3-S4), most of which have been previously associated in 284 

GWAS studies according to GWAS Catalog (Supplementary Tables S5-S6). We compared these sites 285 

with low complexity regions from the UCSC RepeatBrowser hg38 dataset and observed an overlap of 286 

>98% in both models. It is important to note, however that the sites/regions with over 10% miscalls 287 

varied between the admixture models in which we ran this analysis, therefore we do not supply a list 288 

of regions that will be more frequently miscalled, as this may vary between cohorts. 289 

 290 

LAI miscalls occur with a consistent error mode 291 

We summed miscall counts and divided them between "error modes", i.e.: how many truth 292 

sites of one ancestry are being miscalled as each of the other ancestries. This allowed us to 293 

characterize trends in miscall directions and observe whether one ancestry was systematically being 294 

over- or under-called than other. We observed that the most common direction for miscalls to occur 295 
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was for truth AMR sites to be incorrectly called EUR (Figure 3-C, 3-D, Supplementary figures 9-12). 296 

The second most frequent error mode was EUR positions being miscalled AFR.  297 

 298 

Discussion 299 

In this study, we evaluated characteristics impacting the performance of LAI for a range of 300 

two and three-way admixed demographic models reflective of many Latin American populations. 301 

Specifically, we assessed the impact of reference panel composition, demographic features such as the 302 

proportions of major ancestry groups and number of generations since admixture in the cohort, 303 

genetic data technology (genotyping arrays versus whole genome sequencing), the impact of 304 

imputation, and LAI analytic thresholds in affecting performance for diverse cohorts. Given the high 305 

LAI accuracy observed in the literature for 2-way admixed AFR/EUR cohorts8, we focused our 306 

analyses in this manuscript on determining the best practices for cohorts involving AMR, as the 307 

smaller divergence time between EUR and AMR tracts poses a challenge for deconvolution, as does 308 

the particularly limited availability relevant reference individuals for AMR ancestry. Thus, we 309 

focused the construction of our reference panel tests in the service of optimizing AMR accuracy. 310 

These benchmarks allow us to provide a set of recommendations for parameter and panel 311 

selection to achieve optimal LAI performance in LatAm populations. Specifically, comparing the 312 

performance of different reference panel compositions, we observed that there was not significant 313 

difference in accuracy across the three panels (well-matched but small sample size, medium size with 314 

some degree of admixture in the reference, and large but poorly matched to the target cohort), 315 

although we do observe a large difference in runtime, with the small but well-matched panel running 316 

substantially faster than the other panels. Given the high computational burden required by LAI, 317 

having a quicker runtime for analysis is an important point of consideration in practical use. As such, 318 

a curated reference panel reflective of the ancestries present in the target cohort appears to be the best 319 

option for LAI reference panel construction. Importantly, across all demographic and reference panel 320 

models tested, Amerindigenous ancestry tracts suffer from notably reduced accuracy as compared to 321 

European and African tracts. This is likely due to there being less representative (and less 322 
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homogeneous) reference data for AMR ancestry in existing reference resources. Moving forward, it 323 

will be vital for efforts to focus on ethical recruitment of more diverse and geographically distributed 324 

reference samples in large scale data collection efforts to maximize the performance of LAI across all 325 

ancestry backgrounds.  326 

Regarding ancestry proportions in the admixed simulations, we observed that overall, having a 327 

higher proportion of an ancestry in the simulation improved the true positive rates for that ancestry in 328 

LAI. When ancestries represent a very small (e.g. 5%) global proportion, all ancestries suffer, with 329 

AMR suffering the most. 330 

We investigated LAI miscalls in the realistic three-way simulation models to evaluate the typical 331 

error mode when wrong calls are produced. Specifically, we examined the rates of miscalls for each 332 

ancestry component to: characterize trends in the relative amount and direction of miscalls, see if a 333 

particular ancestry was being systematically over or under-called, document if there were genomic 334 

regions where miscalls were most frequent, to identify other factors that could be driving error modes, 335 

and to assess if alterations to RFMix parameters could improve miscall rates. Investigating the typical 336 

error modes when LAI miscalls occur, we observed a much higher frequency of miscalls in the 337 

direction of calling simulated AMR regions as EUR compared to other miscall directions. This may 338 

be explained by the smaller genetic divergence between AMR and EUR haplotype tracts than either is 339 

to AFR, resulting in closer haplotype similarity. This finding implies that reference panels will need to 340 

be grown substantially to confidently assess within-continental ancestral components for many 341 

geographic regions. The specific direction of AMR/EUR miscalls being dominated in the direction of 342 

AMR to EUR rather than vice versa can be explained by the substantially (2x) larger sample size 343 

available for EUR compared to AMR. Another point of consideration is that the AMR reference 344 

samples themselves have some degree of admixture with European ancestry, which adds uncertainty 345 

to the model, though we did implement EM procedures to attempt to correct for this. These results are 346 

consistent with miscall trends observed in other studies of diverse populations28. As this prior cited 347 

work was done with older LAI software than RFMix, we have confirmed that this error mode is 348 
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consistent between different LAI algorithms and therefore likely to be driven by the genetic data, 349 

rather than a feature specific to RFMix.  350 

Beyond error modes, we observe that miscall regions do not appear randomly across the genome, 351 

but are most likely to fall in areas that mark the edges of haplotypes, like centromere and telomeres 352 

(Figure 3A, 3-B, Supplementary Figures 3-8). We note several areas that had elevated miscall rates 353 

(higher than 10% miscalls). ForwardBackward probabilities for the LAI algorithm were still confident 354 

in such areas and tweaking RFmix parameters was insufficient to correct them. As these regions may 355 

vary between cohorts given that different models resulted in different regions with elevated false 356 

positive rates, we do not recommend blanket masking of those observed in this study. This highlights 357 

the importance of ensuring good LAI accuracy for gene discovery and other statistical genomics 358 

efforts, as misclassification both soaks up power in LAI-informed GWAS as well as can lead to false 359 

positive associations due to technical ancestry miscalls8. Importantly, miscall regions may contain 360 

genes of interest, so care should be taken to validate, for example, GWAS hits in border haplotype 361 

areas that show elevated miscall rates. Inflation of miscalls at particular regions could also impact the 362 

interpretation of other statistical genetics efforts, such as admixture mapping or evolutionary scans of 363 

selection that utilize local ancestry enrichment. We observed an inflation of miscalls in low 364 

complexity regions, such as short and long interspersed nuclear elements (SINE/LINE), DNA repeats 365 

and micro-satellites, therefore additional care should be considered when analyzing these regions 366 

and/or genes in close proximity. This could be due to the fact that low complexity regions are usually 367 

more challenging to map29,30, and/or are evolutionarily conserved31,32, with little variation across 368 

ancestry groups, and therefore these regions would be more prone to error in LAI. The development 369 

of methods that incorporate repeat polymorphisms, multi-allelic variants and other complex forms of 370 

genetic variation in genome-wide analyses may help improve LAI accuracy. 371 

 Examining how different DNA data types impact LAI performance, we observe that WGS 372 

and SNP array simulated data resulted in similar TPR estimates for genotyped sites, although having 373 

more variants in the dataset improved estimates. We also observe that LAI performs nearly as well on 374 

imputed data as directly genotyped data when a large and diverse reference panel is used. This 375 
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suggests that, provided imputation can be performed with a representative reference panel, LAI calls 376 

on imputed data may be confidently utilized for downstream efforts. Out of an abundance of caution, 377 

we recommend setting a stringent INFO threshold (e.g. 0.8) for imputed sites to ensure high 378 

confidence calls. We note, additionally, that non-significant differences in TPR in the context of this 379 

work do not mean that the differences that we observe are not relevant since small differences in LAI 380 

accuracy can impact statistical power in downstream applications8 and may represent a difference 381 

observed in a large number of sites in the genome. Expanding available reference samples to contain 382 

representative haplotypes from diverse and understudied populations would improve the quality of 383 

imputation as well as LAI. 384 

Of course, this work has some important limitations which must be considered. As the focus 385 

of the present study is LatAm populations, we limited our demographic models to those involving 2-386 

way admixture between AMR and EUR or 3-way admixture between AMR, EUR, and AFR, which 387 

represents the majority of Latinx populations. We note, however, that some LatAm populations have 388 

other patterns than those directly benchmarked here. Despite this, the broader trends in LAI 389 

performance identified in this work should hold across demographic models beyond the specific use 390 

cases simulated in this manuscript. We also note that while we appreciate that there is a high level of 391 

diversity within continental regions14,33, only continental-level ancestry was able to be assessed here 392 

due to limitations in available reference panel geographic coverage. Similarly, having a small number 393 

of available reference AMR samples limited the number of individuals available for simulating and 394 

running LAI, which limits variability in the data for this component in comparison to EUR and AFR. 395 

Improved LAI call rates and finer scale LAI resolution would be possible in the future if reference 396 

panels are expanded. Regarding software, we have benchmarked only RFMix v1 in this work, as prior 397 

work has demonstrated that RFMixv1 performed the best in comparison to other methods for multi-398 

way admixed samples34. We expect the trends observed here to be consistent across LAI software, 399 

though further benchmarking would be needed to confirm this. 400 
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In conclusion, in our reference panel benchmarking, the best cost-benefit in terms of LAI 401 

accuracy and speed is to use a well-matched reference even if it has a lower sample size.  Examining 402 

the ancestry-specific performance of LAI across reference panels, we observed consistently lower 403 

performance for the AMR ancestry component across all simulation settings compared to EUR and 404 

AFR. Unfortunately, this inequity could not be overcome by any of the tested modifications to 405 

reference panel, LAI software parameters, or features of genetic data. The best way to improve AMR 406 

performance would be to increase the well-matched reference panel's sample size, underscoring the 407 

importance of furthering recruitment of larger and more representative reference samples for 408 

understudied populations. Given the high proportion of the global population that contains admixed 409 

ancestry and the fact that populations are getting increasingly admixed over time35, it is timely to 410 

establish the optimal methods for well-calibrated genomic analyses in admixed populations. 411 
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 428 

Web Resources 429 

Admix-simu: https://github.com/williamslab/admix-simu/ 430 

RFMix V.1 https://github.com/indraniel/rfmix 431 

Shapeit v4  https://odelaneau.github.io/shapeit4/ 432 

Pipeline used to prepare data for RFMix v1: https://github.com/armartin/ancestry_pipeline/ 433 

R package utilized to create TPR figures: https://phanstiellab.github.io/plotgardener/ 434 

UCSC RepeatBrowser: https://repeatbrowser.ucsc.edu/data/ 435 

TOPMed Imputation Server: https://imputation.biodatacatalyst.nhlbi.nih.gov/ 436 

Thousand Genomes Project: http://ftp.1000genomes.ebi.ac.uk/.  437 

The Human Genome Diversity Project:  438 

ftp://ngs.sanger.ac.uk/production/hgdp/hgdp_wgs.20190516/statphase/.  439 

Jointly called HGDP+1kG: https://gnomad.broadinstitute.org/downloads#v3-hgdp-1kg 440 

HapMap GRCh38 recombination map: 441 

http://bochet.gcc.biostat.washington.edu/beagle/genetic_maps/plink.GRCh38.map.zip 442 

 443 

Data/Code Availability 444 

Code generated in this project for simulating admixed data and quantifying LAI true positive rates is 445 

freely available on github at https://github.com/Atkinson-Lab/LAI-sims-accuracy.  446 
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 538 
 539 
Figure Legends 540 
 541 
Figure 1:  A) True positive rates for LAI in six simulated cohorts with varying proportions of 2 or 3-542 
way admixture between AFR/EUR/AMR (displayed in order of decreasing mean TPR). These 543 
simulated haplotypes consist of chromosome 1 and considered a pulse of admixture at 9 generations 544 
ago. B) True positive rates for LAI in varying generations since admixture models for the simulated 545 
haplotype data. The haplotypes in this comparison had 15% AMR/ 60% EUR/ 25% AFR proportions 546 
of admixture in all autosomes. Significance level: * <= 0.05, ** <= 0.01, *** <= 0.001, **** <= 547 
0.0001. 548 

Figure 2: A) True positive rates for LAI in three reference panel comparisons that vary in the AMR 549 
component, separated by ancestry component. Benchmarking was run on the model reflecting a pulse 550 
of admixture at 9 generations ago with 15% AMR/ 60% EUR/ 25% AFR proportions in chromosome 551 
1. B) True positive rates for LAI in WGS vs. SNP array (GSA) vs. Imputed data. Benchmarking was 552 
run on the model reflecting a pulse of admixture at 12 generations ago with 15% AMR/ 60% EUR/ 553 
25% AFR proportions in all autosomes.  C) True positive rates for LAI runs varying the RFMix 554 
window size parameter in centimorgans (cM). Benchmarking was run on the model reflecting a pulse 555 
of admixture at 12 generations ago with 15% AMR/ 60% EUR/ 25% AFR proportions in all 556 
autosomes. Significance level: * <= 0.05, ** <= 0.01, *** <= 0.001, **** <= 0.0001. 557 

Figure 3: A) Percentage of wrong calls per site on chromosome 1, total and separated by error mode 558 
for LAI ran on the model reflecting a pulse of admixture at 12 generations ago with 15% AMR/ 60% 559 
EUR/ 25% AFR proportions.  B) Percentage of wrong calls per site on chromosome 1, total and 560 
separated by error mode for LAI ran on the model reflecting a pulse of admixture at 12 generations 561 
ago with 33% AMR/ 33% EUR/ 34% AFR proportions. C) Miscall counts separated by error mode 562 
summing all autosomes for LAI ran on the model reflecting a pulse of admixture at 12 generations 563 
ago with 15% AMR/ 60% EUR/ 25% AFR proportions. D) Miscall counts separated by error mode 564 
summing all autosomes for LAI ran on the model reflecting a pulse of admixture at 12 generations 565 
ago with 33% AMR/ 33% EUR/ 34% AFR proportions. 566 

 567 
Table Title and Legend 568 
Table 1: LAI true positive rate estimates per ancestry per comparison569 
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Test Mean TPR (SD) per ancestry 

Aim of comparison Simulation model name Analysis parameters* AMR EUR AFR 

Impact of 
Demography 

Proportions Average 3-way 15%/60%/25%, 9gen, chr1 0.884 
(0.224) 

0.986 
(0.018) 

0.986 
(0.026) 

Even 3-way 33%/33%/34%, 9gen, chr1 0.933 
(0.082) 

0.966 
(0.130) 

0.991 
(0.008) 

Even 2-way 50%/50%/0, 9gen, chr1 0.918 
(0.120) 

0.992 
(0.008) 

N/A 

Average 2-way 70%/30%/0, 9gen, chr1 0.935 
(0.058) 

0.987 
(0.014) 

N/A 

Extreme proportions, high AMR 95%/5%/0, 9gen, chr1 0.937 
(0.054) 

0.961 
(0.134) 

N/A 

Extreme  proportions, high EUR 5%/95%/0, 9gen, chr1 0.845 
(0.280) 

0.998 
(0.003) 

N/A 

Generations 
since admixture 

Average 3-way 15%/60%/25%, 9gen, chr1 0.884 
(0.224) 

0.986 
(0.018) 

0.986 
(0.026) 

Average 3-way 15%/60%/25%, 12gen, chr 1 0.906 
(0.117) 

0.982 
(0.016) 

0.989 
(0.013) 

Average 3-way 15%/60%/25%, 17gen, chr1 0.896 
(0.162) 

0.977 
(0.017) 

0.984 
(0.011) 

Features of 
data/analysis 

Reference Panel Average 3-way, low N - well 
matched AMR reference 

15%/60%/25%, 9gen chr1. HGDP 
AMR reference 

0.884 
(0.224) 

0.986 
(0.018) 

0.986 
(0.026) 

Average 3-way, medium N - 
admixed AMR reference 

15%/60%/25%, 9gen chr1. 1KG PEL 
as AMR reference 

0.878 
(0.224) 

0.986 
(0.018) 

0.989 
(0.013) 
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Table 1 Legend: *Analysis parameters: Admixture proportions of simulated cohort (AMR/EUR/AFR), number of generations since admixture, simulated 570 
chromosome, other parameters. 571 

Average 3-way, high N - admixed + 
unmatched AMR reference  

15%/60%/25%, 9gen chr1. 1KG PEL + 
EAS as AMR reference 

0.875 
(0.223) 

0.983 
(0.019) 

0.991 
(0.009) 

Data type Average 3-way 15%/60%/25%, 12gen, all autosomes. 
WGS density 

0.935 
(0.025) 

0.983 
(0.005) 

0.989 
(0.004) 

Average 3-way 15%/60%/25%, 12 gen, all autosomes. 
SNP array density 

0.938 
(0.029) 

0.977 
(0.008) 

0.982 
(0.004) 

Average 3-way 15%/60%/25%, 12 gen, all autosomes. 
Imputed SNP array density 

0.927 
(0.026) 

0.982 
(0.004) 

0.987 
(0.003) 

Window size Average 3-way 15%/60%/25%, 12gen, all autosomes, 
0.1 cM 

0.939 
(0.023) 

0.979 
(0.005) 

0.991 
(0.003) 

Average 3-way 15%/60%/25%, 12gen, all autosomes, 
0.2 cM (default) 

0.935 
(0.025) 

0.983 
(0.005) 

0.989 
(0.004) 

Average 3-way 15%/60%/25%, 12gen, all autosomes, 
0.4 cM 

0.923 
(0.026) 

0.984 
(0.005) 

0.980 
(0.005) 
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