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Abstract

The assessment of platelet spreading through light microscopy, and the subsequent quantifi-
cation of parameters such as surface area and circularity, is a key assay for many platelet
biologists. Here we present an analysis workflow which robustly segments individual platelets
to facilitate the analysis of large numbers of cells while minimizing user bias. Image segmenta-
tion is performed by interactive learning and touching platelets are separated with an efficient
semi-automated protocol. We also use machine learning methods to robustly automate the
classification of platelets into different subtypes. These adaptable and reproducible workflows
are made freely available and are implemented using the open-source software KNIME and
ilastik.
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Introduction

Testing platelet function in response to genetic mutations, gene
knockouts, and pharmacological agents is a valuable and widely
used assay in platelet research [1–8]. In these studies, the analysis
of platelet spreading, either by the calculation of adhesion levels,
spread surface areas or morphological categorization, is used as
a measure of platelet function. As platelets are small cells typi-
cally two to four microns in diameter, a single light microscopy
field of view (FOV) can capture 50–400 platelets. As such, it is
easy to acquire data for large populations of cells allowing for the
identification of subtle changes. In addition, immunofluores-
cence-based labeling allows quantitative measures of platelet
area and morphology to be combined with analysis of protein
sub-cellular localization and organization.

Despite this, the analysis of platelet spreading can be
a laborious process, especially in large-scale experiments, where
many thousands of platelets over a range of conditions might need
to be analyzed. A common way of measuring platelet spread area
is to manually draw around the outline of the cell [9]. However,
this is an extremely slow process that limits its application to
larger datasets.

A more efficient and typically less biased way to perform the
analysis is to design an image analysis workflow (not machine
learning based) which is automated using reproducible and pre-
ferably open-source software such as ImageJ/Fiji [10]. Such work-

flows typically employ simple filtering operations and thresholds
on image intensity [7]. The free parameters of the workflow are
then set ad-hoc and rarely perform well across large datasets.
Moreover, these workflows are usually only applicable to images
captured on a particular microscope, with cells stained, or
imaged, under very specific conditions. The categorization of
platelets into sub-types based on spread morphology is typically
performed manually and is therefore time-consuming and highly
susceptible to user bias. We present a simple, adaptable workflow
which uses machine learning based techniques to overcome many
of these limitations, and thus allows for the robust quantitative
analysis of platelet spreading across different imaging modalities
and laboratories. The workflow makes extensive use of the open-
source software platforms KNIME [11] and ilastik [12,13].
KNIME is an intuitive and graphical development environment
for data analysis pipelines that can easily combine many tools
(including ImageJ and ilastik) without the need for text-based
coding. Ilastik provides user-friendly tools for machine learning
based image analysis including segmentation, tracking, and object
classification.

Method

Workflow Description

An overview of the workflow is presented in Figure 1. The first
step is the segmentation of platelets from the background to
produce binary (black and white) images. To do this we use
a pixel classifier trained within ilastik. Briefly, various pixel-
level features including smoothed intensity and edge indicators
are measured and used to train a random forest classifier with two
outcomes; signal and background. Training images should be
selected across replicates and treatments to ensure the full varia-
bility within the dataset is captured. Having trained the pixel
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classifier within ilastik, it is run on the full dataset along with all
subsequent analysis steps within KNIME, another open-source
data analysis platform.

The second step is the separation of touching platelets. For this, we
chose to use a semi-automated approach where the researcher is asked
to click on the center of all touching platelets. These points are then
used as seeds for a watershed transform which fills the binary images
produced by the pixel classifier. This produces labeled segmentation
images where each cell has a unique pixel value which facilitates the
separation of touching cells. A connected component analysis is then
used to calculate per platelet morphological features including area
and circularity.

Finally, the population can be further interrogated by defining
platelet morphological subtypes, for example unspread, partially
spread and fully spread, and then using a machine learning approach
to classify individual cells (objects). Again a random forest classifier
is used, but it is trained using platelet morphological features, includ-
ing area and circularity, as opposed to pixel-level features like intensity
(supplementary methods). This quantifies the number of cells in each
class and allows for the detailedmorphological analysis of cells within
a specific class. The corresponding workflows, and a detailed user
guide have been released under the GNUGeneral Public License v3.0
and are available at https://github.com/JeremyPike/platelet-segment
ation.

Testing and Validation

To test and validate the workflow we chose to fluorescently label
F-actin and image using wide-field microscopy, a commonly used
approach. The cells were spread on either collagen or fibrinogen
and treated either with dasatinib or a DMSO control (Figure 2).
Dasatinib is a Src family kinase inhibitor and is known to reduce
the efficiency of platelet spreading [14,15]. We chose to use
a treatment with well-established effects as this provides a better
benchmark for workflow validation. Three technical replicates
with three fields of view per replicate were acquired. Further
experimental details can be found in the supplementary methods.

The images were acquired as z-stacks so these were pre-processed
by finding the most in-focus image of the stack and then taking the
maximal projection across this slice and the two slices either side (five
slices in total). This was done to limit out-of-focus contributions to the
projections and improve subsequent segmentation. Vollath’s F4 mea-
sure was used as the focus metric [16,17], which is implemented using
ImgLib2 [18], within the KNIME workflows provided. (Note, acquir-
ing z-stacks is not essential for the workflow which will also work

with high-quality single plane data). The 2D projections were then
processed with the remaining workflow steps including classification
into the following pre-defined categories; unspread, partially spread,
and fully spread. In total across all conditions, 9655 platelets were
segmented and analyzed. Eight images selected across replicates and
conditions were used to train both the pixel and object classifiers, the
images contained 1732 platelets total.

Segmentation performance was evaluated relative to a subset
of manually segmented data not used for training and compared to
a simple fully automated approach (supplementary methods). The
proposed approach produces comparable results to manual seg-
mentation (Supplementary Figure 1) and significantly outper-
forms the simple fully automated approach (Supplementary
Figure 2) on the validation dataset. To evaluate the performance
of the object classifier 20% of the annotated platelets were
reserved for validation. When using all measured morphological
features the overall classification accuracy was found to be 90%
and the corresponding confusion matrix is shown in Figure 3a.
Classification accuracies of 71% and 77% were found when area
or circularity was used as the only input. Moreover, 87% accuracy
was obtained using both area and circularity. This indicates that
thresholds on area and circularity alone are not optimal for robust
and accurate classification of platelets into sub-categories, and
highlights the advantage of a machine learning approach which
uses a larger number of features.

Figure 3b shows the measurements for mean platelet area and
circularity. As expected there are significant differences in plate-
let area between the collagen and fibrinogen controls, and also
with the dasatinib treatment on both substrates. For circularity,
the only significant difference observed is between the collagen
and fibrinogen controls. Figure 3c shows the relative proportion
of each class type. There are clear differences between conditions,
highlighting the advantage of the classification approach in
further delineating the platelet spread phenotype. For example,
treatment with dasatinib dramatically reduces the percentage of
fully spread platelets on both substrates.

Discussion

In this manuscript, we have described a semi-automated analysis
workflow for the quantification of platelet spreading. We demon-
strate that, following the training of a pixel classifier on a small
subset of data, this method is able to accurately segment and
quantify the spread surface area and circularity of platelets treated
with dasatinib (which at the concentration used here blocks both

Figure 1. Overview of the proposed workflow for analysis of platelet spreading. First, a pixel classifier is used to produce a binary segmentation mask.
Next, touching cells are manually annotated by clicking on their center within KNIME and a watershed transform is used to establish the cell-cell
boundaries. Per cell features are then calculated which can optionally be used to train a cell classifier. Validation of the classifier is achieved by
reserving a proportion of the training data and visualized through a confusion matrix.

DOI: https://doi.org/10.1080/09537104.2020.1748588 Analysis workflow for platelet spreading 55

https://github.com/JeremyPike/platelet-segmentation
https://github.com/JeremyPike/platelet-segmentation


Btk and Src family kinases [14]) on both collagen and fibrinogen
surfaces. The workflow was able to appropriately identify and
segment both isolated cells and platelets touching other platelets.

Subtleties of platelet morphology such as filopodia were clearly
identified and quantification of parameters such as spread area
was able to give a simple, robust overview of the effect of the

Figure 3. Summarized quantitative outputs of the analysis workflow. Platelets were seeded on either collagen (Col.) or fibrinogen (Fib.) and treated
with either dasatinib (Das.) or a DMSO control (Cntl.) (a) A confusion matrix allows for visual evaluation of the object classifier. A proportion of the
training data is reserved (here 20%) and the class predicted by the classifier is compared to the true class as defined by the manual annotation. On-
diagonal classifications (green) represent agreement between the classifier and manual annotation, off-diagonal classifications (red) represent
disagreement. (b) Mean platelet area and circularity calculated across all platelets in a replicate (N = 3, mean 805 platelets per replicate). (c) Percentage
of cells in each category; unspread, partially spread and spread. All statistical analyses by one-way Anova and subsequent pair-wise comparison by
two-sample t-test with Bonferroni correction. ***P < .001, **P < .01, *P < .05, error bars are mean ± s.d.

Figure 2. Representative cropped images and results from platelets seeded on either collagen (Col.) or fibrinogen (Fib.) and treated with either dasatinib
(Das.) or a DMSO control (Cntl.). Top row shows a maximal projection of the raw data (inverted gray-scale look-up-table). This is used as the input for the
analysis workflow. Middle row shows the individual platelet segmentations where each cell is a distinct color. Bottom row shows the results of the object
classifier where individual platelets are classified as either unspread (red), partially spread (green), or fully spread (blue). Scale bar 10 µm.
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inhibitor treatment on platelet spreading. Furthermore, an object
classifier was used to group platelets into classes which allowed
for deeper interrogation of the data.

A key advantage of the reported workflow is the ability to
efficiently analyze large numbers of platelets (we routinely mea-
sure and classify 10,000+ platelets using the workflow) which
allows robust statistical analyses to be performed. The power of
this approach was demonstrated in a recent study of 55 samples
from patients with bleeding of unknown cause [19]. We have used
the workflow for both human and mouse platelets and it is
applicable to a wide range of treatments (e.g. patient samples,
gene knockouts, inhibitor studies, etc.). Therefore, this work pre-
sents a viable way to perform quick and accurate large-scale
analysis of spreading as a measure of platelet function while
also minimizing user bias.

When designing the workflow care was taken to ensure each
step was robust to different imaging systems and sample prepara-
tions so as to be widely applicable. Provided it is re-trained, the
ilastik pixel classifier will perform well across a range of stains
and non-florescent imaging modalities, for example phase-
contrast microscopy (Supplementary Figure 3). However, where
feasible we recommend fluorescent staining to enhance the con-
trast between cells and background, and note that as with all
image analysis processes, poor quality input data may result in
incorrect classification or failure of the analysis. For object clas-
sification the classes are defined by the researcher and so can be
changed to suit the biological question, although it is important to
note that classification will be more successful with classes that
have a clearly distinct morphology. It is also important to have
sufficient image resolution to resolve key structural features (such
as filopodia) which will influence morphological measurements
and assist with object classification.

With regard to this final point, it is important to check the
classification performance on a subset of the annotated data
reserved for this purpose. Performance can then be assessed
through overall classification accuracy and confusion matrices
which should be reported when publishing results (Figure 3a).
Tools and instructions for this performance evaluation are includ-
ing in the provided workflows and guidelines. Manually selected
thresholds on parameters such as area and circularity were
avoided as they are non-optimal and rarely robust across repli-
cates and conditions. For both pixel and object classification, the
training can be performed quickly with a small amount of data to
produce high-quality results; we recommend starting with 5–10
training images and adding additional training data if segmenta-
tion or object classification performance is poor. Furthermore, the
graphical programming interface offered by KNIME means that
researchers with no, or limited, programming experience can
adapt these protocols for their specific needs.

The workflow is fully automated apart from the manual selec-
tion of touching platelets which is performed by the researcher
within KNIME. Automated separation for other densely packed
cell types is typically achieved by first segmenting nuclei which
are then used as seeds to isolate the cytoplasm. This approach is
not applicable to platelets which have no nuclei, hence the need to
manually identify touching cells. Moreover, platelet morphology
can vary dramatically depending on the surface coating and
treatment which further complicates the task of automated separa-
tion. Further research will investigate if with sufficient training
data, deep learning-based methods can be used to robustly seg-
ment clustered platelets.

Conclusion

We present a semi-automated workflow that can be applied to
segment, classify, and analyze spread platelets. The workflow is

adaptable and applicable to input images from a range of imaging
modalities. Once trained the workflow can perform efficient
analysis of large data sets and provides an unbiased measure of
platelet spreading. These factors, along with the use of open-
source software, should allow for wide uptake by platelet
researchers, who will be able to use these tools to perform robust
analyses on large-scale image data.
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