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Full-state time-varying asymmetric
constraint control for non-strict
feedback nonlinear systems based
on dynamic surface method

ZhongjunYang, Chuyan Dong™, Xinyu Zhang & Guogang Wang

We investigate the tracking control problem for a non-strict feedback nonlinear system with external
disturbance and time-varying asymmetric full state constraints. Firstly, the unknown nonlinear

term with external disturbance in the system are estimated by fuzzy logic system. The backstepping
method is applied to the design of adaptive fuzzy controller. However, to prevent that the constraints
are overstepped by introducing an improved log-type time-varying asymmetric barrier Lyapunov
function (TABLF) in each step of backstepping design. Secondly, the dynamic surface control (DSC)

is introduced in the designed algorithm to solve the computational explosion problem of controller
caused by the derivative of control law. The proposed control scheme can speed up the tracking speed
of the system. Compared with the previous work, it is verified that the combination of DSC and TABLF
can obtain good performance within the constraint range, and can ensure fast and stable tracking
convergence under external disturbance. Finally, two simulation examples verify the performance of
the adaptive controller.

In the actual process of production, a majority of production equipment is a nonlinear system that affected
by some uncertain factors such as parameter changes and external disturbances’. In recent years, researchers
have proposed many effective ways to weaken these adverse impact. To be specific, the extensive application of
both fuzzy logic systems (FLSs)*and neural networks (NNs)® have been used to estimate unknown terms of the
system by the use of adaptive backstepping technology*. Therefore, it is not difficult to know that the product of
the combination of adaptive backstepping technology and FLS greatly solve the control problem of uncertain
nonlinear system. At the same time, it can greatly improve system robustness.

From the other aspect of research, many concerns arise about constraint problems and a majority of actual
systems operate under certain constraint conditions. For example, when the industrial manipulator is working,
in order to make the manipulator move within the specified intervals, it is necessary to limit the rotation angle
of the manipulator to avoid collision accidents. Therefore, it is important to deal with the constraint system. In
recent years, the traditional Lyapunov functions do not have the ability to constrain the system state, therefore,
by the positive impact of barrier Lyapunov function (BLF) on constraint properties of the viable, the state of
system can be effectively kept in a specified scale and constraint control problem can thus be well solved. The
control scheme based on BLF has been put forward continuously. The references®'’applies the BLF to realize
the constraint control of the nonlinear systems. The reference® combines BLF with preset performance control
to control pure feedback nonlinear system, and constrains the state and tracks error of the system to a specified
interval. The reference® introduces BLF to the design process of the nonlinear system controller in the adaptive
backstepping design method, which constrains the state of the system. The reference’ introduces a nonlinear
state-dependent function constructed by coordinate transformation to eliminate constraints. In the practical
application of restriction control, the references®® uses BLF to restrict the speed and current of the permanent
magnet synchronous motor to ensure the safe operation of the motor. The reference!® applies BLF to restrict
ship’s parameters such as ship’s lateral position, longitudinal position and heading. Compared with the traditional
backstepping control method, the tracking errors converge on a small neighborhood of the origin and the full
state constraints are not violated.

The above BLF-based constraint controls are time-invariant and symmetrical. However, in the actual indus-
trial production system, there exists a situation that the constraint interval of the system state needs to be changed
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at any time during the different production progress, and the constraint interval is asymmetric. In this case,
the time-varying asymmetric barrier Lyapunov function(TABLF) is required to constrain the system state with
time-varying asymmetry. TABLF provides more flexibility in dealing with state constraints. Constraint control
methods based on TABLF have received wide attention in recent years. The reference!! designs a robust adap-
tive controller for nonlinear systems with dynamic characteristics based on the TABLF, which limits the system
output to the specified range. The reference'? applies TABLF to impose a time-varying asymmetric constraint
on the full state of the input unmodeled dynamics system. The reference'® applies tan-type BLF working for
both constrained and unconstrained scenarios to constrain all states of the nonlinear system with time-varying
asymmetry. In addition to the common logarithmic BLE, there are integral BLF and tan-type BLE Different BLF
have their own characteristics and scope of application. Different types of BLF can be selected according to the
control conditions. The TABLF has also made many achievements in practical application. The reference'* is
combined with the finite-time stability theory, the log-type BLF is constructed to constrain state variables such
as angular speed and stator current of permanent magnet synchronous motor in a predefined compact set. The
reference’® uses TABLF to improve the control accuracy of aircraft. The reference's uses asymmetric integral
barrier Lyapunov functions are adopted to handle the fact that the operating regions of flight state variables are
asymmetric in practice, while ensuring the validity of fuzzy-logic approximators. The reference!” applies log-type
TABLF are utilized to confine flight states within some predefined compact sets all the time provided. System
state constraint is a problem that must be carefully considered in the actual system. The constraint control for
nonlinear systems is worth further studying.

Inspired by previous work, in comparison with the strict feedback systems and pure feedback systems, the
non-strict feedback systems have more applicability in practical application. However, the traditional backstep-
ping method can not be directly applied in the non-strict feedback systems. For this problem, the reference'®
uses the method of variables separation to design the controller and provided a solution to the adaptive con-
trol problem of the non-strict feedback nonlinear systems. Compared with the variable separation method,
the control method proposed in this paper removes the limitation of the unknown functions lfi(x)‘ < ®(|x|)
in references'®", making the new method more widely applicable. However, the repeated differentiation in
backstepping will result in the requirement of high-order differentiability and the complexity of controllers in
the multiple-state high-order systems. This study introduces dynamic surface control (DSC) to deal with these
problems. The controller constructed by backstepping DSC method is much simpler and has been well studied
to solve the asymptotical tracking problem of non-strict feedback nonlinear systems. In recent years, many
experts and scholars have applied the DSC method!*?°-* to solve the problem of computational complexity.
The reference' proposes an adaptive fuzzy finite-time DSC method for PMSM with full-state constraints. The
reference? introduces DSC to handle constraints for a class of nonlinear systems. The introduction of DSC
technology further optimizes the design process of the adaptive backstepping control method, making it easier
to design an adaptive controller for a nonlinear system.

Therefore, this paper presents a class of full state time-varying asymmetric constraints for non-strict feedback
nonlinear system. It is different from strict feedback system and pure feedback system? -2, Firstly, an adaptive
fuzzy controller for non-strict feedback systems is designed by using the adaptive backstepping method. TABLF
is introduced in the design process to set the lower and upper bounds of the system state, thus, the full state
time-varying asymmetric constraint of the system is realized. Secondly, by introducing DSC technology in the
adaptive backstepping design process. The first-order filter is used to process the virtual control function, which
solves the problem of repeated differential technology and reduces the computational complexity.

According to the above control methods, the main contributions and advantages of this paper are summa-
rized as follows:

(1) Different from the references®~* that only focuses on the state constraints of strict feedback systems, this
paper proposes a adaptive fuzzy control scheme considering full state constraints is investigated for non-
strict feedback nonlinear systems and removes the limitation of the unknown functions lfi(x)‘ < ®(|x|)
in references'®!’.

(2) Compared with time-invariant symmetric constraint in references®*-*2, an improved TABLF method is
used to solve time-varying asymmetric constraint control for non-strict feedback systems. And the DSC is
introduced in the design process, which is used to reduce the order of TABLEF, thus simplifying the design
process of the controller.

Problem formulation
System description. Consider the following SISO non-strict feedback nonlinear system, an adaptive fuzzy
controned to realize the full state time-varying asymmetric constraints of the system.

x1 = fi(%n) + Xi1 + €i(Xns 1)
{kn = fu(Xn) + u + &4 (X, t) (1)
y=x1

where x; = [x1, %3, - - ,x,-]T e R represents state vector, f;(x,),i = 1,2, - - ,n denotes unknown smooth non-
linear function. y € R and u € R are the output and input of the system, respectively. €;(Xy, t) is the external
disturbance, and ¢;(x,,, t) satisfies |€;(X,, t)| < &, &; is a positive constant.

Assumption 1 Ref.* It is assumed that the controlled system (1) is controllable and observable.
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Remark 1 The system (1) is a class of non-strict feedback nonlinear systems with external disturbances. The
non-strict feedback system in (1) is usually applied to the study of adaptive control, such as in references®.
The one-link manipulator®*-** can be expressed in the form of the system.

The control objectives of this paper:

(1)  Allsignals in the closed-loop systems are bounded.
(2) The system state does not violate the constraint conditions.
(3) The tracking error of the system can remain within a prescribed constraint interval.

Assumption 2 For the lower and upper bounds kc,(t) and ka(t) of the time-varying asymmetric constraint
intervals, There exist the constants Kei ,K > Dejj» Deijs i,j = 1,2, - - - n such that k(1) < Keis k(1) > K and

‘k’ (t)’ < Dc,] and‘k’ (t)‘ < Da],wherek’ (t)and K

ki k,;(t) denote j — th time derivative of K.iand K cir
Assumption 3 For reference signal y,(¢) and its derivatives y, )(t), there exist the functions Yy (¢) : Ry — Ry,
Yo(t) : Ry — R4 satisfies Yo(t) < kei(8), Yo(t) < k.;(¢), and there also exist some positive parameters

Vi, Yo such that Yo(0) <y (0) < o[ 0] < Yk =12 n,

Remark 2 In order to meet the system control request, the above assumptions need to be made. Assumption
2 and 3 ensure that the lower and upper bounds of the constraint, the reference signal and its derivatives are
all bounded, so that the functions involved in the derivation are bounded. The above assumptions are often
used in the research of constrained control of nonlinear systems. For example, there are similar assumptions in
reference®’.

Assumption 4 The lumped uncertainties and external disturbance f;(-) satisfy the linearly parameterizable
condition: there exist uncertain Vector oT [yl, Y25+ £ yN] [61,0,, - -+ ,6n]and known smooth functions
9(x) = [01(x), 2(x), - ,on(x)]" such thatﬁ(xz) =07 0i(x).

Lemma 1 Ref*! On account of the unknown function, we draw into the unknown function of FLS to approximate
it. The form of function can be described as follows:

sup | f(x) =07 (p(x) |< € @)
xeQ

The log-type TABLF construction. In the controller design process in this paper, all states of the non-
linear system are constrained to a specified interval by the BLE. The log-type TABLF construction can make the
selection of the constraining interval of the system more flexible and can satisfy the constraining requirements
of actual systems.

Definition 1 For the nonlinear system x = f(x), the smooth positive definite function V(x) is defined on the
intervalU containing the origin. Within interval U, V(x) has a first-order continuous partial derivative. If X
approaches the boundary of interval U,V (x) — o0, Vt € [0,00), V(x) < band b > 0is constant when x(0) € U.
Then it is the BLE. The essence of the log-type TABLEF is still BLE.

Lemma 2 Ref.*? For any positive constant ky;, when e; satisfies|e;| < ky;, there are the following inequality:

2 2
- ©)

<
2 2 2 2
ky —ei Ky —e

¢ i

log

Lemma 3 Ref.* Considering the nonlinear system f(x), for smooth positive definite function V(x), if there exist
scalars . > 0 and . > 0, such that

V(x) <=V +pu (4)

Then the solution of the nonlinear system is uniformly bounded.

Lemma 4 Ref** Let k,(t) and ky(t) be arbitrary functions, Z={e€R:—k, <e <k} CR and
N = R! x Z U R* are open sets. For the system (1), it is assumed that there are continuously differentiable posi-
tive definite functions V : Z — Rt andU : R* — R such that

adivid = W) < &ivid (5)

where {1 and , are koo type functions.

LetV(¢) = V(e) + W(v),e(0) € Z, if the following inequality is satisfied:
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V—ﬂh< V4
=gph Ve (6)

where ¢ > 0and ¢ < 0 are constants, then e(t) € Z,Vt € [0, 00).
In order to impose time-varying asymmetric constraints on all states, the TABLF in references* is introduced
at each step of the controller design process

_1—q(e) [540) q(e) 540
Vl — 1 at + 1 at 7
p ¢ (kjf(t) - eff’(t)) p % kL) — e (1) @)

)= 1, if >0
1) =10, if <0
It can be seen from (6) that the TABLF is a piecewise, continuous differentiable, positive definite function. The
asymmetric BLF can design the lower and upper intervals of the constraint interval respectively. Compared with
the symmetric BLE, it has more flexibility and wider application range, but the design process of the controller

is also more difficult. Symmetric constant BLF can be regarded as a special case of (6), that is, the constraint
interval is constant and symmetric up and down.

where

Controller design
In order to design the controller, define the error variables as follows:

€1 =X1—Yr
e = Xj — ] (8)
€n = Xp — 0p—1

The backstepping design process of the adaptive controller is as follows
Step 1: According to the system (1) and the defined error (8), we obtain

e1 =X —yr =filxn) +x2 +e1(Xn, 1) — jr 9)
Then the introduction of first-order filter with a time constant 71 has been used for virtual function.
T1é1 + & = 1,81(0) = a1 (0) (10)

Thus, we could obtain the first-order filter error

X1=a& —a (11)
Further we can get that
Ip—— (12)
71
According to (8), we can get
X, = ey + &1 (13)

Substituting (11) and (13) into (9), it can be written as
e1 =fxn) + e+ x1 o1 +e1(xt) — (14)
Then, we choose the TABLF candidate combined with quadratic Lyapunov function as

1—q(er) K2 () q(er) 5{0) 0 x}
Vv, = lo a + I +- L+ 15
: » F (kj‘f(t) — el (1) » ® Khawy—zP@) 224 2 (15)

where

1, e1 >0
Q(€1)={0, ei<0

where ¢; is a positive design parameter, 6; denotes the estimation of 6}, 6 = 0y — 6y stands for the estimation
error.

The time-varying constraints kg (t) and kp (t) on output tracking error e; in (15) corresponding to output
constraints k. (t), k. are given by

ka1 (t) = yr(t) — key (), ko1 (1) = k1 (£) — y,(8) (16)

By Assumptions 2 and 3, there exist positive constants K, (¢), Ka1, Ky (£), Ky such that K < ka1 (£) < Kap,
K < kp1(t) < Kpp, ¥V > 0.
The derivative of V is given by
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Vi =e1Kei [fi(%n) + €2 4 x1 + o1 + 81T 1) —

ka1 (£) kp1 ()
+(1 — q(en) oot (q(en)) Fo (D)%
9191
- — +xi(=x1/u —a1)
&
where
K — 1— q(e1) ; q(er)
kay (1) — kp, (1) — e

According to Lemma 1, we can have
fiGen) = O] 01(%n) + 21 (Fn)s 1 (Rn) < 1

where V/; > 0.
, n the following inequalities can be obtained

Since 0 < <p,-g0iT <lLi=12,---
w?

. K% [©] @1 (%)
elKe1®{§01(xn) < M + “1
2a)1 2
K407 01907 (%)e1 (%n) Lot
- 2a)1
_ «elKaoiyy Goer () | ot
- 20)%
k1e3KZ 07 ol (Xn) 1 (%)
2601(/’1T(x1)(/71(x1)
/qel 205 w?

- 2(01 (21 (x1)<ﬂl (x1)

/\

2

2

lelKel

e1Ke121(x) < -
¢ 2n§ 2K1

2K2
K e
Ko (x, 1) < el 4 1
1Ke181(x, 1) < 5 5
2 ?
e <e;+ —
1X1 =€ 1

o 12
where 6] = %, w1, k1 and 7 are positive design parameters.
By substituting (18)-(22) into (17), the following inequality can be obtained
e1Ke

) K.167 K
Vi < eKe { A K1e12e1 —Jrte
1(01 (x1)§01(x1) 2ny 2
ka1 () icbl(t) wl A
1— i SIS s §
+a1+(1—q(e)) ot (qer)) 0 T2 T 2

2
. Ko
1<—ﬁ —Ol]> + —— 28 +elKgl
T1 4

Select the virtual control function «; and adaptive law 6, as
Kk1e1Ke161

ol (x1)@1(x1) 2n?

_ Kk1eiKe

ap = —(o1 + vi(t)er — 5

{1kle%Kezl

6y = — y161
20! (x1)¢1 (x1)

where o7 > 0and y; > 0 are design parameters, and the time-varying gain is given v; (t)by

e1Ke1 n

-

(17)

(18)

(23)

(24)

(25)
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ka2 i\
vi(t) = (I_Q(el))(ﬁ) +q(el)(k21> +¢ (26)

Under the Assumptions 2 and 3, we concluded that x1, yr, ¥, ka1, ka1, kp1, kpy are continuous and bounded with
a maximum absolute value A;. According to Young’s inequality, we have:
242 2
. Xid1 | 4q
o] < + = 27
IXl 1 | 2[% 2 ( )

According to (24), (25) and (27), (23) can be written as

2 272
) 5, A
Vi < — (01 — DelKer + ereaKer + =2 + A
2 2K1

B ) (28)
B0 o[l Ka A] o?
2 & Ha 4 22] 7 2
where
~ ! * N ~
710101 1161 (91 _91> - noi®  no;
& &1 T2 24
then (28) can be further expressed as
. 62
Vi <~ (01 — DelKey + ere2Ker —
24
_X2 i_ﬁ_ﬁ i a)% (29)
Y 4 22 2 2
e122  yiei? P

23 241 2

. . . - A?
Therefore, the selection range of constant gain and o) time constant 7; should be limited to Til > % + ﬁ and
1

in order to guarantee the closed-loop stability.
Stepi(i =2,3,---,n — 1): According to the system (1) and the defined error (8), we obtain

& = X — Qi—1 = fi(%n) + Xip1 + €i(%n, 1) — Qi1 (30)
Then the introduction of first-order filter with a time constant has t; been used for virtual function «;.
Tid; 4+ @; = a;,@;(0) = o;(0) (31)

Thus, we could obtain the first-order filter error

Xi =0 — o (32)
We can further obtain that
OZ‘ _ X (33)
Ti
According to (8), we can get that
Xiy1 = &iy1 + @ (34)

According to (36) and (38), (34) can be written as

b = fi(En) + eip1 + X + i +Ei(x 1) — @i (35)
Then, we choose the TABLF candidate combined with quadratic Lyapunov Function as
1—q(e K2t
Vi=Vi1+ 4(c:) log ( 2 ai )2 )
2 K2, (t) — €(t)

q(ei) kpi(£) ) 07 X
2 log(kii(t)—zf(t) T

(36)

+ 27‘1 >

where
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1, e >0
qlei) = {0, e; <0
where ¢; is a positive design parameter, 6; denotes the estimation of 6;*, 6; = 6 — 6; stands for the estimation
error.
The time-varying constraints k,;(¢) and kp,;(¢) on output tracking error e; in (15) corresponding to output
constraints k;(t), k; are given by

kai (1) = 77 (8) — kei (1) Kpi(£) = kei(8) — i1 (8) (37)
By Assumptions 2 and 3, there exist positive constants k,;(t), Kais ky; (), kpi such that K ; < kai() < Kai,

Kai < kpi(t) < Kpi, V > 0.
The derivative of V;, we can obtain that

Vi= Vi1 + eiKei [fi(??n) + i1+ Xi + o + £ 1) — G

(1 -at ’)) m<t) + (ate) llzbg; - % - Xi(_% - d") v
where
_ L—aq(e) Q(ei)
TR - k() —
According to Lemma 1, we can have:
fi@n) = O] 0i(Rn) + 7i(En), 2i(Rn) < i (39)

where 2;(x,) < /;and /; > 0 are constants.
By applying Young’s inequality, the following inequality can be obtained

[®T(/’t(xn)] n 12

20? 2
< Ki€ ZKezlel (xn)wl(xn) a)ilz
- 203 2
< Kié ZKeZIQ*‘pIT(xn)QOz(xn) i a)ilz
20-" Qi (xt)wz(xt) 2

2172 o 2
kKie; K.:0; w;

eiKei®F (%) <

(40)

S L S T
zwi @i (xt)Q‘)z (xi) 2

e 272
Kie;KZ:  nii;

eiKeili(x) <
14\er l( )_ 2]/[12 zkt

202 22
e;Ks &7
eiKeigi(x,t) < 'Te’ + EI (42)

2
eixi < e + X (43)

where 6 = ”®1 12 , w1, ki and n; are positive design parameters.

Accordlng to the derivation process in the previous step, we can get that

i—1

— %07
Viet <= (ox = DejKek + eimreikeion — ) Tk
k=1 P

i—1 2 i—1
1 Kyj A
2 e k
— —_——— = —| + .
Zxk |:-L—k 4 ZLi:| ng

k=1

(44)

Based on (39)-(44), (38) can be expressed as
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i—1

-1 52 - 2
. k0 1 Ky A
Vi<-— Z (o — l)eiKek +ei—1€iKei—1 — Z s Z 13[ - 5

o 4 22
k=1 20 oL 4 2f
i—1
e K,.0F e K e Ko -
+ng+eiKEi|: Zl/Tl —e,l l‘ > +1/21 Zel 1261 + -L—,l ! +€i+1+oti
k=1 w;@; (Xi)@i(%i) n; i1 )
kai(t) kb,(t) W 2 2 6,
+(1 —gle)) ——ei (&) +4+#+4_7
( ' )kui(t) ( ) z(t) 2k; 2 ¢
2
+ Xi(—& - a,) + X2 2k,
Ti 4
Select the virtual control function «; and adaptive law 6; as
KieiKeit; kieiKe  eKe  xio1  Keioi
a; = —(o; +vi(t))ei — — — _ Giftei  Xi-1l e »
l T 0t ey 2n 2 ot Ky (46)
2K2
kief K
= {”7 — vibi (47)
2070 (Xi)pi (%)

where o; > 0and y; > 0 are design parameters, and the time-varying gain is given v;(¢)by

. 2 2
kai kl
vit) = (1—q<ei>)(k,> +q(ez)(k:> +¢ (48)

Using the analysis method in step 1, we can see that both ¢; and «; are bounded, and there is a positive parameter
Aj that satisfies.

242 2
. XA 14
[xicil < étzl +

: 5 (49)

Substitute (46), (47) and (49) into (45) to obtain

i i—1 52 i 2

. k0 1 Ky A
Vi S—Z(Uk—1)61%Kek+ei€i+11<ei—27k —fo — =t

28k Tk 4 25

k=1 k=1 k=1
_ ~ (50)
12 7]2)2 i + Y,'@,'@,' + ﬁ

par] 2K; 2 gi 2

where

vififi i (91’* B éi)

Thus, (50) can be obtained

. ykGZ

Vi<-— Z (o — 1)ekK keiei+1Kei — Z ng
k=1 k=1 <5k (51)
I RO

Xk Tk 4 ZLi o

k=1
2
Y r’l l
where§; = 4 —|— —|— + 7 2{ + +

Therefore2 the selectlon range of constant gain o; and time constant 7; should be limited to o7 > 1 and
,11 > K“ + Z in order to guarantee the closed-loop stability.

Step n: Accordmg to the system (1) and the defined error (8), we obtain the derivative of e,

en = Xy — &n—l :fn(xn) +u+en(Xp, t) — &n

Then, we choose the TABLF candidate combined with quadratic Lyapunov Function as
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~ 1 qlen) K2, (t)
Vn=Vnort Ty o (kznm - e%(t))

q(en) k() ) o
g (kin(o—zﬁ(t) ",

(53)

where

Q(en)z{l, én >0

0,e, <0

where ¢, is a positive design parameter, 6, denotes the estimation of 6/, 0, = 0;F — 6, stands for the estimation
error.

The time-varying constraints kg, (¢) and ky;(t) on output tracking error e, in (15) corresponding to output
constraints k., (¢), k; are given by

kai () = yr(£) — ke (1), kpi (1) = keei (1) — ata—1 (1) (54)
By Assumptions 2 and 3, there exist positive constants K, (t), Kai, Kbn(t)xkbi such that K; < k,i(t) < Kai,
Kan < kpi(t) < Kpi, V > 0.
According to (52) and (53), we can get that

Vn =Vn71 + enKei [fn(gcn) +ent1 + Xn + oy + En(Xns t) — é.\li*l

kan(t fepn (t 0,65 (55)
+(1 a q(en)) kanzt; et (Q(en)) anEt; | T Cn
where
K, = 1 —q(en) q(en)

20— k,0-a
From step n-1 of the derivation process, we can get that

n—1

n—1 52

. Vk0
Vi1 = — § (o — l)eI%Kek +en—16nKen—1 — ka
k=1 k=1 K

n—1 5 1 Kek Ai n
S T Tt
k=1 k k k

(56)

—1
&k
=1

According to Lemma 1, we can have :

fn(;cn) = 95% (&n) + j-n (9_Cn)) )~n(-’_cn) = j-n (57)
By applying Young’s inequality, the following inequality can be obtained

K2, [070,x)]"  w?

T v n-ten n
e Ken®, 0n(Xn) < —
§ 202 2
0 Ka b o Con)en Gn) |
Zw% 2
2
n

_ _ (58)
_ “nnKe 0w Go)on () | @
20201 (%) i (%)
K”e%tKezne;tk w%

20207 %)pn(Xn) | 2

2572 272

1 KnenKen Mntn
enKenin(x) < +
nKenn( )_ 21’1% an

(59)

eZ 2 5,2
enKenei(x,t) < % + ?n (60)

o II2 -, .
where 6 = ”(,)c—“”, 1, ky and 1, are positive design parameters.

Substitutingnthe (57)-(60) into (55), so that
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i

n—1 2 n—1 2
. Vi, 1 Ky A
Ve <— E (or — 1)6]%ng + en—1€nKen—1 — g =k Z XI% |:7k - = -k

2
k=1 k=1 2k k=1 K 4 24
n—1
KnenKene;,F knenKen enKep Xn—1
+ & + enK, |: = — + + + +u 61
; T 2020 GuenGn) 203 2 e ()

2 2, 2 &

kan(t) kpn(t)
+(1 - l](en)) men + (q(en)) kll: 0 en

The actual controller u and adaptive law 6; of the design system are as follows
KknenKenby

~ Ot en = S T G G

62
. knenKen . enKen _ Xn-1 Ken—1 (62)
277% 2 Tn—1 Ken o
Cnk, e2K2
n — nknCn Zen - Vnen (63)

2&)% 1/’” (xn)‘pn (Xn)

where o1 > 0and y; > 0 design parameters, and the time-varying gain v, (t) is given by

. 2 . 2
kun kn
Va(t) = (1—q<en>)< ) +q<en)<kz> +¢ (64)

Substituting (62) and (63) into (61), we can obtain that

n—1
Vn < - Z (o — 1)e}%Kek - O-neiKen
k=1
1
Z kak n— 2{ 1 Ky Ai} )
- Y O e
pt T 4 2
2 n 2
€ VnOuOn L
+ + o + fn 4 Zn =
Zs R

where

n n T 2% 28,
The updated (65) is designed as
— viO?
Vi < — Z (ox — l)ekKek Onéy, Ken Z Zé'kk
k=1
(66)
n—1 1 Kok Z
2 e
SSHERCE IS
pe T] 4 Ztk
where
gn:§+gﬁ+nﬁiﬁ+Yn9:2+§
2 2 T 2, 2

Remark 3 In order to apply backstepping method to the design of controller for non-strict feedback nonlinear
system, the control method proposed removes the limitation of the unknown functions Lf(x)| < ®(|x|) in
references'®", which makes the proposed control scheme more widely used.

Remark 4 Note that ¢ is a positive constant and can guarantee v; (f) > 0 when kaz and i<h1 are both zero.

Remark 5 Note that ¢ is a positive constant and can guarantee v;(t) > 0 when icai and kp; are both zero.
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Stability analysis

Theorem 1 For the non-strict feedback nonlinear system (1) with full state time-varying asymmetric constraints,
under assumptions 2-3, according to the proposed control scheme, the actual controller (62), virtual control functions
(24) and (46), adaptive laws (25), (47) and (63) can be designed to satisfy the control objectives.

Proof In order to facilitate the calculation process, the following parameters are defined.

oi=0;—1,i=12,---,n—1 (67)
0y = Oy (68)
_ 1 Kei A,Z . L2 1 69
Oi=——— — 5 i=12-,n—
! T 4 2L,2 (69)
Then (66) can be expressed as follows
Vy< =8V, +& (70)

where § = min {26, yi(i = 1,2,--- ,n),20;(i=1,2,--- ,n— 1)}, = ZZ:1 &k
Then (70) can be obtained by integrating on [0, t]

0 < Vu(t) < (Vn(O) - %)e"” + ?Vt >0 (71)

Based on lemma 3 and lemma 4, formula (70) and (71), this means that the variables x; , 6;, i, e; and u are
bounded. It can be further obtained

1—q(e) kZ; q(e:) k2, 2 (Vo= )e ¥ +]
1 4 1 i < n(0=5 3
2 Og(kéi—ef Tl ) = 72)
From (74), the tracking error ¢; satisfies
_ _E\-stg £
o < k¥ 1 — 2L (H0=E) ) 73)

Because of x1 (t) = e1(t) + y, (1), zi(t) € Zi = {—kai(t) < zi < kpi(t)},i = 1,2, -+ ,nand according to Assump-
tions 2 and 3, we can obtain

ke (1) < —ka1 (1) + y,(t) < x1(t) < ki1 () + y, () < ke (), > 0 (74)

In the derivation process, it has been proved that o, i = 1,2, - - , n is bounded, so it can be obtained that all
states in the system (1) are satisfied

k() < ti(t) < kei(t),Vt >0 (75)
O

Remark 6 1t can be seen from (73) that the selection of upper and lower boundaries k,; and ky; of time-varying
asymmetric constraint intervals will affect the tracking error of the system. According to Lemma 4 and (62) and
the simulation results, when the constraint interval increases, the system tracking error increases and the system
control effect becomes worse. When the constraint interval is reduced, the tracking effect of the system becomes
better, but the peak and fluctuation of the system input u will become larger. Therefore, we should choose the
appropriate constraint interval to balance the system.

Simulation analysis
In this section, two simulation examples are given to demonstrate the effectiveness of the adaptive fuzzy control-
ler proposed in this paper. Two control methods are adopted for each simulation example, and the two control
methods are compared in the simulation results.

Case 1: The full state time-varying asymmetric constraint control scheme for non-strict feedback nonlinear
systems based on the DSC proposed in this paper is applied.

Case 2: The traditional time-varying asymmetric constraint control scheme is used to the control of non-strict
feedback nonlinear systems.

Example 1: Numerical example. Consider the following non-strict feedback nonlinear state constrained
system with external disturbances
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Figure 1. Trajectories of the output y, the reference signal y, and constraint interval.

X = xlx% cos (x2) + x3 + &1
Xy = —xp 8in (x3x3) + x3 + &
x3 = 0.5x] + 2% +u+e3
y=x1

(76)

where x1, x2 and x3 represent the state variables, u and y are the input and output of the system, respec-
tivelye; = 0.2x; sin (x2), &2 = 0.1xpx3 and &3 = 0.1 cos (x2x3) are external disturbances, and the reference signal
is yr = 0.5 cos(t).

The fuzzy membership functions are given as follows

—(xi + 12 = 3j)
2

Iy (xi) = exp }’J’=1’2r""7”’=1’2’3 (77)

The virtual control functions a1, a3 actual controller u adaptive law 61, 6, 05 of the system (76) are designed, and
the design parameters are chosen as w1 = 3, wy =2, w3 = 2,01 = 17,02 = 10,03 = 9,71 = 6,12 = 5,13 = 3,
(1 =058, =06,03=0.6,y1 =5»=3,3=51 =027, =0.02,{ = 10.

The lower and upper bounds of the time-varying asymmetric constraint interval of the system are
set as kg =07403cos(t), ko =—-06+02cos(t), ko =08—03sin(t), k,=0.7—0.5sin(t),
ks =1.54 1.2sin(t + 0.5), k.3 = —2 + sin(t + 5) respectively and the initial conditions are x;(0) = 0.5,
x2(0) = 0.5, x3(0) = 0,6,(0) = 0.01, 6,(0) = 0.01,03(0) = 0.0L

Figures 1, 2, 3, 4, 5 and 6 are the results of the simulation. Figure 1 shows the trajectories of the system out-
put y, the reference y, and constraint intervals. Figures 2 and 3 are the trajectories of x, and x3 and constraint
intervals. Figure 4 shows the trajectories of adaptive law 61, 6,and 65. Figure 5 shows the trajectory of the system
input u. Figure 6 shows the trajectory of tracking error e;.

It can be seen from Figs. 1, 2, 3, 4, 5 and 6 that the controller designed in this paper can realize the effective
tracking control of the non-strict feedback nonlinear system (76) with external disturbance. The system output
can achieve the desired tracking effect, and the output tracking error do not violate constraint conditions. All
variables of the system are bounded. Compared with the traditional time-varying asymmetric constraint con-
trol scheme, the time-varying asymmetric constraint control scheme based on DSC method can full states and
the tracking error do not violate constraint conditions, and all variables of the system are bounded. The above
numerical simulation shows that the adaptive fuzzy controller designed in this paper can satisfy the control
requirements.

Example 2: Application example. In the face of more and more complex production processes, the con-
trol requirements of industrial manipulators are also increasing. How to effectively control industrial manipula-
tor has always been a hot research direction, and many research results have been obtained in recent years. In
some work tasks that need to interact with people or high-precision, in order to ensure production safety and
control accuracy, the motion space, motion speed and tracking error of the manipulator need to be limited.
Therefore, it is of great practical significance to study the constraint control of manipulator.

Therefore, in the simulation design of this section, the system model of one-link manipulator’’—* is adopted,
the adaptive fuzzy controller designed in this paper is applied to the control of one-link manipulator, and the
time-varying asymmetric constraint interval is designed to restrict the rotation angle, rotation speed and torque
of one-link manipulator.

The system model of one-link manipulator can be expressed as the following

37-39
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Figure 2. Trajectories of state x; and constraint interval.

T T T T T

3r x3(Csael) |
e
ke
- = = e x3(C'sae2)

Time(Sec)

Figure 3. Trajectories of state x3 and constraint interval.

003 - - : - -
0
-0
0.025 b5 4
002 - .

5 10 15 20 25 30
Time(Sec)

Figure 4. Trajectories of adaptive law 6, 6, 03.
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Figure 5. Trajectory of the system input u.
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Figure 6. Trajectories of tracking error e; and constraint interval.

X1 =x

X, = —10sin (x1) — x5 + x% cos (x2x3) + x3 (78)
X3 = —2xp — 10x3 + 10u

y=x

where x; = q is the angular position of the one-link manipulator, x; = q is the angular velocity, x3 is the torque,
and the reference signal is y, = 0.5 sin(t).
The fuzzy membership functions are given as follows

—(xi+3—j)

5 },j=1,2,~--,5,i=1,2,3 (79)

i (x1) = exp [

The actual controller, virtual control function and adaptive laws of the one-link manipulator are designed accord-
ing to the design method in this paper.

The design parameters are w1 =2, wy =6, w3 =3, 01 =15,00 =10,03 =12, 91 =6, ), =5, 13 = 5,
01=01,5=01,=02,y1 =3, =1, 3 =2, 11 =0.09, 1, = 0.02, ¢ = 5. The initial conditions
are x1(0) = 0.01, x2(0) = 0.3, x3(0) =0, 6;(0) = 0.01, 6,(0) = 0.01, A3(0) = 0.01 the lower and upper
bounds of the time-varying asymmetric constraint interval of the manipulator are k;; = 0.5 + 0.2 cos(?),
k. = —0.3 4+ 0.3sin(t), ke = 0.5+ 0.5 cos(t), k., = —0.6 + 0.3 cos(t), kc3 = 6 + 5sin(t), k.3 = —5 + 3 sin(¥).

The simulation results are shown in Figs. 7, 8, 9, 10, 11 and 12. Figure 7 shows the trajectories of the system
output y, the reference y, and constraint interval. The adaptive fuzzy controller designed can ensure the one-link
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Figure 9. Trajectories of state x3 and constraint interval.
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Figure 10. Trajectories of adaptive law 0; 0, 0.
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Figure 11. Trajectory of the system input u.

manipulator full state and the tracking error do not violate constraint conditions, and the system output y, can
remain within a prescribed constraint interval. Figures 8 and 9 show are the trajectories of x; and x3 and con-
straint intervals, system states x, and x3 are constrained within intervals. Figures 10 and 11 shows the trajectories
of adaptive law 6y, 6, and 63 and input u. It can be seen that all variables in the system are bounded. Figure 12
shows the trajectory of tracking error e;, which satisfies the constraints. From the above simulation results, it
can be seen that the time-varying asymmetric constraint control scheme based on the DSC method designed in
this paper can effectively control the one-link manipulator, time-varying asymmetric constraints on the rotation
angle, rotation speed and torque of the manipulator, and reduce the stabilization time of the one-link manipulator.

Conclusion

In this paper, based on the DSC method, time-varying asymmetric constraints are applied to a class of non-strict
feedback nonlinear systems. In the design process, the fuzzy logic system is used to estimate the unknown non-
linear function in the system. In each step of the controller design process, the time-varying asymmetric BLF is
introduced to design the lower and upper time-varying constraint boundaries of the system state respectively,
in order to time-varying asymmetric constraints on all states of the system. Based on the DSC method, a first-
order filter is introduced to process the virtual control function in the design process, which solves the problem
that the traditional adaptive backstepping design method needs to perform repeated differential calculations on
the virtual control function, reduces the order of TABLF, reduces the computational burden and speeds up the
tracking speed of the system. Finally, through numerical simulation and one-link manipulator system simula-
tion, it is proved that the adaptive fuzzy controller designed in this paper can meet the predetermined control

Scientific Reports |

(2022) 12:10469 | https://doi.org/10.1038/s41598-022-14088-y nature portfolio



www.nature.com/scientificreports/

06 b

02 R

08 b

1 . . . . .
0 5 10 15 20 25 30

Time(Sec)

Figure 12. Trajectories of tracking error e; and constraint interval.

requirements. The simulation results show that all signals of the system are bounded, and all states of the system
do not violate the time-varying asymmetric constraints during operation. The adaptive tracking control for a class

of

switch nonlinear systems or stochastic nonlinear system with full state constraints will be our future works.
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