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Abstract. Acanthamoeba myosins IA and IB were 
localized by immunofluorescence and immunoelectron 
microscopy in vegetative and phagocytosing cells and 
the total cell contents of myosins IA, IB, and IC were 
quantified by immunoprecipitation. The quantitative 
distributions of the three myosin I isoforms were then 
calculated from these data and the previously deter- 
mined localization of myosin IC. Myosin IA occurs al- 
most exclusively in the cytoplasm, where it accounts 
for "-,50% of the total myosin I, in the cortex beneath 
phagocytic cups and in association with small cyto- 
plasmic vesicles. Myosin IB is the predominant iso- 
form associated with the plasma membrane, large 
vacuole membranes and phagocytic membranes and 
accounts for almost half of the total myosin I in the 
cytoplasm, Myosin IC accounts for a significant frac- 

tion of the total myosin I associated with the plasma 
membrane and large vacuole membranes and is the 
only myosin I isoform associated with the contractile 
vacuole membrane. These data suggest that myosin IA 
may function in cytoplasmic vesicle transport and 
myosin 1-mediated cortical contraction, myosin IB in 
pseudopod extension and phagocytosis, and myosin IC 
in contractile vacuole function. In addition, endoge- 
nous and exogenously added myosins IA and IB ap- 
peared to be associated with the cytoplasmic surface 
of different subpopulations of purified plasma mem- 
branes implying that the different myosin I isoforms 
are targeted to specific membrane domains through a 
mechanism that involves more than the affinity of the 
myosins for anionic phospholipids. 

M 
YOSlNS have been classified as type I or II depend- 
ing on whether they possess one or two heavy 
chains, respectively (Korn and Hammer, 1988). 

Myosins II form bipolar filaments by self-association medi- 
ated by their long coiled-coil, c~-helical tall domains. Single- 
headed myosins I (for recent reviews see Korn and Hammer, 
1990; Pollard et al., 1991) have short globular tails and do 
not form filaments; examples, all from nonmuscle cells, in- 
clude myosins I from amoebae (Acanthamoeba castellanii 
and Dictyostelium discoideum), intestinal brush border, and 
adrenal medulla (Barylko et al., 1992). Recent preliminary 
reports indicate that myosins I may be widespread in meta- 
zoan nonmuscle cells (Espreafico, E., R. Chancy, E Spin- 
dola, M. Coehlo, D. Pitta, M. Mooseker, and R. Larson. 
1990. J. CellBiol. 111:167a; Li, D., and P. D. Chantler. 1991. 
Biophys. J. 59:229a; Bahler, M. 1990. J. CellBioL 111:167a; 
Atkinson, M. A. L., and D. M. Peterson. 1991. Biophys. J. 
59:230a). Other nonmuscle myosins, e.g., the MY02 gene 
product in yeast (Prendergast et al., 1990), the murine dilute 
gene product (Mercer et al., 1991; also called 190 kD, Lar- 
son et al., 1988, 1990) and the protein encoded by theNina c 
locus of Drosophila melanogaster (Montell and Rubin, 1988), 
although not yet fully characterized, may not meet the cri- 
teria of either type I or II myosins. 

The Acanthamoeba myosins IA (heavy chain, 140 kD; 
light chain, 17 kD), IB (heavy chain, 125 kD; light chain, 
27 kD) and IC (heavy chain, 130 kD; two light chains, 14 
kD) are among the biochemically best characterized mono- 

meric myosins (see Korn et al., 1988; Korn, 1991). The 
NH2-terminal subfragment-l-like globular head (Jung et al., 
1987; Brzeska et al., 1988) of each isoform contains the 
ATP-sensitive actin-binding site and the catalytic site; actin- 
activated Mg2§ activity is maximally expressed only 
after a single hydroxy amino acid in the head domain has 
been phosphorylated (Hammer et al., 1983; Brzeska et al., 
1989) by myosin I heavy chain kinase. All three Acan- 
thamoeba myosins I have a short, COOH-terminal tail with 
a membrane-binding domain and an additional, ATP-insen- 
sitive actin-binding site (Brzeska et al., 1988; Adams and 
Pollard, 1988; Lynch et al., 1989; for review, see Korn et 
al., 1988). 

The biological roles of the Acanthamoeba myosins I are 
not yet defined, however, some insight into their functions 
can be obtained from their intracellular localizations. In the 
first such experiments, myosins IA and IB were thought to 
be localized near the plasma membrane at the level of resolu- 
tion obtainable by immunofluorescence microscopy (Gadasi 
and Korn, 1980; Hagen et al., 1986; Miyata et al., 1989). 
Myosins IA and IB were also found associated with purified 
plasma membranes and shown to bind to salt-extracted 
membranes (Miyata et al., 1989), NaOH-extracted mem- 
branes (Adams and Pollard, 1989), and anionic synthetic 
phospholipid vesicles (Adams and Pollard, 1989). Later, 
myosin IC was shown to be localized to the plasma mem- 
brane and the contractile vacuole membrane by both im- 
munofluorescence and immunoelectron microscopy (Baines 
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and Korn, 1990). Acanthamoeba myosin II, on the other 
hand, is present throughout the cytoplasm in the form of 
200-nm minifilaments, is most concentrated in the cortex, 
but is absent from thin membrane extensions such as 
microspikes and filopodia (Baines and Korn, 1990). These 
results for Acanthamoeba are consistent with the finding that 
myosin I is at the leading edge and myosin 1I is in the 
posterior region of locomoting Dictyostelium (Fukui et al., 
1989). We now report the more definitive localizations of 
Acanthamoeba myosins IA and IB in vegetative and phago- 
cytosing amoebae at the level of resolution of immunoelec- 
tron microscopy and the quantitative distributions of the 
three Acanthamoeba myosin I isoforms among the several 
cell compartments in which one or more of them occurs. 

Materials and Methods 

Acanthamoeba castellanii (Neff strain) was grown either in l-liter culture 
flasks to a density of 106 cells • mi-1, as described by Pollard and Korn 
(1973), on a plastic substrate in 750-ml culture flasks (Falcon, Cockeysville, 
MD), or on a glass substrate in 8-chamber Lab-Tek tissue culture slides 
(Nune, Inc., Naperville, IL). Cells grown in contact with a substrate were 
much flatter than cells grown in suspension thus improving the resolution 
obtainable by immunofluorescence studies. Myosins IA and IB were 
purified by the method of Lynch et al. (1991). 

Polyclonal Antibodies 
Antimyosin IA was raised against a COOH-terminal 27-kD chymotryptic 
fragment of myosin IA heavy chain prepared by Dr. Thomas Lynch (Lynch 
et ai., 1986). Antimyosin IB was raised against a 15-amino acid synthetic 
peptide Lys-Lys-Lys-Pro-Tbr-Thr-Ala-Gly-Phe-Lys-lle-Lys-Glu-Ser-Cys cor- 
responding to residues 528-541 of myosin IC heavy chain (which is a region 
of 80% homology between myosins IC and IB) with a COOH-termi~al cys- 
teine residue (which makes the sequence more similar to that of myosin IB) 
added to facilitate conjugation to maleimide-activated keyhole limpet 
hemoeyanin (Pierce Chemical Co., Rockford, IL). The conjugation was 
performed according to the manufacturer's instructions. 

The conjugated peptide or chymotryptic fragment was mixed 1:1 (roll 
vol) with Freunds complete adjuvant (Difco Laboratories, Detroit, MI) to 
form an emulsion before immunization. Female New Zealand white rab- 
bits were primed at the age of 6 mos and received three additional boosts 
with at least 4 wk between injections. The antisera were collected 10-12 d 
after the final immunization. The antiserum raised against the 27-kD myo- 
sin IA chymotryptic fragment recognized myosin IA by immunoblot analy- 
sis of total amoeba proteins and an unidentified protein of ,'~ kD. The 
cross-reacting antibody activity was removed by adsorbing the antiserum 
on nitrocellulose strips containing the 50-kD protein prepared by transfer 
from SDS-PAGE gels of total cell proteins (see Kulesza-Lipka et al., 1991). 

Immunolocalization of Myosins IA and IB 
Four fixation and permeabilization protocols were used ~aines and Korn, 
1990; Kulesza-Lipka et al., 1991): (a) Cells were fixed with 3% formalde- 
hyde and 0.25 % ghitaraldehyde in growth medium for 45 min at room tem- 
perature and then permeabilized with 0.5 % saponin for 30 min at room tem- 
perature; (b) cells were fixed and permeabilized simultaneously in the 
presence of 0.05 % glutaraldehyde, 1% formaldehyde, and 0.05 % saponin 
in growth medium for 5 rain at room temperature followed by further fixa- 
tion in 0.05 % glutaraidehyde and 1% formaldehyde in growth medium at 
room temperature for 45 rain; (c) cells were fixed as in (a) but were perme- 
abilized by immersion in 100% acetone at -20~ and (d) cells were fixed 
and permeabilized by immersion in methanol containing I% formalin at 
-15oC for 10 rain (protocols 3 and 4 were used for indirect immunofluores- 
cence only since the morphological preservation was too poor for im- 
munogold EM). 

In all cases, cells were washed in PBS, pH 7.4, after fixation and again 
after permeabilization and treated with 1 nag x ml -I of sodium boroby- 
dride in PBS for 20 rain to reduce free aldehydes. To block nonspecific hind- 
ing of antibodies, cells were incubated in 1.0 % BSA, 50 mM L-lysine, 0D1% 
sodium ethylmercurithiosalicylate (Thimerosal; Fluka Chemical Corp., 
Ronkonkoma, NY) and 0.025% saponin in PBS, pH 7.4. Cells were in- 
cubated with the primary and secondary antibodies in the blocking buffer 

with five washes with PBS between incubations. Rhodamine-phalloidin 
(Molecular Probes, Inc., Eugene, OR) staining was performed according 
to the manufacturer's instructions on cells fixed and permeabilized accord- 
ing to protocol 3 (see above). 

Membrane Preparations 
Plasma membranes were isolated by the method of Clarke et al. (1988) from 
cells grown to a density of 2 X 106 x ml -t. The final pellet of purified 
membranes was suspended in 10 mM Tes (N-tris[Hydroxymethyl]-methyl- 
2-aminoethane-sulfonic acid), pH 6.9. All experiments were performed on 
freshly prepared plasma membranes. To remove peripherally associated 
membrane proteins, purified plasma membranes were extracted with either 
0.6 M KC1 or 0.6 M KI as described by Miyata et al. (1989). Plasma mem- 
branes (300 ttg x ml -i) were incubated with 0.6 M KI and 30/~M sodium 
thiosulfate in 10 mM Tes, pH 6.9, for 2 h on ice, or with 0.6 M KCl in 10 
mM Tes, pH 6.9, containing 2 mM MgATP, 0.6 mM PMSF, and 2 mM DTT 
for 15 min at room temperature. The mixtures were pelleted at 150,000 g 
for 30 rain and the pellets resuspended in 10 mM Tes, pH 6.9. 

For myosin binding studies, KI- and KCl-extracted plasma membranes 
(100-300/~g) and 10-30 #g of myosin IA or 10-30 #g of myosin IB were 
mixed in 1 ml of buffer containing 0.1 M KCI, 2 mM MgATP, 1% BSA, 
2 mM DTT, 0.6 mM PMSF, and 10 mM Tes, pH 7.0, and incubated for 15 
rain at room temperature. The mixtures were pelleted at 150,000 g for 30 
rain and the pellets resuspended in 10 mM Tes, pH 7.0, containing 0.05% 
glutaraldehyde. Native plasma membranes were fixed the same way. Im- 
munogold labeling was then performed on the fixed membranes in an identi- 
cal fashion to whole cells except that brief sonication (30 s in small bath 
soulcator, 60 Hz, 40 W; Heat Systems-Ultrasonics, Inc., Plainview, NY) 
was necessary to disperse the membranes after each pelleting to ensure that 
the entire membrane population was available to the primary and secondary 
antibodies. 

Immunoprecipitation and Quantification of Myosins 
Quantitative immunoprecipitations of myosin I isoforms from solubilized 
total amoeba proteins were performed using formalin-fixed, heat-treated S. 
aureus (Immuno-Precipitin; GIBCO BRL, Gaithershurg, MD) after the 
method of Kessler (1981), as modified by Hammer et al. (1984), except that 
the amoebae were not labeled with [35S]methionine. For precipitation of 
myosins IA and IB, the antisera described in this paper were used; for 
precipitation of myosin IC, the antiserum described by Baines and Korn 
(1990) was used. Cell lysates for immunoprecipitation were prepared as 
recommended by Harlow and Lane (1988). Total cellular myosin IB and IC 
were most effectively solubflized by SDS-denaturation lysis (2% SDS, 50 
mM Tris, pH 7.5) while myosin IA was more effectively extracted by RIPA- 
detergent lysis (150 mM NaCl, 1% NP-40, 0.5% deoxycholate, 0.1% SDS, 
50 mM Tris, pH 7.5). Total extraction of myosin I from residual insoluble 
cellular material was confirmed by immunoblotting. Before immunoprecip- 
itation, SDS was removed by dialysis orthe lysate was diluted 1:20 in PBS, 
pH 7.2, containing 1% BSA. Briefly, immunoprecipitation was performed 
as follows. The lysate was precleared by addition of preimmune serum to 
a final dilution of 1:5 followed by immunoprecipitation of the IgG by addi- 
tion of an excess of S. aureus (Immuno-Precipitin stock solution at 500 mg 
x mi-l; 1.0 rag binds 10.7 #g IgG). Antibodies were then added to a final 
dilution of I:10 which was found to he sufficient to immunoprecipitate all 
the myosin I. An excess of Immuno-Precipitin was added and was spun 
down through a 1 M sucrose cushion. The Immuno-Precipitin pellet was 
washed twice in PBS, pH 7.2, and resuspended in SDS-PAGE sample buffer. 
The method of Hammer et al. (1984) used two washes in high salt; this was 
found to remove a small proportion of the bound myosin I and was therefore 
avoided. After every wash and pelleting samples of supernatant were taken, 
concentrated by Amicon-30 centrifugation (Amicon Corp., Danvers, MA) 
(ool0-fold), and tested for the presence of myosin I by immunoblotting to 
ensure that no myosin I had been lost. Myosins I were quantified by gel- 
scanning after SDS-PAGE. Purified myosins IA, IB, or IC were electropho- 
resed on SDS-PAGE in amounts of 0.1, 0.5, 1.0, or 2.0/zg per lane and 
scanned by densitometry to obtain a standard curve. 

Quantification of Antibody Titer 
Antibody titers were quantified by a solid phase antibody capture immuno- 
assay after the protocol of Harlow and Lane (1988). Purified myosin I was 
bound to PVC in a 96-well microtiter plate (Falcon Plastics, Cockeysville, 
MD), antibody was added in a dilution series, and the captured antibody 
was quantified by binding of a second HRP-coupled anti-irnmunoglobulin 
antibody with 3',Y,5',5"tetramethylbertzidine as substrate. 
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Other Materials and Methods 

SDS-PAGE was performed after the method of Laemmli (1970) and immu- 
noblot analyses were performed according to Towbin et al. (1979). FITC- 
conjugated goat anti-rabbit IgG and HRP-conjugated goat anti-rabbit IgG 
were obtained from Boehringer Marmheim Biochemicals (Indianapolis, 
IN). Goat anti-rabbit IgG antibodies conjugated to gold particles were ob- 
tained from Janssen Life Sciences Products (Beerse, Belgium). All other 
chemicals were reagent grade. 

Results 

Antibody Characterization 

Antimyosin IA diluted 1:8,000 (4/~g x ml -t of total serum 
protein) detected 1 /~g of myosin IA with the mid-point of 
the titration curve falling at dilutions of '~1:2,000 (data not 
shown). By immunoblot analysis against the purified en- 
zymes, this antiserum, at dilutions of 1:800 or greater, rec- 
ognized only myosin IA, but, at dilutions <1:500, marginal 
cross-reactivity with myosins IB and IC was detected (Fig. 
1, lanes a-c, anti-MIA). At 1:800 dilution, the antiserum 
detected only myosin IA in total cell extracts (Fig. 1, lane e). 

Antimyosin IB detected 1 /~g of myosin IB at dilutions 
>1:5,000 (2 /zg x ml -I of IgG) with the midpoint of the 
titration curve falling at '~1:1,750 (data not shown). This an- 
tiserum recognized myosin IB with much higher affinity than 
myosin IC (Fig. 1, lanes a-c, anti-MIB), even though it was 
raised against an amino acid sequence adjacent to the actin- 
binding site of myosin IC. At 1:400 dilution, this antiserum 
detected both myosin IB and IC (data not shown) but only 
myosin IB was detected at antiserum dilutions greater than 
1:500 (Fig. 1, lane f ) .  

Indirect Immunofluorescence 

Myosin IA was diffusely localized throughout the cell (Fig. 
2 b). Through-focusing, however, revealed a slight increase 
in the fluorescent signal in a broad band beneath the plasma 
membrane corresponding to the cell cortex (Fig. 2 b, arrow- 
heads). The plasma membrane did not appear to be spe- 
cifically labeled. In contrast, myosin IB was highly concen- 
trated at the plasma membrane (Fig. 2 d). Myosin IB was 
also associated with digestive vacuoles (Fig. 2 d, arrow- 
head), which were easily distinguished from contractile 
vacuoles both by EM and by double labeling with antibodies 
to myosin IC. Actin was present in all regions that contained 
myosin IA or IB (Fig. 2 i). 

Because immunoblot analysis had demonstrated that high 
concentrations of antimyosin IB cross reacted with purified 
myosin IC (see previous section), the possibility that myosin 
IC was contributing to the fluorescence attributed to myosin 
IB was assessed by monitoring the fluorescence of the con- 
tractile vacuole which is known to contain a high concentra- 
tion of myosin IC (Baines and Korn, 1990). The contractile 
vacuoles were labeled with antimyosin IB at dilutions 
<1:5 but not with antiserum dilutions >1:20; plasma mem- 
branes, however, were still fluorescent at antiserum dilutions 
>1:1,000 (data not shown). Thus, over the range of antibody 
dilutions used in the current study (1:50 to 1:500), antimyo- 
sin IB would be expected to detect only myosin IB. In similar 
control experiments, antimyosin IA at dilutions of 1:20 to 
1:1,000 did not label the plasma membrane or the contractile 
vacuole membrane confirming that, at the concentrations 

Figure 1. Characterization of antimyosin IA and antimyosin IB by 
immunoblotting against purified myosins and whole cell extracts. 
(Lanes a-c) SDS-PAGE of 2/~g of purified myosins IA (lane a), 
IB (lane b), and IC (lane c) stained with Coomassie blue (Coo- 
blue), immunoblotted with antimyosin IA diluted 1:500 (66/zg x 
ml -~ of total serum protein) (anti-MIA), and immunoblotted with 
antimyosin IB diluted 1:500 (anti-MIB). (Lanes d-f) SDS-PAGE 
of Acanthamoeba extract (100 #g of protein) stained with Coomas- 
sie blue (lane d), immunoblotted with a 1:800 dilution of antimyo- 
sin IA (lane e), and immunoblotted with a 1:800 dilution of an- 
timyosin IB (lane f). 

used in this study, this antiserum did not detect either myosin 
IB or myosin IC. 

The immunofluorescent staining patterns for myosin IA 
and IB observed in the current study are consistent with ear- 
lier localization studies (Gadasi and Korn, 1980; Miyata et 
al., 1989) even though the images differ slightly. Both earlier 
studies used antibodies which had significant cross-reac- 
tivity. For this reason, the fluorescent images for both myo- 
sin IA and 113 showed association with the plasma mem- 
brane and the cytoplasm. In fact, quantitative immunogold 
cytochemistry performed in the present study (see below) 
has established that there are similar amounts of myosin IB 
and IA in the cytoplasm, although the fluorescent images in 
Fig. 2 give the impression that almost all myosin IB was as- 
sociated with the plasma membrane. This is because myosin 
IB is •60-fold more concentrated at the plasma membrane 
than in the cytoplasm and the intensity of indirect im- 
munofluorescence reflects relative concentrations, not abso- 
lute quantities. 

lmmunogold Electron Microscopy 

The observations made by indirect immunofluorescence 
were confirmed and refined at the higher resolution obtain- 
able by immunoelectron microscopy. Myosin IA was de- 
tected throughout the cell (Fig. 3 a). While gold particles 
were more concentrated at the plasma membrane, the major 
portion of gold was cytoplasmic (Table I) with a slightly 
higher concentration of myosin IA in the cell cortex (data not 
shown). Myosin IA was also associated with small cytoplas- 
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Figure 2. Indirect immunofluorescence localization of myosin IA and IB in vegetative Acanthamoeba. Phase contrast (a, c, e, and g) and 
fluorescence (b, d,f, h, and i) micrographs of cells stained with either antimyosin IA (1:50 dilution) (a and b), antimyosin IB (1:50 dilution) 
(c and d), antimyosin IA preimmune serum (1:50 dilution) (e and f) ,  or antimyosin IB preimmune serum (1:50 dilution) (g and h) and 
FITC-coupled goat anti-rabbit IgG. Rhodamine-phalloidin labeling of cells has also been included to show the distribution of F-actin (i). 
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Figure 3. Immunogold electron microscopic localization of myosin IA and myosin IB. Saponin-permeabilized cells (protocol 1, see Materials 
and Methods) were stained with antimyosin IA (1:50 dilution) (a, c, and e) or antimyosin IB (1:50 dilution) (b, d, and f )  followed by goat 
anti-rabbit IgG coupled to 5-nm gold. (a and b) Thin sections of cell cortex and plasma membrane stained with antimyosin IA (a) or 
antimyosin IB (b); myosin IA was present in the cell cortex (a, arrows); and associated with the plasma membrane (a, arrowheads); myosin 
IB was associated only with the plasma membrane (b, arrowheads) and was excluded from the cortex. (c) Association of myosin IA with 
small cytoplasmic vesicles (arrows, see also open arrow in Fig. 4 e). (d) Association of myosin IB with the membrane of a large internal 
vacuole (arrows). (e and f )  Lack of any association of myosin IA (e) or myosin IB (f, arrowheads identify plasma membrane labeling) 
with the membrane of the contractile vacuole (cv). Bars, 0.5 #m. 

Fixation and permeabilization followed protocol 4 for myosin I and protocol 3 for actin (see Materials and Methods). Fluorescence due 
to myosin IA was diffuse throughout the cytoplasm with local concentrations in the cell cortex (b, arrowheads) while fluorescence due 
to myosin IB followed the cell outline, including acanthapods and filopodia, indicative of close association with the plasma membrane. 
Occasional digestive vacuoles were also stained (d, arrowhead). Bars, 25 #m. 
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Table L Immunoelectron Microscopic Localization of 
Myosin I Isoforms 

Compartment Myosin IA Myosin IB Myosin IC* 

Plasma membrane 
Particles/#m 3.0 + 1.6 

(preimmune) (0.03) 
Particles/cell 1 • los 
% on outer surface 30 

Large vacuole membrane 
Particles/#m 0 

(preimmune) (0) 
Particles/cell 0 

Contractile vacuole membrane 
Particles/#m 0 

(preimmune) (0) 
Particles/cell 0 

Cytoplasm 
Particles/#m 2 44 

(preimmane) (2.5 
Particles/cell 1.4 

15.4 • 3.3 5.2 •  
(0.08) (0.001) 

5.3 x los 1.8 x lO s 
81 70 

22.6 • 8.5 7.4 • 7.0 
(0) (0) 

6 x lO s 2 X los 

0 3.0 + 0.4 
(0) (0) 
0 4.7 x 103 

• 17 11 •  6.3 • 5.1 
• 1.7) (4.0 • 2.0) (5.5 • 1.7) 
x los 2.4 x los 2.7 x l& 

These data were derived from measurements performed on a minimum of 10 
cells taken from three different preparations of which those in Fig. 3 are illus- 
trative. For statistical analysis a mean was calculated for each cell; the values 
reported are means of means (5: o,_0. Gold particles falling within a 10-nm 
zone on either side of the middle of a membrane bilayer were included as part 
of the membrane compartment. The number of gold particles per #m of mem- 
brane or #m 2 of cytoplasm (after correcting for the amount of labeling, if 
any, by preimmune sera) were converted to total number of particles in the cell 
using morphometric data and assuming a constant section thickness of 75 nm. 
The values for one cell from Bowers et al. (1981) are: plasma membrane area, 
2,590 #m 2, cytoplasmic volume, 2,540 #m 3 and large vacuolar membrane 
system area, 2,032 #m 2. A contractile vacuole membrane area of 118 #m: 
was calculated from diameters measured in the current study assuming that 
fully filled vacuoles were spherical. 
* Data from Balnes and Korn (1990). 

mic vesicles with diameters <1 t*m (Fig. 3 c). Typically, the 
gold particles formed rod-shaped clusters perpendicular or 
parallel to the membranes of the small vesicles (Fig. 3 c, 
arrows). 

Again in agreement with the immunofluorescence data, 
myosin IB was predominantly but not exclusively associated 
with the plasma membrane at the higher resolution of immu- 
noelectron microscopy (Fig. 3 b; Table I). Myosin IB was not 
associated with small cytoplasmic vesicles but was as- 
sociated with the membranes of some but not all large inter- 
val vacuoles with diameters >l  #m (Fig. 3 d). Those vacu- 
ole membranes that were labeled had •50% more particles 
per 1 #m than the plasma membrane (Table I). The contrac- 
tile vacuole was not labeled by antibodies to either myosin 
IA (Fig. 3 e) or IB (Fig. 3 f ) .  

Table 11. Cell Distributions of Acanthamoeba 
Myosin I Isoforms 

IA IB IC 

Total amount of isoform, ng/106 cells 
(pmol/106 cells) 

Compartment 37 (0.24) 176 (1.2) 50 (0.32) 

Percent of total isoform in cell 
Plasma membrane 7 39 44 
Large vacuole membrane 0 44 49 
Contractile vacuole membrane 0 0 1 
Cytoplasm 93 17 6 

Percent of total myosin in 
compartment 

Plasma membrane 3 73 24 
Large vacuole membrane 0 76 24 
Contractile vacuole membrane 0 0 100 
Cytoplasm 51 44 5 

The total amount of each isoform was determined by quantitative im- 
munoprecipitatiou of each isoform from a solution of total cell proteins by 
isoform-specific antibodies and quantitative immunoblotting following SDS- 
PAGE (see Materials and Methods for details). The percent distributions of 
each isoform among the cell compartments were calculated from the data in Ta- 
ble I. The percentage contribution of each isoform to the total myosin I within 
each compartment could then be calculated from the two previous data sets. 

Quantification of Myosin I Isoform Distributions 

To quantify the amount of each myosin I isoform associated 
with each cell compartment, it was necessary first to deter- 
mine the amount of each isoform in the cell. This was done 
using immunoprecipitations of total cell proteins by excess 
antibodies to separate, and scanning of Coomassie blue-  
stained SDS-PAGE gels to quantify, the three myosin I iso- 
forms (see Materials and Methods). The amounts of each 
isoform are shown in Table II. The total amount of the three 
myosin I isoforms was 263 ng/106 cells (1.7 pmol/106 cells 
assuming an average molecular mass for myosins I of 155 
kD) or '~0.27 % of the total cell protein, in reasonable agree- 
ment with the values of 291 rig/106 cells (1.9 pmol/106 cells) 
and 0.2% of total cell protein estimated from the K§ - 
ATPase activity of a whole cell lysate (see Lynch et al., 
1991). 

From these data and the data in Table I, the myosin I com- 
position of each compartment could be calculated (Table II). 
Myosin IA occurs almost entirely in the cytoplasm, however, 
because there is much more myosin IB than IA in the cell, 
the relatively small amount of total myosin IB that is in the 
cytoplasm accounts for a substantial fraction of the total cy- 

Figure 4. Immunogold electron microscopic localization of myosin IA and myosin IB in phagocytosing Acanthamoeba. Saponin-perme- 
abilized amoebae (protocol 1) that had phagocytosed yeast for 2 rain were labeled with either antimyosin IA diluted 1:50 (a, c, e, and 
g) or antimyosin IB diluted 1:50 (b, d , f  and h) followed by goat anti-rabbit IgG coupled to 5-nm gold. (a and b) Thin sections of initial 
contacts formed between yeast (y) and the cell surface labeled with antimyosin IA (a) or antimyosin IB (b). Although myosin IA was present 
in clusters in the cortex in the region of contact (a, arrows), no specific associations within this region were observed. In contrast, myosin 
IB was seen to be accumulated at the precise site of contact (b, arrow). (c and d) Thin section of pseudopods extending to engulf yeast. 
Myosin IB was concentrated at the tips of the pseudopods (d, open arrow) and was associated with the nascent phagocytic cup membrane 
(d, arrowheads) whereas there was no discernible increase in the amount of myosin IA in these regions (c). (e) Phagocytic cups were as- 
sociated with clusters of myosin IA in the adjacent cortex (closed arrows), the plasma membrane (arrowhead) and attached to small vesicles 
(open arrow). (f) Myosin IB can be seen at the plasma membrane of two adjacent phagocytic cups (f, arrowheads) (the yeast was lost 
from one of the cups during preparation). (g and h) Nascent phagosomes had myosin IA associated with the phagosome membrane (g, 
arrowheads) and in the adjacent actin-rich region (g, arrows), while myosin IB was absent from the actin-rich region (h, A) and the phago- 
some membrane (h) but associated with the plasma membrane (h, arrowheads). Bars: (a-d and f-h) 0.5 #m; (e) 1.0 #m. 
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Figure 5. Immunogold electron microscopic localization of myosin IA and lB in purified native plasma membranes and reconstituted mem- 
branes. (a and b) Purified membranes labeled with antimyosin IA or antimyosin lB at 1:50 dilution followed by anti-rabbit IgG coupled 
to 5-nm gold (permeabilization was not necessary). Myosin IA was associated with small vesicles (a, open arrows) and short membrane 
sheets (a, closed arrow) while myosin lB was associated with large sheets of membranes (b). In all cases only one side of the membrane 
was labeled. (c-e) Purified membranes were extracted with 0.6 M KI, incubated with either purified myosin IA (c and e) or myosin lB 
(d) at a concentration of 0.45 nmol of myosin I per nag of membrane protein, washed and labeled with either antimyosin IA or antimyosin 
lB. Exogenous myosin IA bound to one side of a subpopulation of membranes (c, arrowheads) and vesicles, which could lie within un- 
labeled vesicles (e, arrowheads). Exogenous myosin 113 bound to one side of a subset of membranes (d). (f)  Purified membranes labeled 
with preimmune serum showing random gold particles (arrowheads) that were not associated with the membranes. Bars: (a-e) 0.2 #m; 
(f)  0.5/~m. 

The Journal of Cell Biology, Volume 119, 1992 1200 



toplasmic myosin I. Myosins 113 and IC are largely localized to 
the plasma membrane and large vacuolar membrane system, 
and account for almost all of the myosin I in that membrane 
system; myosin IB is the dominant isoform in this compart- 
ment. A small fraction of the total myosin IC accounts for 
all of the myosin I in the contractile vacuole membrane. 

The quantitative data in Table lI do not reveal some fea- 
tures that were discernible from careful examination of the 
immunoelectron micrographs. For example, a much smaller 
fraction of the gold particles representing myosin IA was on 
the outer surface of the plasma membrane than those 
representing myosins IB and IC (Table I). As discussed pre- 
viously (Baines and Korn, 1990), the appearance of gold 
particles on the outer cell surface of permeabilized cells (the 
enzymes are not detectable in nonpermeabilized cells) prob- 
ably reflects their redistribution due to the disruption of the 
lipid bilayer by the permeabilizing agent. That myosin IA re- 
mains predominantly on the inner plasma membrane surface 
during permeabilization suggests that it may be more inter- 
nally localized than myosins IB and IC and possibly not 
directly associated with the plasma membrane. This in- 
terpretation is supported by the fact that, although higher 
concentrations of saponin extract most of the myosin IC 
(Baines and Korn, 1990) and IB (data not shown) from the 
cells, myosin IA remains largely in place (data not shewn). 
Myosin I heavy chain kinase, which is predominantly cyto- 
plasmic, is also stable to saponin extraction (Kulesza- Lipka 
et al., 1991). 

Phagocytosis 

Three stages of phagocytosis were investigated: (a) initial 
contact between the ingested particle and the plasma mem- 
brane (Fig. 4, a and b); (b) formation of the phagocytic cup 
(Fig. 4, c-f); and (c) completion ofphagocytosis and the for- 
marion of an internal phagosome (Fig. 4, g and h). Myosin 
IA did not appear to be specifically involved at any of these 
stages (Fig. 4, a, c, e, and g) with the possible exception of 
a slight increase in concentration of myosin IA in the cell 
cortex just beneath the phagocytic cup (Fig. 4 e) and perhaps 
a twofold increase in concentration in the membrane of the 
phagocytic cup compared with other regions of the plasma 
membrane (data not shown). Myosin IB, on the other hand, 
was associated with the membrane at all three stages of 
phagocytosis (Fig. 4, b, d, and f )  with at least a twofold in- 
crease in concentration relative to other regions of the 
plasma membrane at the tips of extending pseudopods (Fig. 
4 h) and at the site of first contact between the plasma mem- 
brane and the object to be phagocytosed (Fig. 4 b). Some 
phagocytic cups and phagosomes, however, had no mem- 
brane-associated myosin IB (Fig. 4 h). 

Immunogold Cytochemistry of Purified Membranes 

To investigate further the nature of the membrane association 
of myosins I, immunogold cytochemistry was performed on 
samples of purified Acanthamoeba membranes. Antimyosin 
IA and antimyosin IB appeared to label different subpopula- 
tions of membranes. Antimyosin IA was associated with 
small membrane vesicles (Fig. 5 a) that accounted for "o9% 
of the total membrane profile (Table IH) while antimyosin IB 
labeled predominantly large sheets of membrane (Fig. 5 b) 
that accounted for "o30% of the membrane profile (Table 

Table II1. Distributions of Myosin IA and IB in 
Isolated Acanthamoeba Plasma Membranes and of 
Myosin IA and IB Added to KI-extracted Membranes 

% Membrane labeled Particles/~m 

M y o s i n  IA 

As  i so la ted  8.5 21 .5  + 7.3 
Re-bound  12.5 83 .4  + 24 .2  

Myosin IB 
As isolated 31.0 31.8 + 13.2 
Re-bound 39.0 123.7 + 29.7 

These data were derived from measurements made on a minimum of 100-200 
/~m of membrane from two different preparations of which those in Fig. 5 are 
representative. Each section was treated as a separate sample and a mean of 
means calculated. 

III). The density of labeling of those membrane profiles that 
were labeled was somewhat higher for myosin IB than for 
myosin IA (Table III). Both antibodies labeled only the cyto- 
plasmic surface of the membranes, identified by the presence 
of associated actin filaments (the amorphous material on the 
labeled side of the membranes in Fig. 5 b, arrows). It should 
be emphasized that the identification of different subpopula- 
tions of membranes by morphological criteria is unreliable 
since all the membranes look similar (except contractile 
vacuole derived vesicles, see Clarke et al., 1988) and, there- 
fore, the main evidence that myosins IA and IB were as- 
sociated with different populations of membranes was that 
myosin IB labeled at least threefold more membrane (see Ta- 
ble III). 

To investigate further the apparent differential localiza- 
tions of myosins IA and IB, isolated membranes were 
depleted of endogenous myosin I (and other extrinsically as- 
sociated membrane proteins) by treatment with 0.6 M KI 
(Miyata et al., 1989) which removed ,o50% of the myosin 
I and ,o85 % of the actin. Highly purified myosin IA or IB 
was added to the extracted membranes at concentrations 
sufficient to give half-maximal binding (0.45 nmol x mg -~ 
of membrane protein) (see Miyata et al., 1989) and the sam- 
ples were processed for immunogold cytochemistry using ei- 
ther antimyosin IA or antimyosin IB to detect the bound myo- 
sin I. The exogenously added myosins IA and IB appeared 
to bind to the same subpopulations of membranes with 
which their endogenous counterparts had been associated 
(Fig. 5, c-e; Table III). The exogenous myosin IA and IB also 
were bound only to one side of the membranes (Fig. 5, c-e), 
presumably the original cytoplasmic side. Very similar 
results were obtained when the membranes were extracted 
with 0.6 M KC1, which removed up to 80% of the endoge- 
nous myosin I (data not shown; Miyata et al., 1989). When 
myosin I was added to intact cells, no binding was detectable 
(data not shown), consistent with the observation that myo- 
sin I reassociates only with the cytoplasmic surface of salt- 
stripped membranes. 

The purified membranes used for these studies were pre- 
pared as described by Clarke et al. (1988). Although the 
membranes shown in Fig. 5 appear to be less homogeneous 
than those obtained by Clarke et al. (1988) and Miyata et al. 
(1989), they were actually indistinguishable before im- 
munogold labeling (data not shown). However, immunogold 
labeling involves addition of substantial amounts of protein 
(1% BSA as a blocking agent as well as the antibodies) and 
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repeated brief sonications to disperse membrane pellets after 
each wash (see Materials and Methods) which make the final 
material appear to be less homogeneous than the initial 
purified membrane preparation. 

Discussion 

The data presented in this paper establish the differential 
localizations of the three known isoforms of myosin I in 
Acanthamoeba. Myosin IA occurs almost exclusively in the 
cytoplasm where it accounts for •50% of the total myosin 
I and is also associated with small cytoplasmic vesicles. My- 
osin IB is the predominant isoform associated with the 
plasma membrane and large vacuole membranes and ac- 
counts for almost half of the total myosin I in the cytoplasm. 
Myosin IB, however, is absent from the actin-rich cortical re- 
gion immediately beneath the plasma membrane, the region 
where myosin IA is most abundant. Myosin IC accounts for 
a substantial fraction of the total myosin I associated with 
the plasma membrane and large vacuole membranes and is 
the only myosin I isoform associated with the contractile 
vacuole membrane. From previous work, it is known that 
30% of the total myosin I heavy chain kinase is bound to the 
plasma membrane and 70% is cytoplasmic (Kulesza-Lipka 
et al., 1991) and that 100% of the myosin II is cytoplasmic 
(Baines and Korn, 1990). 

The calculations on which the quantification depends as- 
sume equal access of all antibodies to all compartments, 
equal retention of all myosin isoforms during permeabiliza- 
tion and equal binding of antibodies to the myosin in each 
compartment. The reasonableness of these assumptions, in 
general, was supported by multiple experiments with each 
antibody using mild, intermediate and extensive permeabil- 
ization (Baines and Korn, 1990, and data not shown). If any- 
thing, myosins IB and IC were more readily extracted from 
the plasma membrane compartment than myosin IA which 
would lead to an overestimate of the amount of myosin IA 
in the plasma membrane; even so, myosin IA is the least 
abundant of the three isoforms in this compartment. 

Also, as shown in this paper, both antimyosin IA and an- 
timyosin IB labeled purified membranes in vitro. Control ex- 
periments (not shown) established that antimyosin IB bound 
to myosin IB that was cross-linking actin filaments in vitro 
with a molar ratio of bound antibody/myosin IB of 2:1. Thus, 
the relatively small amounts of myosin IA detected in the 
plasma membrane compartment and of myosin IB detected 
in the cell cortex did not result from an inability of the 
respective antibodies to bind to myosin in these compart- 
ments. 

The presence of myosin IA associated with the cytoplas- 
mic surface of plasma membranes and small cytoplasmic 
vesicles suggests a relationship between these two membrane 
systems. Myosin IA might possibly have a role in pinching 
off small vesicles from the plasma membrane and/or be 
responsible for the transport of these small vesicles to and/or 
from the plasma membrane. A somewhat similar association 
of brush border myosin I with small cytoplasmic vesicles in 
undifferentiated enterocytes of adult chickens has been 
reported (Drenckhahn and Dermietzel, 1988). In addition, 
the high concentration of myosin IA in the cytoplasmic cor- 
tex suggests that it may be the major myosin I isoform medi- 
ating cortical contraction. 

On the other hand, the high concentration of myosin IB in 
plasma membranes and at the tips of advancing pseudopods 
suggests that it may be the primary isoform responsible for 
myosin I-mediated surface extensions. As the membranes of 
large internal vacuoles and phagocytic vesicles are derived 
from the plasma membrane, it is not surprising that myosin 
IB has a similar concentration in all these membranes. How- 
ever, not all internal vacuoles nor all phagocytic cups were 
labeled by antibodies to myosin IB. It is possible, therefore, 
that myosin IB is only transiently associated with the mem- 
brane of phagocytic cups, phagosomes, and internal vacu- 
oles, for example perhaps during their formation from the 
plasma membrane, resulting in populations both with and 
without myosin I. 

Myosin IC, although present in the plasma membrane, is 
not associated with the membranes of phagocytic structures 
(Baines, I. C., and E. D. Korn, unpublished observations). 
As previously documented (Baines and Korn, 1990), its 
specific association with the contractile vacuole, which con- 
tains neither myosin IA nor IB, implies a specific role for 
myosin IC in the functioning of this organdie. 

The specific associations of myosins IA and IB with sub- 
populations of membranes in the isolated plasma membranes 
is consistent with their specific associations with different 
cytoplasmic membrane systems (each probably derived from 
the plasma membrane) in situ. Moreover, whereas myosin IB 
is rather uniformly distributed in the plasma membrane (see 
Figs. 3 f and 4, f and h), myosin IA (Fig. 3 a) and myosin 
IC (Baines and Korn, 1990) occur in clusters. This is consis- 
tent with myosin IB being associated with the membranes of 
large internal vacuoles while myosin IA is associated with 
much smaller cytoplasmic vesicles that might be related to 
small, specialized regions of the plasma membrane. 

It is instructive that only the cytoplasmic surface of iso- 
lated plasma membranes was labeled by antimyosin IA and 
antimyosin IB, that exogenously added myosins IA and IB 
bound only to one side of KI-extracted membranes and that 
the endogenous and exogenously added myosins IA and IB 
seemed to be specifically associated with the same subpopu- 
lations of membranes. These observations suggest that spe- 
cific membrane proteins may be involved in the targeting of 
each myosin I isoform to specific membrane domains even 
though, as shown by Adams and Pollard (1989), myosin I can 
bind to vesicles of acidic phospholipids in vitro. The putative 
myosin I-binding proteins are likely to be integral membrane 
proteins as they were resistant to extraction by KI. 

We thank Dr. Thomas Lynch for providing the antimyosin IA, Mr. Thomas 
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Bowers for advice on microscopy. 
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