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Abstract

Increase in global population and growing disease burden due to the emergence of infectious diseases (Zika virus),
multidrug-resistant pathogens, drug-resistant cancers (cisplatin-resistant ovarian cancer) and chronic diseases (arterial
hypertension) necessitate effective therapies to improve health outcomes. However, the rapid increase in drug development
cost demands innovative and sustainable drug discovery approaches. Drug repositioning, the discovery of new or improved
therapies by reevaluation of approved or investigational compounds, solves a significant gap in the public health setting
and improves the productivity of drug development. As the number of drug repurposing investigations increases, a new op-
portunity has emerged to understand factors driving drug repositioning through systematic analyses of drugs, drug targets
and associated disease indications. However, such analyses have so far been hampered by the lack of a centralized knowl-
edgebase, benchmarking data sets and reporting standards. To address these knowledge and clinical needs, here, we pre-
sent RepurposeDB, a collection of repurposed drugs, drug targets and diseases, which was assembled, indexed and anno-
tated from public data. RepurposeDB combines information on 253 drugs [small molecules (74.30%) and protein drugs
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(25.29%)] and 1125 diseases. Using RepurposeDB data, we identified pharmacological (chemical descriptors, physicochemi-
cal features and absorption, distribution, metabolism, excretion and toxicity properties), biological (protein domains, func-
tional process, molecular mechanisms and pathway cross talks) and epidemiological (shared genetic architectures, disease
comorbidities and clinical phenotype similarities) factors mediating drug repositioning. Collectively, RepurposeDB is de-
veloped as the reference database for drug repositioning investigations. The pharmacological, biological and epidemiolo-
gical principles of drug repositioning identified from the meta-analyses could augment therapeutic development.

Key words: precision medicine; drug repositioning; translational bioinformatics; drug development; drug discovery; precision
pharmacology; systems pharmacology

Introduction

Precision medicine, also known as stratified medicine, is a col-
lective term that represents a new and evolving health care de-
livery model, which encompasses accurate diagnosis,
personalized interventions and individualized recovery strat-
egies for an individual patient [1–3]. The primary goal of preci-
sion medicine is precision therapeutics, which aims to provide
optimized treatments with the highest efficiency and fewest
side effects matching the unique disease signature of a patient.
Drug repurposing (or drug repositioning), i.e. the development
of new or improved therapies by reevaluation of approved or in-
vestigational compounds, is a promising strategy for precision
pharmacology and, thus, may improve the productivity of drug
development [4].

Recently, drug repositioning has emerged as a cost-effective
and efficient approach to bring therapeutic discoveries from
bench to bedside in a short span of time. Although traditional
drug development relies on high-throughput screening of thou-
sands of drug targets and millions of pharmaceutical com-
pounds, drug repositioning focuses on the reuse of compounds
with some degree of a priori knowledge. Although earlier ex-
amples of drug repurposing relied primarily on medicinal chem-
istry and clinical serendipity [5–7], more recent examples have
successfully used diverse computational methods and open-
access biomedical informatics resources [8–10]. The expanding
catalog of drug, tissue, disease and gene expression signatures
from cMAP [11] (https://www.broadinstitute.org/cmap/), LINCS
(http://www.lincscloud.org/) and GEO (http://www.ncbi.nlm.nih.
gov/geo/) is vital for implementing computational drug repur-
posing in the setting of precision medicine. One exemplary
technique in computational repositioning is called connectivity
mapping, where gene expression signatures of drugs and dis-
eases are compared, positing that if a drug perturbs gene ex-
pression in opposition to disease perturbations, then that drug
may be therapeutic for that disease. Combining genomic-based,
transcriptomic-based and connectivity mapping-based
approaches has also been used to recommend potential indica-
tions for different cancers, Zika virus, multidrug-resistant
pathogens, cardiovascular diseases and psychiatric diseases
[12–19].

Drug repositioning investigations are currently being used as
a therapeutic development strategy for several common, chronic,
rare and emerging diseases. As the number of drug repurposing
investigations continues to increase, a new opportunity emerges
from analyzing the universe of repositioned therapies to identify
patterns that underlie successful drug repositioning. Several
databases like PROMISCOUS and DMAP are also available (see
Availability of related resources for drug repositioning in the
Supplementary Materials) in the open access domain with drug
repositioning and related content [20, 21]. However, such re-
sources and previous analyses have so far been hampered by the

lack of a centralized database as well as a lack of reporting stand-
ards for drug repositioning investigations. To address this gap,
we developed RepurposeDB (http://repurposedb.dudleylab.org),
a database of drug repositioning studies reported on public re-
sources like PubMed and Food and Drug Administration (FDA)
databases. The analyses of the repertoire of drugs, drug targets
and associated disease indications from RepurposeDB reveal sev-
eral factors associated with drug repurposing.

In this report, we discuss various features of the
RepurposeDB (version 1) database and present collective in-
sights obtained from the systematic analyses of the database
content. For example, we generated a statistical summary of
various physicochemical properties of repurposed compounds
compared with various compound subsets from DrugBank. We
also analyzed drug targets (proteins) of repurposed compounds,
identifying over-represented patterns in the underlying biolo-
gical activity (i.e. mechanisms of action of compounds, biolo-
gical pathways of target genes and structural similarities of
target proteins). Finally, we present a digital epidemiology ana-
lysis using electronic medical record (EMR) data, addressing the
degree to which ‘repurposing disease pairs’ (i.e. disease pairs
treated by the same drug) present as comorbidities. Together,
findings from the systematic analyses of the data from
RepurposeDB provide pharmacological, biological and epi-
demiological evidence to support data-driven drug repurposing
strategies as an essential tool kit for drug discovery.

Methods

RepurposeDB (http://repurposedb.dudleylab.org) is a compen-
dium of drugs (small molecules and biotech or protein drugs)
and their associated primary and secondary diseases in which
the compound was indicated as effective. Exploring these
datasets using enrichment analysis helped us to understand
key biological pathways, functional mechanisms, physicochem-
ical features and side effects associated with successfully
repositioned drugs, which can aid in designing better drug
repositioning investigations in the future [5, 22]. Molecular func-
tion of proteins and biochemical pathways act in concert to
perform a variety of functions in the illness and wellness states
of human physiology [23]. Emerging evidence from pathway
cross-talk studies indicates that the pathophysiology of mulit-
ple diseases can be modulated by the same set of pathways [24,
25]. We have explored the proteins and gene sets from
RepurposeDB using biological ontologies overlapped with a var-
iety of gene set annotations to understand the functional and
chemical promiscuity associated with repositioned compounds
and their targets [26–28]. Findings from the meta-analyses of
drugs, drug targets and disease phenotypes in RepurposeDB
promote the inclusion of three additional data types and analyt-
ical strategies, namely pathway cross talks, shared genetic
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architectures (SGA) and prevalence of disease comorbidities
into drug repurposing pipelines. Integrating these approaches
to existing drug repurposing pipelines could help to identify
new indications for existing compounds or alternate drugs for a
disease with a known pathway or genetic associations.

RepurposeDB—data integration, design and
database development

Data collection and curation
The catalog of repurposed drugs was compiled using a combin-
ation of text mining of the PubMed database [n ¼ 23 million ab-
stracts (www.ncbi.nlm.nih.gov/pubmed)] and manual curation
of manuscripts that have reported drug repositioning. For the
text mining, the initial searches in PubMed using combinations
of ‘drug repositioning’ or ‘drug repurposing’ and semantic vari-
ations were implemented to generate a list of abstracts.
Abstracts with more than one disease terms (e.g. ‘rheumatoid
arthritis’ and ‘Crohn’s disease’) were filtered using NCBI E-util-
ities (http://www.ncbi.nlm.nih.gov/books/NBK25500/). Finally,
for the manual biocuration, we examined curated research and
review articles that report drug repositioning or repurposing in-
vestigations (Figure 1; n ¼ 258; see Supplementary Data File:
RepurposeDB_PubMed_Articles.xlsx).

Data processing and annotation
We collected data in the form of drugs, diseases and annota-
tions from DrugBank [29], KEGG Drug and Compound databases
(http://www.genome.jp/kegg/), PubChem (https://pubchem.
ncbi.nlm.nih.gov/), Chemical Entities of Biological Interest
(ChEBI; https://www.ebi.ac.uk/chebi/), SIDER (http://sideeffects.
embl.de/) and US FDA Rare Disease Repurposing Database [30].
For disease and phenotype data, we manually curated terms
and mapped them to three different disease ontologies, specif-
ically International Classification of Diseases 9 (ICD-9) codes,
Human Phenotype Ontology (HPO) and Disease Ontology (DO)
using concept unique identifier (CUI) codes as intermediary
identifiers. Finally, we integrated the phenotype data and drug
data and generated an indexed resource using drugs and dis-
eases. The final, nonredundant data set of drug repositioning
investigations was compiled as triples in the format of ‘drug pri-
mary indication-secondary indications’. The entire database
was finally mapped to the repertoire of biomedical ontologies
(see Supplementary Data File: RepurposeDB_PanOntology_
Mapping.xlsx). Primary indication refers to the original disease
indication for which the drug is targeted, and secondary indica-
tion indicates any subsequent indications (see Limitations
section).

Pan-ontology mapping of RepurposeDB
knowledge corpus

We have mapped the entire RepurposeDB knowledge to all
available biomedical ontologies from National Center for
Biomedical Ontologies (NCBO) BioPortal using Annotator pro-
gram (http://bioportal.bioontology.org/). Each term (drug, pri-
mary indication or secondary indication) in RepurposeDB was
used as a query against BioPortal. We compiled the results in
JSON formatted files using the REST interface of Annotator. We
provide the statistics of term-level mapping in the
Supplementary Material (see Pan-ontology mapping statistics
and Supplementary Data File: RepurposeDB_PanOntology_
Mapping.xlsx).

User interface design

The web interface of RepurposeDB, search utilities and
Minimum Information About Drug Repositioning Investigations
(MIADRI) standard was developed using HTML, CSS and
JavaScript. We provide a technical summary of the database de-
velopment methods, Web server architecture of various tools,
database design and various features in the Supplementary
Materials. We also provide a summary of the different user
interfaces including ‘Drug’ page, ‘Disease’ page, browse utilities,
search engines (keyword search, chemical similarity search and
sequence similarity search), visual analytics tools and various
files and data sets available for download in the Supplementary
Materials.

Systematic analyses of drug repositioning
investigations

Using the compendium of curated, nonredundant lists of drug
repositioning examples, we performed extensive analyses to
identify underlying properties that facilitate successful drug re-
positioning. Chemoinformatics features of the small molecules
were computed using OpenBabel, Pybel [31], JOELib, JOELib2 [32–
36] and Chemminer [35] services and custom Python and R
scripts.

Pharmacological properties of small molecules in RepurposeDB
The small molecule analyses use the subset of small molecules
in RepurposeDB (n ¼ 188) after excluding protein drugs (n ¼ 65).
We observed that repurposed drugs from 19 different drug
superclasses are represented in RepurposeDB (v2, P < 0.001).
Physicochemical features and chemical descriptors were com-
puted using three different libraries and computed using SDF
files. SDF files were also used for visual exploration of chemical
structures in RepurposeDB. Precomputed chemical features
using ChemAxon (https://www.chemaxon.com), absorption,
distribution, metabolism, excretion and toxicity (ADMET) prop-
erties were aggregated from DrugBank.

Physicochemical features, chemical descriptors and ADMET values
We have compiled the physicochemical features computed
using ALOGPS [37] and ChemAxon algorithms (https://www.
chemaxon.com; see Supplementary Data: RepurposeDB_
ChemicalProperties.xlsx). A total of 112 properties were com-
puted using three different chemoinformatics libraries (Pybel,
JOELib2 and Chemminer; see Supplementary Data:
RepurposeDB_ChemicalProperties.xlsx).

ADMET data can help in filtering of individual small mol-
ecules as potential lead candidates for drug development [38].
We aggregated the predicted ADMET data from DrugBank and
assessed whether repositioned drugs have any significant dif-
ference when compared with the approved drugs or compound
repertoire in DrugBank.

Chemogenomic enrichment analysis of small molecules in
RepurposeDB using Chemogenomic method
Chemogenomic enrichment analysis (CGEA) is a methodology
(Manuscript in Preparation) that compares drug compounds
with a variety of biological and chemical annotations similar to
gene set enrichment analysis [39], metabolite set enrichment
analysis [40] or compound set enrichment analysis [41]. We
used a subset of 94 drugs from RepurposeDB to perform CGEA
analysis (see Supplementary Data: RepurposeDB_CGEA.xlsx).
Briefly, CGEA maps drug compound lists and genes to various
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annotation resources including gene sets, chemoinformatics
annotations, drug targets, side effects and drug classes. It tests
for over- and under-enrichment across various annotations and
provides detailed enrichment results with ranked list of com-
pounds, genes and annotation terms. CGEA facilitates interpret-
ation of the ranked list of compounds that have been prioritized
by similarity/dissimilarity between their transcriptional profile
and a profile of interest.

Chemical ontology enrichment analysis of small molecules in
RepurposeDB using BiNChE
We tested the compounds in RepurposeDB across both ‘struc-
ture’ and ‘role’ subsets of ChEBI ontology, which is a knowledge
corpus of chemical compounds with biological roles [42]. A total
of 145 compounds from RepurposeDB were mapped to ChEBI
database. Lists of compounds mapped from RepurposeDB were
tested against ChEBI ontology to understand biochemical prop-
erties of repositioned compounds using BiNChE [43] (see
Supplementary Data: RepurposeDB_BinChe.xlsx).

Functional and pathway enrichment analysis

Gene ontology (GO) enrichment analyses were performed to
identify significant categories of biological processes, molecular
functions and cellular components associated with drug targets
of repositioned compounds. Various protein-level enrichment
analyses were performed using annotations from various
protein-centric databases like Uniprot [44], Pfam [45], Structural
Classification Of Proteins (SCOP) [46] and CATH [47]. Pathway
enrichment analysis was performed using annotations from
Reactome [48] and KEGG [49]. Biological functional enrichment
and pathway enrichment analyses were performed using
Enrichr [50] and DAVID [51]; both tools were used with the list of
genes from the standard reference genome or the canonical list
of proteins from human proteome as the back ground for en-
richment tests. A Bonferroni threshold for multiple testing was
defined to find statistically significant terms enriched among
the target list.

Enrichment analysis using DAVID
We used the DAVID bioinformatics software package to test the
functional association of drug targets in RepurposeDB with vari-
ous annotation lists (listed in the Supplementary Materials;
also, see Supplementary Data: RepurposeDB_DAVID.xlsx). We
found statistically significant enrichments after multiple testing
corrections for all except one-annotation resource (SCOP_
CLASS).

Enrichment analysis using Enrichr
We used Enrichr (http://amp.pharm.mssm.edu/Enrichr/) to test
for enrichment of targets in RepurposeDB using 56 gene lists.
After multiple testing correction, 26 lists (listed in the
Supplementary Materials; see Supplementary Data:
RepurposeDB_Enrichr.xlsx) had significantly enriched annota-
tions associated with list of targets in RepurposeDB.

Consensus pathway analysis using Consensus
Pathway Annotations
Target proteins in RepurposeDB were tested for pathway-level
enrichment using Consensus PathDB (CPDB) [52]. CPDB offers
pathway enrichment over 4593 pathways integrated from 32 re-
sources (see Supplementary Data: RepurposeDB_CPDB.xlsx). We
defined pathway cross talk using pathway enrichment analyses
results from CPDB. For example, the gene ADRA2A is part of the

Reactome pathway ‘Adrenaline signalling through Alpha-2 ad-
renergic receptor’ and the drug target can bind and induce
mechanistic action (inhibition or activation) via multiple drugs
(apomorphine, aripiprazole, brimonidine, bromocriptine, guan-
facine, phentolamine, pramipexole and ropinirole). Three tar-
gets (ADRA2A, ADRA2B and ADRA2C) from RepurposeDB are
mapped to this pathway (P ¼ 1.87E-05). Targets of aripiprazole, a
drug that treats several psychiatric disorders, are enriched
across 64 pathways. Targets of drugs like bromocriptine (men-
strual problems, Parkinson’s disease and pituitary tumors),
phentolamine (hypertension and impaired night vision), lapati-
nib (various cancers), bivalirudin (various cancers), arsenic
(syphilis and leukemia), pemetrexed (lung cancer and meso-
thelioma), imatinib (chronic myeloid leukemia and gastrointes-
tinal stromal tumor), sunitinib (various cancers), sorafenib
(melanoma and various cancers), midazolam (seizure and epi-
lepsy), nabumetone (rheumatoid arthritis and osteoarthritis),
aminosalicylic acid (Crohn’s disease and ulcerative colitis), cele-
coxib (rheumatoid arthritis and various cancers), duloxetine
(fibromyalgia and major depressive disorder), lenalidomide
(various cancers), mazindol (obesity and Duchenne’s muscular
dystrophy) and methylphenidate (eating disorder and atten-
tion-deficit hyperactivity syndrome) are all associated with >10
pathways (all observations P�0.001).

Disease analysis of a compendium of 1125 diseases targeted by
repositioned drugs
The relationship between diseases that are significantly comor-
bid is unexplored in the realm of drug repositioning. It remains
unclear whether multiple indications of a drug are typically ac-
tive because the diseases manifest as a comorbid condition in a
population setting than random, such that a given heteroge-
neous patient population have higher prevalence a particular
disease pair. Recent demonstrations of EMR-based phenomic
analyses exemplify the secondary use of EMR data as a proxy
for epidemiological observational studies to quantitatively esti-
mate disease comorbidities using relative risk or standardized
incident rates [53–55]. By consolidating data from RepurposeDB
with publicly available genomic annotation databases and dis-
ease comorbidity data extracted from EHR, we tested whether
shared genetic architecture or co-occurrence of comorbidity a
pair of disease could assist in rational drug repositioning. We
have also quantified the similarity between a pair of diseases
using semantic similarity calculation using DO and HPO [56, 57].
To perform the disease analyses, individual disease terms from
RepurposeDB were manually curated and mapped to the corres-
ponding ICD-9 codes, HPO terms and DO terms. ICD-9 codes
were used to aggregate EHR data and compute disease co-
occurrences. Disease terms were used to compute shared
genetic architecture (SGA), and both HPO and DO terms were
used to compute semantic similarity of diseases.

Pair-wise disease comorbidity analyses using diagnosis data
compiled from electronic health records
Manifestations of complex illnesses such as type 2 diabetes [58],
peripheral arterial disease [59] or heart failure [60] often present
with comorbid conditions in patient subpopulations. Estimating
pair-wise disease comorbidity using EMR-wide disease preva-
lence data would help to understand whether drug reposition-
ing is successful across two diseases if they are comorbid in
patient population. To test this, we used data contained in the
Mount Sinai Data Warehouse (MSDW) for disease co-occurrence
analyses (https://msdw.mountsinai.org). MSDW hosts data
from a large, tertiary care teaching hospital in the Greater New
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York City area. Health care and biomedical data from MSDW
offer one of the most ethnically diverse, urban patient popula-
tions in the world (see: https://msdw.mountsinai.org/) because
of the unique location of Mount Sinai Health System and affili-
ated hospitals. The MSDW, which houses all the clinical data,
currently, has 2 125 468 unique patients (as of February 2015)
with a minimum of one encounter, >16 million patient visits re-
corded, �1.7 billion patient encounters and >46 515 678 ICD-9-
coded diagnoses documented. These >2 million patients were
stratified by gender and self-reported ethnicity. For gender, the
patient population consists of: 2 263 195 females (56.09%),
1 753 120 males (43.45%) and 18 609 other/unknown (0.47%). For
self-reported ethnicity, the breakdown is as follows: 337 149
African American (8.36%), 92 447 Asian (2.29%), 943 742
Caucasian (23.38%), 363 447 Hispanic/Latino (9.01%), 6821 Native
American (0.17%), 2103 (0.05%) Pacific Islander, 420 351 other (10.
41%) and 1 868 864 unknown (46.32%). Within the MSDW, dis-
ease information is stored as ICD-9 codes. We used DO to map
disease indications from RepurposeDB to ICD-9 codes, and we
successfully mapped 887 unique disease terms to at least one
ICD-9 code. Using these data, we performed comorbidity enrich-
ment analysis between all unique combinations of primary and
secondary indications per drug, resulting in 2970 total tests. To
determine comorbidity enrichment, we performed a one-sided
Fisher’s exact test comparing the number of instances of which
a patient had both the primary and secondary disease with the
number of instances of each disease separately to background of
total patients in the EMR. To reduce the testing space, we re-
stricted our disease pairing using a directional estimate of pri-
mary disease and the secondary and orphan disease pairs (see
Supplementary Data: RepurposeDB_EHR_SGA.xlsx). It should be
noted that some of the associations indicate inherent relation-
ships across diseases observed in EMR. For example, both pedi-
atric manifestation and adulthood form of the disease capture
in EMR (e.g. juvenile growth hormone deficiency and adult
growth hormone deficiency). Examples of disease recurrence as
chronic presentation and acute disease or vice versa (e.g. acute
intestinal amebiasis and chronic intestinal amebiasis) are also
considered in our analyses without predicates (‘chronic’ or ‘re-
current’). Relative risk is computed using a number of patients
diagnosed with both diseases and random expectation based on
disease prevalence method explained in Hidalgo et al. [61, 62].

Genetic architectures shared between diseases treated by same drug
Emerging evidences indicate that disease and related clinical
phenotypes could be driven by SGA [63]. For example, Li et al.
[64] showed that a routinely measured laboratory test (mean
corpuscular volume) was elevated in patients with acute
lymphoblastic leukemia before the diagnosis; these two pheno-
types shared a subset of genes and defined as the molecular
basis of shared genetic architecture across clinical traits and
diseases. Recently, we have discovered 19 novel disease rela-
tionships by leveraging disease comorbidities with genetic
architectures [53, 64, 65]. We have compiled a list of disease–
gene association data from various resources including Online
Mendelian Inheritance in Man [66], GWAS-catalog [67],
GWASdbv2 [68, 69] HuGENavigator [70] and a proprietary data-
base built through text mining and manual curation (VarDi). We
were able to map 755 diseases from RepurposeDB (67% of indi-
cations) to VarDi by mapping variants at the gene level using
CUI codes as a bridge. We performed an identical Fisher’s exact
analysis, as in the previous section, to test the significance of
shared genes between diseases (see Supplementary Data:
RepurposeDB_EHR_SGA.xlsx).

Phenomic similarities of primary and secondary
indications in RepurposeDB

There has been a wide range of semantic measures developed
for information extraction from diverse ontologies and struc-
tured data in the fields of bioinformatics, natural language pro-
cessing, artificial intelligence and the Semantic Web [71, 72]. We
first used an experimental approach to evaluate which of the
measures are most robust for evaluating human phenotype
ontologies (DO and HPO). Semantic measures of concept set
similarity use combinations of multiple methods to character-
ize different ontology scales (i.e. from quantifying information
content of a single node to summarizing the similarity between
multiple pairs of nodes that were individually scored by a separ-
ate metric). We tested several distinct ontology evaluation
methods including: (1) single node evaluation of intrinsic infor-
mation content measures (three methods), (2) similarity of pairs
of two nodes (three methods based on node set, three based on
node information content and two based on edges), (3) group
similarity of measures of pairs (five methods) and (4) group
similarity of measures of many individual nodes (two methods
based on connectivity and two methods based on information
content). We generated 128 full combinatorial group similarity
metrics by implementing each possible dependency combin-
ation. Semantic similarity of pair of diseases was computed
using the Java-based Semantic Measures Library and Toolkit
(SMLTK) [73]. Using SMLTK, 128 similarity scores of indications
for each drug. We performed a transitive reduction and rerout-
ing on both ontology hierarchies to maintain the network ex-
tensibility while eliminating potential biases in the depth of
classification used for different phenotypes. We ranked each
metric for robustness based on correlation between similarity
scores in both phenotype ontologies for the 101 drugs with mul-
tiple indications. We evaluated the effect of the number of
existing drug indications on similarity score by using an ana-
lysis of variance (ANOVA) test and found that different indirect
methods are significantly biased in each direction. For specific
applications within drug repositioning, these different indirect
metrics provide different insights into the drug indication plei-
otropy. For this initial study on semantic similarity to character-
ize drugs indication diversity and repurposing potential, we
used an average of the most robust indirect metrics for each as-
pect of indication set similarity (the top measure of indication
diversity, the top measure of indication clustering density and
the top measure of balanced indication similarity; see
Supplementary Data: RepurposeDB_Disease_PhenomicSimilar
ity.xlsx).

Reconstruction and analyses of repurposed drug–drug, drug–food
and drug–target interaction network
Various factors influence repositioning strategies including side
effects, network properties of the drug–targets, potential food–
drug interactions [74, 75] and drug–drug interactions [76, 77].
We used the list of 298 proteins mapped to GeneMANIA [78, 79]
as the query to understand putative interactions mediated by
the target proteins of repositioned drugs and to generate two
functional networks: the first using drug targets of repurposed
compounds (Seed Functional Network) and the other network
for finding targets that are functionally close to known repos-
itioning targets from human protein interactome databases
(Expanded Functional Network; see Supplementary Data files:
RepurposeDB_Drug_Food_Target_Networks.xlsx and Repurpose
DB_SFN_EFN_NA.xlsx). We provide details about the construc-
tion of the chemical similarity network, drug–target bipartite
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network, Seed Functional Network of targets, expanded func-
tional network for novel drug target discovery and drug–drug
interaction network of repositioned drugs in the Supplementary
Materials. Drug–target networks were reconstructed using direct
or inferred interactions derived from reference databases. We
computed and visualized the chemical similarity network using
chemical similarity distance computed using Tanimoto coeffi-
cients [80, 81].

Statistical analysis

Statistical analyses were performed using JMP 11 (SAS Institute
Inc., Carey, NC) and R language (R Foundation for Statistical
Computing, Vienna, Austria). Student’s t-test was used as ap-
propriate to assess difference between two groups. Statistical
significance was set at P < 0.05, using two-tailed distribution
and two-sample equal/unequal variance. Three group compari-
sons were performed using two-way ANOVA. All enrichment P
values were reported after multiple testing corrections using de-
fault setting of the respective analytical applications; corrected
P-value threshold of P < 0.05 was used to define significance. No
directionality is assumed during the enrichment analyses, net-
work analytics or statistical testing. DrugBank is a compendium
of all drugs ever marketed. However, some of these drugs could
be retracted (because of safety or other post-market surveil-
lance issues) or purged (e.g. because of patent issues). We used
the entire DrugBank (designated as DrugBank-F) and a subset of
DrugBank (designated as Drug Bank-A) with current approval
status at the time of writing this manuscript in 2016 as our
background set for various statistical comparisons. The ration-
ale for this division is to test how the subset of repurposed
drugs compare on not only the entire marketed but also the cur-
rently available drugs in the market. Our approach would also
help to measure for bias, as the repurposed drugs are highly
reused because they are also approved. By performing analyses
in two levels, we will be able to control or adjust for such know-
ledge or market bias. For all annotation-based enrichment ana-
lyses, we have tested the enrichment across the human
genome and human proteome to balance such biases.

Results
Building a reference data set of repositioned drugs,
targets and diseases

Organization and content of the RepurposeDB database
The current release of RepurposeDB (v1; as on 30 March 2016)
contains 253 drugs, 1125 indications and 3660 data triples. The
triples in RepurposeDB are annotated using 302 different biomed-
ical and health care ontologies from NCBO-BioPortal (http://bio
portal.bioontology.org/). We integrated 36 332 annotations using
pan-ontology approaches, thus making RepurposeDB one of the
most richly annotated biomedical reference databases currently
available in the public domain. We organized and compiled
RepurposeDB using ‘Drugs’ (n ¼ 253) and ‘Disease’ (n ¼ 1125) entry
pages. Users can access individual pages by browsing or search-
ing the database using the indexed keyword dictionary or search
terms. We provide a detailed technological overview of the data-
base development and various features (Figure 2) including tools
for data visualizations and similarity searches (compound, drug
target and protein–drug similarity) in the Supplementary
Materials. RepurposeDB drugs with approval status from FDA
consist of 84% small molecules and 16% biotech drugs (or protein
drugs). Specific chemical classes have enrichment of repurposed

compounds and depletion across others. For example, the drug
superclasses like heterocyclic compounds, phenylpropanoids and
organooxygen compounds have >10 drugs in RepurposeDB, rep-
resenting around 39.5% of the compounds. The following super-
classes had no representative drugs reported: lignans and
norlignans, homogeneous metal compounds, organic halides, or-
ganometallic compounds and non-benzenoid aromatic com-
pounds (tropones; see Figure 3 and Supplementary Data File for
complete data: RepurposeDB_ChemicalProperties.xlsx).

Minimum Information about Drug Repositioning Investigations
We propose MIADRI (see http://repurposedb.dudleylab.org/
MIADRI) as a new standard for drug repurposing investigators to
report their results to the community. We developed a dedicated
interface to submit information about a new drug repositioning
study not included in RepurposeDB. The absence of a common,
community standard in reporting, aggregating and disseminating
data hinders the impact of drug repositioning investigations and
discovering new therapeutic indications for existing pharmaceut-
ical agents. Submissions to RepurposeDB shall follow the MIADRI
guidelines. We envisage that MIADRI will help in rapid aggrega-
tion and meta-analyses of drug repositioning investigations over
the years. We further describe the various features and require-
ments of the new guidelines aiming to capture and reuse data
from future drug repurposing investigations in the Supplementary
Materials (also, see Supplementary sections under RepurposeDB—
design and development, RepurposeDB—features, Submission of
new drug repositioning investigations to RepurposeDB using
MIADRI standard and Supplementary Table S1).

Pharmacological, biological and epidemiological factors
of drug repurposing

Each entry (drug or disease) in RepurposeDB includes a drug
(small molecule, bioactive, etc.), its primary and secondary dis-
ease indication and the PubMed identifier that reported the in-
vestigation. We aggregated various metadata to this list using
the drug name as a query term input to other databases to re-
trieve mechanism of actions, biophysical and biochemical prop-
erties, side-effect profiles and target information. Drug
compounds were assessed for statistical enrichment of various
small molecule-related properties relative to all compounds
(DrugBank-F; n ¼ 7759) and approved subset (DrugBank-A;
n ¼ 1673) of compounds in DrugBank. We assessed the target
proteins of repositioned compounds to find significantly en-
riched GO terms (biological processes, cellular compartment
and molecular functions), gene sets and pathways. We have
compiled data from three types of disease analyses: (1) disease
comorbidities, (2) shared genetic architecture and (3) semantic
similarity of diseases. Semantic similarity of diseases was com-
puted using the two previously described disease ontologies.

Pharmacological profiling of small molecules in
RepurposeDB

Integration of chemoinformatics and genomic (chemogenomic)
approaches accelerates the drug target discovery cycle and the
prioritization of new indications for existing or orphan com-
pounds [82, 83]. Combining biological (genomic, proteomic and
metabolomics) and chemical knowledge of the structure, activ-
ity and pharmacokinetic properties has been shown to provide
better approaches for prediction and validation of new drug tar-
gets and aid in designing chemical entities against targets with
functional roles [84, 85]. It is unclear, however, whether
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repositioned compounds share similar chemical features, de-
scriptors or ADMET properties. To answer these questions, we
evaluated various physicochemical characteristics (e.g. bond
matrices of compounds, number of hydrogen donors and num-
ber of hydrogen acceptors) in RepurposeDB and compared them
with the DrugBank-F and DrugBank-A. The subset of drug com-
pounds (small molecule subset excluding protein or biotech
drugs; n ¼ 188) in RepurposeDB was analyzed to understand
various physicochemical features, chemical descriptors and
ADMET properties. We tested the RepurposeDB compounds for
enrichment across various chemogenomic annotations using
chemogenomic enrichment analyses (CGEA) and ontology-
based enrichment analyses using ChEBI ontology.

Physicochemical features associated with repurposed compounds
We noted that mean values of various physicochemical features
were different for repositioned compounds when compared
with DrugBank-F and DrugBank-A. Mean values were lower
than approved drugs for eight features (logP, logS, refractivity,
polarizability, pKa [acidic], pKa [basic], physiological charge and
the number of rings). Mean values were higher than approved
drugs for hydrogen bond donor count suggesting a greater num-
ber of hydrogen bonds could contribute to the pluripotent drug–
target binding mechanism across multiple disease phenotypes
(Table 1; also, see Supplementary Data: RepurposeDB_
ChemicalProperties.xlsx).

Chemical descriptors of repurposed compounds
We compiled a library of 110 chemical descriptors and identified
a subset of 27 features significantly associated with drug

repositioning. This library of descriptors includes different
chemical classes including atomic, compositional and geomet-
ric descriptors (see Supplementary Data: Supplementary Table
S2 and RepurposeDB_ChemicalProperties.xlsx).

ADMET properties
Nineteen different ADMET properties (listed in the Supplementary
Materials) were extracted from DrugBank and compared against
DrugBank and DrugBank-A (see Supplementary Data: RepurposeDB_
ChemicalProperties.xlsx). Nine properties were significantly associ-
ated with RepurposeDB compounds (see Supplementary Data:
Supplementary Table S3 and RepurposeDB_ChemicalProperties.
xlsx).

Chemogenomic and side-effect enrichment analysis using CGEA
We used chemogenomic enrichment analysis (CGEA) package
to analyze compounds in RepurposeDB to understand enrich-
ment using a combined database of biochemical or genomic
annotations (see Supplementary Data File: RepurposeDB_
CGEA.xlsx). Two enzymes metabolize multiple repositioned
drugs: CYP3A7 can metabolize 19 drugs, and CYP3A5 can me-
tabolize 18 drugs, suggesting that enzymatic activity and
metabolic modulation could be used as a possible feature of
predicting drugs capable of drug repositioning. We observed
that drug transporter genes including ABCC10, ABCB11 and
ABCG2 were associated with the transport of multiple repos-
itioned compounds, suggesting a vital role of drug transporters
and their nonspecific binding affinity as a putative factor to
assess the repurposability potential of a compound.
Enrichment tests across different levels of Anatomical

Figure 1. Curation, mapping and analytics strategy of RepurposeDB. (A) Biocuration strategy leveraged to develop RepurposeDB. (B) Terminology mapping strategy

used to compile disease dictionaries. (C) Analytics framework for analyzing medications (small molecules and biotech), drug targets, diseases and networks (drug–tar-

get, seed functional target network, expanded functional target network, drug–drug and drug similarity network).
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Figure 2. Database interface and features of RepurposeDB. (A) Web interface of RepurposeDB. (B) Plotting utility to compare and map various chemoinformatics fea-

tures (n¼112) and display on an interactive plot. (C) Web-based visualization to view drug–disease bipartite network. (D) Search service to compare a given small mol-

ecule in SMILE format across repositioned compounds in RepurposeDB using Tanimoto distance.

Table 1. Chemical features of repositioned drugs

Feature DrugBank-F DrugBank-A RepurposeDB P*

LogPa 1.58 2.104 1.54 <0.001
Logsa �3.137 �3.492 �3.119 0.003
Molecular weight 350.632 378.692 372.178 0.065
Monoisotopic weight 350.298 378.317 371.178 0.065
PSA 101.248 90.064 104.634 0.059
Refractivity 90.552 99.505 97.138 0.017
Polarizability 34.935 38.182 37.97 0.019
Rotatable bond count 5.65 5.66 5.12 0.43
H-bond acceptor count 5.197 4.931 5.734 0.224
H-bond donor count 2.75 2.246 2.713 0.018
pKa (strongest acidic) 8.08 9.501 9.453 <0.001
pKa (strongest basic) 2.627 4.008 3.659 <0.001
Physiological charge �0.195 0.209 0.144 <0.001
Number of rings 2.442 2.814 2.663 0.003

Note. aFeature computed using ALOGPS, other features computed using ChemAxon (all values presented as mean). DrugBank-F¼DrugBank Full; DrugBank-

A¼Approved subset of DrugBank.

*Two-way ANOVA of feature across presence in RepurposeDB and approval status.
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Therapeutic Chemical (ATC) Classification System (http://
www.whocc.no/atc_ddd_index/) revealed that repositioned
compounds are enriched for two features in ATC-3 levels (sto-
matological preparations and immunosuppressants) suggest-
ing switching between formulation types (e.g. reformulation of
a topical to systemic glucocorticoids) could represent new av-
enues for potential drug repositioning.

Using CGEA, we assessed the enrichment of side effects
using the OFFSIDES database to understand the set of side ef-
fects associated drug repositioning (http://tatonettilab.org/re
sources/tatonetti-stm.html). Common side effects including
pain, nausea and altered mental status could act as a proxy for
multisystem interactions, and indicate repurposability. The
most frequent molecular fragment in cMAP, c1ccccc1 (present
in 354 of 1309 drugs), is under-represented in this subset sug-
gesting compounds without the chemical moiety could be more
likely to repositionable (Table 2; also, see Supplementary Data
File RepurposeDB_CGEA.xlsx).

Chemical ontology enrichment analysis
We have identified a set of 29 chemical ontology terms
(Figure 4A and Table 3) associated with repositioned drugs
(see Supplementary Data: RepurposeDB_BinChe.xlsx). Drugs
annotated with pyrimidine 20-deoxyribonucleoside, deoxy-
ribonucleoside and nucleoside have �10-fold enrichment
among repositioned drugs. Furthermore, repositioned drugs
are enriched for hetero-organic chemical entities containing,
at least, one carbon–nitrogen bond (organonitrogen com-
pound, pnictogen molecular entity, nitrogen molecular en-
tity and organonitrogen heterocyclic compound).
Compounds were also enriched for terms indicating com-
pounds with one carbon–halogen bond (heterocyclic com-
pound, organic cyclic compound, cyclic compound, hetero-
organic entity, organohalogen compound and organic amino
compound).

A new rule for drug repurposability
By compiling various physicochemical properties of small mol-
ecules, we compared the trends of compounds in
RepurposeDB within the range of features used to defined
‘drug likeness’ or mass-logP space. A popular drug likeness es-
timation method, ‘Lipinski’s Rule of 5 (RO5)’, [86], can estimate
whether a compound is suitable for drug development using a
set of five chemical features. Lipinski’s rule of drug likeness is
defined using the parameters and the range as follows: parti-
tion coefficient (computed; logP ¼ �0.4 toþ 5.6), molar refrac-
tivity (MR ¼ 40–130), molecular weight (MW ¼ 180–500),
number of atoms (NA ¼ 20–70) and polar surface area
(PSA�140 Å). Data from RepurposeDB suggest an equivalent
molecular code could be used to predict drug repositioning po-
tential. Computed physicochemical properties of compounds
in RepurposeDB are in the following ranges: logP ¼ 0.655–1.581,
MR ¼ 87.7–106.83, MW ¼ 365–399, NA ¼ 43–52 and PSA ¼ 96.7–
127. Leveraging this new rule of drug repurposability and as-
sessing compounds in the physicochemical feature ranges rep-
resent the suboptimal space of compounds for repurposing for
a different indication.

Combinations of features can also be used to prioritize of
small molecules for drug development. For example, the correl-
ation of determination of molecular mass (MW) and logP was
defined as the ‘sweet spot’ [87] in compound space with an
average molecular mass of 458.6 Da and average cLogP of 4.0.
The results from chemoinformatics feature analytics suggest
that compounds in RepurposeDB have higher correlation of
MW-LogP (R2 ¼ 0.569, n ¼ 188) compared with the compounds
from DrugBank-A (R2 ¼ 0.328, n ¼ 1673), DrugBank-F (R2 ¼ 0.410,
n ¼ 7759) or compounds in Chemical Genomic Enrichment
Analysis (CGEA) database (R2 ¼ 0.527, n ¼ 640; all observations
P < 0.01; see Figure S). Multiple studies have reported various
physicochemical properties of small molecule libraries and fea-
tures including molecular mass, logP and number of atoms in a
pharmacophore as key factors indicating the drug likeness of
small molecules [88].

Table 2. Top 20 side effects associated with repositioned drugs

Side effects Expected Observed* Pa Adjusted Pb FC

Pain 13.86 51 5.09E-21 1.24E-17 3.68
Nausea 13.86 51 5.09E-21 1.24E-17 3.68
Mental status changes 11.27 44 9.98E-19 1.63E-15 3.90
Nephrolithiasis 7.90 37 1.92E-18 2.34E-15 4.68
Abdominal discomfort 13.28 47 3.16E-18 3.09E-15 3.54
Aching joints 12.35 45 7.12E-18 5.80E-15 3.64
Dental abscess 8.47 37 2.99E-17 2.09E-14 4.37
Sinusitis 11.71 43 4.18E-17 2.55E-14 3.67
Periodontal disease 5.96 31 8.28E-17 4.05E-14 5.20
Diverticulum 8.69 37 7.83E-17 4.05E-14 4.26
Fatigue 14.36 47 1.11E-16 4.95E-14 3.27
Demyelination 13.79 46 1.26E-16 5.15E-14 3.34
Hypophagia 8.33 36 1.41E-16 5.29E-14 4.32
Loose tooth 6.53 32 1.86E-16 6.48E-14 4.90
Emesis 14.58 47 2.17E-16 7.08E-14 3.22
Anemia 20.11 55 3.04E-16 9.28E-14 2.74
Cellulitis 13.50 45 3.52E-16 1.01E-13 3.33
Abscess drainage 6.25 31 4.09E-16 1.11E-13 4.96
Atelectasis 11.92 42 6.65E-16 1.62E-13 3.52
Neuropathy peripheral 12.50 43 6.50E-16 1.62E-13 3.44

Note. aFisher test. bBenjamini–Hochberg test FC¼fold-change.

*Tested using 94 compounds in RepurposeDB that mapped to Connectivity Map.
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Biological function associations and pathway
enrichment analysis of drug targets in RepurposeDB

Drugs in RepurposeDB were mapped to a target space of 305
targets genes/proteins using annotations from DrugBank.
Enrichment analyses [89] using gene set and protein set
databases revealed unique and shared functional mechanisms,
molecular modules and pathways mediating drug
repositioning.

Genomic features of drug repurposing
Targets in RepurposeDB were used to test for enrichment
analysis of 56 different gene sets that span gene regulation,
epigenetics, protein–protein interactions, GO terms, clinical
or cellular phenotypes, functional annotations from gene set
databases (GenSigdb, MSigdb, CCLE, etc.) protein expression
and metabolomics databases. The enrichment associations
show the relationship between repurposed drug targets with
genomic elements (transcription factor binding sites and his-
tone methylation patterns), protein annotations (signaling
perturbations, protein complexes, protein–protein inter-
action networks), GO terms, phenotypes, pathways and tis-
sues. After multiple testing correction, 26 reference gene sets
had significantly enriched annotations associated with

targets in RepurposeDB (see Supplementary Data File:
RepurposeDB_Enrichr.xlsx).

Transcriptional regulation of drug repurposing
We identified several transcription factors (SUZ12, MTF2, EGR1,
BACH1, SOX2, AR, JARID, RELA, HNF4A, TCF4, YAP1, LEF1,
KLF11, KLF4, NFKB, CBEPA, MIB2, STAT3 and REST) as the com-
mon targets of repositioned drugs. Drugs (Supplementary
Figure S2) that can regulate these transcription factors suggest
the downstream gene expression changes could lead to a
pluripotent effect (Figure 4B and Table 4; also, see
Supplementary Data File: RepurposeDB_Enrichr.xlsx). We
noted significant enrichment of various biological functions
including regulatory, metabolic and transport processes
among the targets of repurposed compounds. We observed
significance for ligand binding, transmembrane receptors and
signaling events associated with the drug targets. We also
noted enrichment of cellular components including trans-
membrane regions, extracellular regions and different protein
complexes (ion channel, chloride channel, sodium channel,
acetylcholine-gated channel and N-methyl-D-aspartate select-
ive glutamate receptor).

Figure 3. Biochemical composition of medications in RepurposeDB a) Approval status b) Molecular types of medications in RepurposeDB c) Super-Classes of small mol-

ecules in RepurposeDB d) Distribution of units by which repositioned drugs are marketed e) Mode of drug-target interactions in RepurposeDB.
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Epigenetic factors controlling repurposed drug targets
Epigenetic control of genomic region could help in developing
novel therapies. However, direct evidence on how epigenetic
factors may influence drug repositioning is unclear [90]. In total,
52 different data sets from ENCODE project (https://www.enco
deproject.org/) have enrichment for the drug targets from
RepurposeDB. For example, H3K27me3, a common methylation,
had 69.23% of methylations in multiple tissues, suggesting that
genes repressed by EZH2 may mediate an epigenomic target for
drug repositioning. Among the remaining methylation indica-
tors, H3K4me1 is associated with 19.23% of methylation in 10
cell lines or tissue types and H3K9me3 with four cell lines
(CD14-positive monocyte, G1E-ER4, G1E and skeletal muscle
myoblast), H3K4me3 with limb and H4K20me1 with H1-hESC
(Supplementary Table S4; also, see Supplementary Data File:
RepurposeDB_Enrichr.xlsx).

Repurposed drug targets are enriched across the circulatory system
Plasma, platelets, blood, placenta and liver have higher tissue-
specific enrichment for the targets of repurposed drugs.
Repurposed drugs may induce multiple effects. Drugs targeting
the circulatory systems offer the convenience of perturbing
other organ systems and, thus, may improve the polypharma-
cological impact of repurposed drugs [91].

Proteomic features of drug repositioning
We identified enrichment of protein annotation terms across 15
databases. Annotation enrichment using disease association
data indicates that targets of repositioned compounds have

associations with psychiatric and cardiovascular diseases.
Repurposed drugs have enrichment for protein sequence fea-
tures like G-protein coupled receptors (GPCRs), transmembrane
regions, binding sites for adenosine triphosphate/carbohy-
drates, receptors, disulphide bonds, signal peptide, glycosyla-
tion sites, DNA-binding regions and zinc finger. Enrichment for
hallmark molecular drug target classes including GPCRs, neuro-
transmitters, ion channels, kinases, acetylcholine receptors and
nuclear hormone receptors was significant [88, 92–94].
Functional or chemical screenings of the proteins with
repurposing-specific sequence and structural features are likely
to yield compounds that could modulate various diseases (see
Supplementary Data: RepurposeDB_DAVID.xlsx).

Conserved sequence domains encoded in repurposed drug targets
Conserved protein domains play a pivotal role in mediating
function across various pathways and play a vital role in media-
ting functional and interaction promiscuity across protein fami-
lies and aid in polypharmacology including drug repositioning
[95]. We have also noted significant enrichment for protein se-
quence domains like ligand-binding domain of hormone recep-
tors (HOLI domain), c4 zinc finger in nuclear hormone receptors
(ZnF_C4 domain) and metal-dependent phosphohydrolases
with conserved ‘HD’ motif (metal-dependent phosphohydro-
lases with conserved ‘HD’ motif; HDc domain) [96]. The human
proteome contains 142 proteins with HOLI domains, 169 pro-
teins with ZnF_C4 domains and 85 proteins with HDc domains
(Supplementary Figure S3). HOLI and ZnF_C4 domains are hall-
mark features of a variety of receptors including members of

Table 3. ‘Structure’ and ‘Role’ terms from Chemical Entities of Biological Interest (ChEBI) ontology associated with repositioned drugs

ChEBI_ID ChEBI_Name Pa Adjusted Pb FC

CHEBI:19255 Pyrimidine 2’-deoxyribonucleoside 9.22E-06 1.36E-04 77.40
CHEBI:23636 Deoxyribonucleoside 4.35E-09 1.41E-07 47.85
CHEBI:33838 Nucleoside 2.18E-07 5.05E-06 10.70
CHEBI:35789 Oxo steroid 8.48E-06 1.31E-04 8.03
CHEBI:21731 N-glycosyl compound 7.69E-07 1.46E-05 7.83
CHEBI:50996 Tertiary amino compound 2.55E-07 5.70E-06 7.68
CHEBI:23132 Chlorobenzenes 1.60E-06 2.87E-05 6.36
CHEBI:26912 Oxolanes 2.11E-05 2.89E-04 6.06
CHEBI:29347 Monocarboxylic acid amide 1.60E-05 2.29E-04 5.53
CHEBI:36684 Organohalogen compound 9.89E-14 9.14E-12 5.19
CHEBI:68452 Azole 2.14E-05 2.89E-04 4.81
CHEBI:22712 Benzenes 6.12E-08 1.52E-06 4.22
CHEBI:50047 Organic amino compound 1.21E-13 9.82E-12 3.85
CHEBI:25693 Organic heteromonocyclic compound 2.66E-10 1.11E-08 3.45
CHEBI:33661 Monocyclic compound 2.74E-10 1.11E-08 3.44
CHEBI:38101 Organonitrogen heterocyclic compound 1.01E-14 1.63E-12 3.07
CHEBI:33833 Heteroarene 4.58E-07 9.27E-06 3.00
CHEBI:33597 Homocyclic compound 2.63E-06 4.37E-05 2.80
CHEBI:35352 Organonitrogen compound 1.17E-19 7.59E-17 2.41
CHEBI:51143 Nitrogen molecular entity 3.15E-17 1.02E-14 2.15
CHEBI:33659 Organic aromatic compound 3.70E-08 9.96E-07 2.09
CHEBI:24532 Organic heterocyclic compound 9.89E-10 3.55E-08 2.04
CHEBI:5686 Heterocyclic compound 1.20E-09 4.07E-08 2.03
CHEBI:33832 Organic cyclic compound 9.14E-15 1.63E-12 1.94
CHEBI:33595 Cyclic compound 2.10E-14 2.72E-12 1.92
CHEBI:33302 Pnictogen molecular entity 5.00E-12 3.59E-10 1.77
CHEBI:72695 Organic molecule 3.81E-11 2.24E-09 1.56
CHEBI:25367 Molecule 6.17E-11 3.07E-09 1.55
CHEBI:33285 Heteroorganic entity 5.23E-14 5.64E-12 1.47

Note. aBinomial test. bBenjamini–Hochberg test FC¼fold-change.

*Tested using 145 compounds in RepurposeDB mapped to ChEBI database.
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steroid-thyroid hormone-retinoid receptor superfamily like
glucocorticoid, retinoic acid, nuclear and androgen receptor
molecules. HOLI domains, for example, are encoded in 20.21%
of peroxisome proliferator-activated receptor (PPAR) signaling
pathways [97]. PPAR pathways have several promiscuous drug
targets (e.g. berberine) that treat diseases including hypolipide-
mia and diabetes [98]. Around 63% of proteins involved in pur-
ine metabolism encode HDc domains. Inhibition of purine
metabolism is a primary pharmacological feature of azathio-
prine, a compound used for treating conditions such as trans-
plant rejection and autoimmune disorders (e.g. rheumatoid
arthritis and inflammatory bowel diseases) [99]. Exploring the
remainder of poorly characterized proteins encoded in human
proteome with ‘repositioned compounds associated protein do-
mains’ could be potential targets for future repurposing oppor-
tunities. Based on the sequence-based evidence, these proteins
could be preferentially prioritized targeted for developing com-
pounds with multiple indications.

Structural domains of repurposed drug targets
Drug discovery relies on crystallography experiments to under-
stand the structure, binding affinities and identifying pharma-
cophore moieties for precise ligand design. Nuclear receptor
ligand-binding domain and Kringle modules are enriched across

the repurposed drug targets. Both structural domains have
mechanistic roles in mediating multiple functional pathways
across human proteome and are targeted by ligands with vary-
ing degree of specificities [100, 101].

Pathway cross talks influence drug repositioning across
multiple diseases
Pathway cross talk is a biological phenomenon where the com-
ponents of a biological pathway (genes, proteins or small mol-
ecules) are shared across two or more pathways [24]. Pathway
cross talks are essential components of functional promiscuity
and, thus, may influence the success of drug repositioning
[6, 20, 102]. Targets in RepurposeDB were enriched for 336 path-
ways across 10 different pathway databases (Figure 4C; also, see
Supplementary Data: RepurposeDB_CPDB.xlsx; a subset of 30
highly enriched pathways listed in Table 5). After applying mul-
tiple testing threshold, pathways from 10 different pathway
databases were significantly enriched across the drug repos-
itioning target space: Small Molecule Pathway Database
(SMPDB) [103], n ¼ 97; Reactome[48], n ¼ 82; KEGG [49], n ¼ 50;
WikiPathways [104], n ¼ 37; BioCarta, n ¼ 25; Pathway
Interaction Database [105], n ¼ 20; PharmGKB [106], n ¼ 14;
HumanCyc [107], n ¼ 7; NetPath [107], n ¼ 5; and Signalink [107],
n ¼ 1. We define a drug target as a mediator of a pathway cross

Table 4. Gene ontology terms associated with targets of repositioned drugs

Term Overlap P*

Biological processes
Synaptic transmission (GO:0007268) 65/434 <0.001
Positive regulation of MAPK cascade (GO:0043410) 51/395 1.16E-21
Regulation of system process (GO:0044057) 48/371 1.22E-20
Behavior (GO:0007610) 55/494 4.63E-21
GPCR signaling pathway, coupled to cyclic nucleotide second messenger (GO:0007187) 35/153 2.53E-21
Single-organism behavior (GO:0044708) 46/362 1.57E-19
Response to drug (GO:0042493) 44/354 1.94E-18
Response to alkaloid (GO:0043279) 30/111 4.73E-20
Adenylate cyclase-modulating GPCR signaling pathway (GO:0007188) 30/122 3.57E-19
Regulation of amine transport (GO:0051952) 24/60 3.57E-19

Cellular components
Integral component of plasma membrane (GO:0005887) 106/1066 <0.001
Postsynaptic membrane (GO:0045211) 46/195 3.10E-29
Synaptic membrane (GO:0097060) 47/228 7.86E-28
Transmembrane transporter complex (GO:1902495) 49/286 5.50E-26
Transporter complex (GO:1990351) 49/291 7.36E-26
Ion channel complex (GO:0034702) 47/258 5.60E-26
Synapse part (GO:0044456) 53/395 6.44E-24
Receptor complex (GO:0043235) 41/272 6.22E-20
Chloride channel complex (GO:0034707) 19/50 3.47E-15
Side of membrane (GO:0098552) 28/235 3.30E-11

Molecular functions
Extracellular ligand-gated ion channel activity (GO:0005230) 39/74 <0.001
Ligand-gated channel activity (GO:0022834) 45/145 <0.001
Ligand-gated ion channel activity (GO:0015276) 45/145 <0.001
G-protein-coupled amine receptor activity (GO:0008227) 27/41 2.28E-25
Gated channel activity (GO:0022836) 51/323 2.79E-24
GABA-A receptor activity (GO:0004890) 19/19 2.07E-20
Ion channel activity (GO:0005216) 53/396 2.15E-22
Drug binding (GO:0008144) 32/93 1.57E-23
Substrate-specific channel activity (GO:0022838) 53/406 5.40E-22
GABA receptor activity (GO:0016917) 19/22 1.25E-19

Note. *Adjusted P-values from Enrichr; only 10 terms per category are shown, full data are provided in the Supplementary File.
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talk when a drug target is involved in more than one pathway
identified from pathway enrichment analyses. We define a re-
current target as a gene or a protein that participates in multiple
pathways, providing evidence for pathway cross talk as a factor
driving drug repositioning. Using comparative pathway ana-
lyses, we identified 64 recurrent targets that that may serve as
drivers of pathway cross talks across 336 pathways. We noted
that 37.5% of pathways (n ¼ 126;�2 drug targets) participate in
molecular cross talk events by sharing overlapping targets
across different pathways.

Altogether, our findings suggest additional evidence for
using pathways cross talk as a useful metric to discover new in-
dications for existing drugs or new indications for a disease. Our
observation strengthens earlier findings that pluripotent mod-
ules of genes, pathways and molecular interactions that are ac-
tive across multiple biological contexts may influence drug
repositioning [6, 8, 108]. Such repurposing-associated modules
may share regulatory roles, biological function, pathophysio-
logical mechanisms and pathways.

Phenomics of disease pairs targeted by
repositioned drugs

Understanding the relationship between two diseases at the
gene, protein or pathway level and connecting with epidemiolo-
gical evidence (e.g. SGA, GWAS [109, 110] or PheWAS-driven
drug repositioning [111]) could improve drug repositioning
capabilities of approved or investigational drugs. EMR-wide

relative risk data were used to perform phenome-wide enrich-
ment analyses (PheWAS) and to validate the off-label use of
drugs for secondary indications. Emerging evidence from phe-
nomics studies that leverage EMR data also suggest that pheno-
typic similarity between two conditions could aid in drug
discovery and drug repurposing [57, 112] Disease comorbidity is
correlated with age [113], but the impact of disease comorbid-
ities or disease-pair prevalence for the success of drug repos-
itioning is largely unknown [113–115]. To address this, we
analyzed 1125 diseases in RepurposeDB using disease co-
occurrence and SGA. Pair-wise comorbidity estimates and
significant SGA associations for a subset of repurposed drugs
(itraconazole, heparin, raloxifene, minoxidil and allopurinol)
are provided in Table 6, and full data set is available
Supplementary Data: RepurposeDB_EHR_SGA.xlsx; Figure 4.

Improving drug repositioning efficiency using comorbidity risk
estimation of disease pairs using EMR-wide analytics
Using EMR-wide comorbidity evaluation of pairs of primary and
secondary conditions of a drug in RepurposeDB, we identified
disease-pair comorbidities as a post hoc epidemiological evi-
dence for repositioned drugs. For example, beclomethasone
dipropionate (Rx00038) has therapeutic effects for multiple con-
ditions like graft-versus-host disease (intestinal and gastro-
intestinal), Crohn’s disease, ulcerative colitis, rhinitis (perennial
and allergic), nasal polyps and asthma. For this drug, we have
tabulated all conditions (n ¼ 9) and compiled all disease pairs
(n ¼ 20), i.e. we consider Crohn’s disease and perennial rhinitis

Table 5. Consensus pathways mediated by targets of repositioned drugs

Pathway q-value* Source

Neuroactive ligand–receptor interaction—Homo sapiens (human) 5.84E-65 KEGG
Monoamine GPCRs 6.72E-35 Wikipathways
Amine ligand-binding receptors 1.37E-33 Reactome
Nicotine addiction—Homo sapiens (human) 8.01E-30 KEGG
Class A/1 (rhodopsin-like receptors) 1.45E-22 Reactome
GPCRs, Class A rhodopsin-like 4.60E-22 Wikipathways
Morphine addiction—Homo sapiens (human) 2.69E-21 KEGG
Defective ACTH causes Obesity and Pro-opiomelanocortinin deficiency 1.59E-18 Reactome
GPCR ligand binding 1.59E-18 Reactome
Neurotransmitter receptor binding and downstream transmission in the postsynaptic cell 9.23E-18 Reactome
Purine metabolism—Homo sapiens (human) 1.54E-17 KEGG
cAMP signaling pathway—Homo sapiens (human) 4.78E-17 KEGG
Metabolic disorders of biological oxidation enzymes 9.02E-17 Reactome
Transmission across chemical synapses 1.14E-16 Reactome
Integrated pancreatic cancer pathway 3.47E-16 Wikipathways
Pathway_PA165959425 1.79E-15 PharmGKB
Ligand-gated ion channel transport 8.73E-15 Reactome
Calcium signaling pathway—Homo sapiens (human) 4.03E-14 KEGG
Neuronal system 9.50E-14 Reactome
GABA A receptor activation 1.20E-13 Reactome
Nalbuphine action pathway 2.48E-13 SMPDB
Signal transduction 6.48E-13 Reactome
Heroin action pathway 7.38E-13 SMPDB
Pathways in cancer—Homo sapiens (human) 7.87E-13 KEGG
Sorafenib pharmacodynamics 1.47E-12 PharmGKB
Highly calcium permeable postsynaptic nicotinic acetylcholine receptors 1.47E-12 Reactome
3-Methylthiofentanyl action pathway 1.47E-12 SMPDB
Alfentanil action pathway 1.47E-12 SMPDB

Note. *Adjusted q-values from ConsensusPathDB-Human; only 30 pathways are shown here, full data set is provided in the Supplementary File. Minimum overlap with

input list was set to 2.
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as a disease pair and patients’ counts were derived after map-
ping disease name to best representative disease terminology.
Next, we have computed the relative risk of these two condi-
tions using the data compiled from EMR and found that the

disease 10 of 20 pairs were significant. For example, Crohn’s dis-
ease and asthma have significant comorbidity with higher
prevalence than expected when compared with the background
population of (P ¼ 7.81E-61, odds ratio ¼ 1.81). Previous

Table 6. Examples of pair-wise disease comorbidity estimates (itraconazole, heparin, raloxifene and allopurinol) and shared genetic architec-
ture estimation (minoxidil and allopurinol)

Pair-wise disease comorbidity estimation using an EMR-wide prevalence estimation (n¼21 25 468)

Primary indication Secondary indication PI^SI (n) PI (n) SI (n) OR P RR

Rx00135 (itraconazole)
Otomycosis Cavitary pulmonary diseasea 68 1402 12 121 8.93 2.67E-36 8.54
Otomycosis Febrile neutropenia 16 1402 5318 4.61 0.00262656 4.57
Fungal otitis externa Cavitary pulmonary diseasea 250 11 423 12 121 3.96 9.86E-66 3.89
Fungal otitis externa Extrapulmonary aspergillosis 15 11 423 448 6.41 <0.001 6.4
Fungal otitis externa Febrile neutropenia 103 11 423 5318 3.67 7.03E-24 3.65
Fungal otitis externa Immunodeficiency 26 11 423 846 5.87 8.88E-09 5.86
Fungal otitis externa Fungal infection 1814 11 423 52 130 7.74 <0.001 6.67
Fungal otitis externa Pulmonary aspergillosis 15 11 423 448 6.41 0.000106935 6.41

Rx00118 (heparin)
Sickle cell disease Thromboembolic disease 12 1477 1383 12.67 1.47E-06 12.58
Sickle cell disease Intravascular coagulationb 28 1477 1307 32.06 1.64E-28 31.48
Sickle cell disease Venous thrombosis 61 1477 9840 9.31 1.92E-33 8.97
Sickle cell disease Deep venous thrombosis 33 1477 5588 8.71 1.55E-16 8.54
Sickle cell disease Pulmonary embolism 56 1477 6810 12.35 8.70E-37 11.92
Sickle cell disease Consumptive coagulopathies 76 1477 8875 13.03 5.78E-52 12.42
Cystic fibrosis Consumptive coagulopathies 11 314 8875 8.66 0.000383854 8.39

Rx00205 (raloxifene)
Prostate cancer Osteoporosis 334 15 329 31 300 1.49 2.71E-08 1.48
Breast cancer Osteoporosis 2992 22 462 31 300 11.26 <0.001 9.89

Rx00013 (allopurinol)
Hyperuricemiab Primary gout 989 17 817 12 681 10.53 <0.001 10.00
Hyperuricemiab Secondary gout 989 17 817 12 681 10.53 <0.001 10.00
Hyperuricemiab Leukemia 94 17 817 709 18.17 1.18E-75 18.08
Hyperuricemia Lymphoma 270 17 817 4708 7.29 2.49E-127 7.19
Hyperuricemia Primary gout 989 17 817 12 681 10.53 <0.001 10.00
Hyperuricemia Secondary gout 989 17 817 12 681 10.53 <0.001 10.00
Hyperuricemia Leukemia 94 17 817 709 18.17 1.18E-75 18.08
Hyperuricemia Lymphoma 270 17 817 4708 7.293 2.49E-127 7.19
Renal calculid Primary gout 769 15 291 12 681 9.32 <0.001 8.90
Renal calculi Kidney transplantation 364 15 291 13 091 4.01 1.29E-97 3.94
Renal calculi Secondary gout 769 15 291 12 681 9.32 <0.001 8.90
Renal calculi Leukemia 22 15 291 709 4.42 6.21E-05 4.41
Renal calculi Lymphoma 121 15 291 4708 3.66 4.40E-28 3.64
Secondary gout Kidney transplantation 569 12 681 13 091 7.87 8.60E-285 7.57
Secondary gout Leukemia 31 12 681 709 7.63 9.34E-14 7.61
Secondary gout Lymphoma 177 12 681 4708 6.58 6.00E-77 6.50
Primary gout Kidney transplantation 569 12 681 13 091 7.87 8.60E-285 7.57
Primary gout Leukemia 31 12 681 709 7.63 9.34E-14 7.61
Primary gout Lymphoma 177 12 681 4708 6.58 6.00E-77 6.50

Shared genetic architectures estimation using a reference database with 11 974 genes

Primary indication Secondary indication D1G^D2G D1G D2G OR P

Rx00165(minoxidil)
Hypertension Hair loss 71 1777 137 3.49 3.46E-12

Rx00013(allopurinol)
Hyperuricemia Visceral leishmaniasis 6 75 29 33.03 5.19E-05
Hyperuricemia Cutaneous leishmaniasis 9 75 38 37.81 1.32E-08
Hyperuricemia Leukemia 31 75 1448 3.41 9.10E-05
Hyperuricemia Lymphoma 34 75 1018 5.33 9.39E-10

Note. PI^SI¼number of patients with both primary indication and secondary indication; PI¼number of patients with primary indications; SI¼number of patients with

secondary indications; P¼Bonferroni correction applied; RR¼relative risk for primary indication and secondary indication to present in the same patient estimated

from same data set. Reference databases have predicates as follows:
aChronic; bdisseminated; cchemotherapy-induced; and drecurrent. D1G^D2G¼number of genes shared by primary indication and secondary indications of a compound;

D1G¼number of genes associated with primary indication; D2G¼number of genes associated with secondary indication.
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epidemiological surveys and genome-wide association studies
also suggest that Crohn’s disease and asthma share etiological
routes [116, 117].

Following the EMR-wide analyses of 2970 disease pairs, we
identified 1548 significant disease pairs across 149 drugs after
multiple testing corrections. We found EMR-wide disease
comorbidity evidence for 58.9% of drugs in RepurposeDB, sug-
gesting that systematic disease comorbidity and relative risk
estimation analysis could help in developing rational drug
repurposing methods and to prioritize compounds in the drug
discovery pipeline. For example, a drug is more likely to repur-
pose across two diseases when they could share disease eti-
ology and, thus, observable in EMR-based disease enrichment
analyses (see Figure 5 for examples). Developing rational drug
repositioning methods by considering prevalence rates of dis-
ease pairs in the target patient population may help to find de-
velop precision repositioning therapies compared with
traditional drug development approaches.

Role of shared genetic architecture in drug repositioning
We performed a systematic analysis to characterize the shared
genetic architecture between the primary and secondary indica-
tions of all drugs in RepurposeDB. For example, the drug cyclo-
sporine (Rx00075) is used for five indications with genomic
associations (psoriasis, rheumatoid arthritis, amyotrophic lat-
eral sclerosis, bronchiolitis obliterans and graft versus host dis-
ease). For this example, we have tabulated all diseases (n ¼ 6)
with their associated genes from an integrated disease–gene
database [53]. After multiple testing corrections, five disease
pairs had significant associations for shared genes. For ex-
ample, rheumatoid arthritis and amyotrophic lateral sclerosis
have 981 and 226 associated genes, respectively. We have com-
puted the SGA of this disease pairs and identified 57 genes
shared by two diseases (P ¼ 2.35E-11). Shared genes across the
two diseases (e.g. MMP12, IFNK, SERPINE1, MMP1, MMP3, MMP9,
SH2B3, TGFB1, PPARG, TNF, HLA-B, F2, ATXN2 and VEGFA) sug-
gest strong immune modulation of both diseases by a common
subset of genes and, hence, suitable target for an immunosup-
pressant like cyclosporine (see Supplementary Data:
RepurposeDB_EHR_SGA.xlsx). Similarly, if a drug can target the
shared subset of genes associated with two diseases; they are
more likely to be effective for both conditions. Using this ap-
proach, we computed SGA for 499 diseases pairs. A total of 235
disease and 79 (31.22%; Figure 5) drugs remain significant after
multiple testing correction (see Supplementary Data:
RepurposeDB_DiseaseSimilarity.xlsx).

Similarity of diseases target by repositioning drugs
Briefly, for each disease pair, we leveraged two phenotype
ontologies (DO and HPO) to check how closely two diseases or
their clinical phenotypes are related and assigned a phenomic
similarity score based on the distance between the terms to
each other using relationships derived from the ontologies. We
have computed the phenomic similarity score for 176 drugs in
RepurposeDB (0.572 6 0.016). Drugs like cetuximab (score ¼ 0.37;
indications for multiple hematological cancers) and zidovudine
(score ¼ 0.409; indications for several cardio-metabolic diseases)
have lower phenomic similarity scores compared with drugs
like quinine (score ¼ 0.869; malaria and leg cramps) and busul-
fan (score ¼ 0.854; cancers of multiple organs). Our analyses
provide a quantitative estimate of phenomic similarity
(Figure 4D); Supplementary Figure S4) using clinical ontologies;
such estimations could be a useful aid in developing future drug
repositioning investigations.

Applications of RepurposeDB

Data compiled in RepurposeDB can be used to prioritize small
molecules and drugs and targets for experimental or clinical
evaluation. These data can further be extrapolated to identify
new drug targets or new indications for existing compounds as
well as to develop predictive models of repurposable drugs and
targets. We have used RepurposeDB to assess post hoc valid-
ation of repurposability using three different data types
(epidemiology, genetics and pathways), explore the pharmacoe-
conomics of repositioning space and develop networks to aid in
the discovery of new targets for repurposing opportunities in
the human proteome.

Validating drug repositioning investigations using disease
comorbidities, genetic architectures and pathway cross talks
Pathway cross talk, SGA and epidemiological evidence provide
evidence for 26.87, 31.22 and 58.89% of repositioned drugs, re-
spectively. Furthermore, we found EMR and SGA evidence for 47
drugs, SGA and pathway cross talk evidence for 5 drugs and
EMR and pathway cross talk evidence for 29 drugs. There were
13 drugs [interferon alfa-2b (recombinant), cladribine, bleo-
mycin, anagrelide, dexamethasone, lenalidomide, aripiprazole,
epoetin alfa, duloxetine, sucralfate, difluprednate, aminosali-
cylic acid and beclomethasone dipropionate) that have associ-
ations with all three approaches. Our analyses using three
different data sets (comorbidity of disease pairs identified using
EMR data, SGA captured using genetic modules shared by dis-
eases and pathway cross talks by targets of repositioned com-
pounds) provide validation for 69.16% of drugs in RepurposeDB
(Figure 4E; see Supplementary Data: RepurposeDB_
EvidenceTypes.xlsx).

Pharmacoeconomics of repurposed drugs
Drug development is an expensive process that requires signifi-
cant capital investment to deliver a new drug from develop-
ment to the market. Contradicting reports suggest that drug
repositioning may improve revenue for pharmaceutical compa-
nies and help to use off-patent drugs for new indications.
However, it is not clear about the costs of the repurposed com-
pounds compared with the marketed drugs. Drug repositioning
is often conflated with drug reformulations; analyses of
pharmaceutical marketing data indicate that repositioned drugs
are marketed as different drug reformulations (e.g. syrup
reformulated as a capsule, capsule reformulated as injection)
[118, 119].

We aggregated dispensing unit types and prices for all the
drugs from DrugBank and compared the price of repositioned
drugs in RepurposeDB with the rest of the drugs with the cost
and unit formats (e.g. tablet, capsule and vial) of commercially
marketed drugs. We extracted 11 813 drug description-cost-unit
records, and 2273 annotations for 202 drugs (79.8% of drugs in
RepurposeDB) sold as 39 different dispensing types from
DrugBank. Average costs are higher for biotech drugs compared
with small molecules, and the cost for various dispensing for-
mats varies across the DrugBank. The average cost of drugs in
DrugBank is also affected by the interaction of marketing type
(vial, capsule, etc.) and value (10, 20 mg, etc.; all observations
P < 0.001). Furthermore, we tested whether the cost was af-
fected by the interaction between type (biotech drug or small
molecule) and dispensing format (capsule, injection, syrup,
etc.). The average cost of repositioned drugs is higher, but not
significantly, compared with the rest of the drugs in DrugBank:
the average cost of drugs differs between DrugBank ($339),
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RepurposeDB ($528) and the remainder of DrugBank excluding
repurposed drugs ($297.7; P ¼ 0.097; see Supplementary Data:
RepurposeDB_Pharmacoeconomics.xlsx).

Network reconstruction and analyses
We constructed five networks (Supplementary Figure S4) using
data from RepurposeDB, specifically: the networks including
chemical similarity network of small molecules, drug–target
network, a functional network using drug targets of repurposed
compounds, expanded-target network of repurposed com-
pounds, drug–drug interaction and drug–food interaction net-
works are compiled. The networks derived from RepurposeDB
(Figure 6) are valuable tools for discovering chemical patterns
and describing new targets to improve drug repositioning pipe-
lines. We computed various network properties and prioritized
hubs across the networks. These hubs can be further perturbed
using functional experiments and high-throughput compound
screening to find compounds that could be effective across mul-
tiple indications (see Methods and Supplementary Data files:

RepurposeDB_SFN_EFN_NA.xlsx and RepurposeDB_Drug_Food_
Target_Networks.xlsx).

Chemical similarity of small molecules in RepurposeDB
We analyzed the chemical similarity network and identified
H2N-CH3 as the maximum common substructure of the
chemical repertoire, whereas the common substructure for
DrugBank-A is H3C-CH2. The connectivity of the chemical simi-
larity networks also indicates several closely connected mod-
ules with individual chemical signatures. Exploring these
substructures and reformulating existing compounds with the
repurposing-based substructure could enhance the success of
future drug repurposing investigations.

Seed and expanded functional network of drug targets
The repurposed drug target network has a higher degree of con-
nectivity compared with the human protein interactome, thus
indicating close regulation of the repurposed target at the prote-
ome level. For example, we tested the Seed Functional Network

Figure 6. Chemical, biological and interaction networks compiled using data from RepurposeDB a) Chemical similarity network of small molecules in RepurposeDB:

Histogram of Tanimoto similarity of small-molecules in RepurposeDB. Tanimoto similarity estimates the similarity of the two compounds based on the angle between

the attribute vectors (fingerprint) of each compound. b) Tanimoto similarity network of small molecules in RepurposeDB was computed, and chemical similarity net-

work was calculated and visualized using chemViz. Small molecule from RepurposeDB represents the nodes and edges are Tanimoto similarity (values between 0 to 1;

threshold set at >=0.5 for visualization) and weighted by the Tanimoto similarity values. Inset highlights a section of the chemical similarity network of repositioned

compounds and maximum common chemical substructures are indicated. c) Drug-target interaction network d) Drug-drug interaction network: Targets are colored

according to the biochemical action (inhibitor, antagonist, agonist, potentiator and others) e) SFN: Seed Functional Network reconstructed using targets of repositioned

drugs f) EFN: Expanded Functional Network reconstructed using targets of repositioned drugs as seed and adding 20% of genes shared by the nodes in SFN. Data to gen-

erate various networks and high-resolution versions of the network figures are provided in the Supplementary Data.
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for enrichment of protein–protein interactions using a meta-
database of protein–protein interactions (STRINGv10 [120]).
When compared with the background of canonical human gen-
ome, the network was enriched for interactions (P�0.001) with
2615 interactions using 299 proteins mapped to STRING data-
base indicating that targeting this core network or its modula-
tors will lead to effective molecules or molecules that can
perturb multiple indications.

Drug–drug and drug–food interaction patterns of
repurposed compounds
We compiled 305 experimentally validated drug targets for
repurposed compounds from DrugBank. These drug–target
interactions represent 27 different modes of actions (inhibitor,
agonist, activator, etc.). The average number of drug targets per
compound is higher for drugs in RepurposeDB (4.115 6 0.621; t-
test P�0.001) compared with DrugBank-A (3.476 6 0.237; t-test
P�0.001) and DrugBank-F (1.949 6 0.092). The average number
of reported drug–drug interactions per compound is higher for
drugs in RepurposeDB (16.6 6 3.542) compared with DrugBank-F
(13.66 6 1.91) and DrugBank-A (3.105 6 0.291; P�0.001).

We compiled 1186 food interactions for 649 drugs from
DrugBank. There were 188 drugs in RepurposeDB that had, at
least, one reported food interactions (74.3% of drugs in
RepurposeDB). Food interactions vary by the type of medicine
(biotech drug or a small molecule; P�0.001), but food inter-
actions and inclusion of a compound in RepurposeDB are inde-
pendent. The average number of reported food–drug interaction
per compound is higher but not significant for drugs in
RepurposeDB (0.611 6 0.16) compared with DrugBank-A
(0.486 6 0.054) DrugBank-F (0.11 6 0.13; all observations
P > 0.05).

Discussion

Systematic drug repurposing refers to the data-driven evalu-
ation of the set of approved or investigational pharmaceutical
compound databases as therapies for new indications. By lever-
aging systematic or targeted approaches to drug repurposing
aims, we aim to expedite the recycling of existing drug com-
pounds for new indications. We also hope to develop new leads
for new combinations of drugs to increase treatment efficacy.
Irrespective of the growing catalog of drug repositioning using
approved, shelved or investigational compounds, there was pre-
viously no comprehensive collection or meta-analyses of drug
repositioning examples from public biomedical and health care
databases. From the first description of drug repurposing in the
1950s to the present day, >250 drug repurposing studies have
been published [5, 121, 122]. The growing trend of repositioning
investigations suggests that reuse of drugs are plausible and
beneficial for patients. RepurposeDB fills a significant gap in the
setting of drug repositioning by offering a unified database of
drug repositioning database and collective insights. Our exten-
sive meta-analyses of the data provide the first set of pharma-
cological, biological and disease-specific principles mediating
drug repositioning. Drug repurposing studies and methodolo-
gies can use the RepurposeDB data set as a benchmarking or
comparison resource. The new MIADRI standard will also help
to streamline the process of reporting results from future drug
repositioning studies.

Insights from RepurposeDB data set provide a collective set
of principles of physicochemical features that contribute to
drug repositioning, including chemical moieties, permeability
properties and ADMET signatures. Analyses of small molecules

in RepurposeDB reveal chemical compositions (9 experimen-
tally characterized chemical features, 21 computationally esti-
mated chemical properties and 9 ADMET properties compiled)
and drug induced side effects associated with drug reposition-
ing. Analyses of drug targets revealed transcription factors, epi-
genomic enrichments, functional roles and pathways
associated with repurposed drugs and their targets. Using the
RepurposeDB data set, we showed that pathways share targets
of repositioned drugs (n ¼ 68 compounds; 26.87% of
RepurposeDB), and leveraging this knowledge could lead to bet-
ter candidates for pathway-based drug repositioning. Genetic
etiologies of various polygenic disorders have molecular level
similarities. The expanding collection of genome-wide associ-
ation studies and phenome-wide association studies further
support these correlations and in the pleiotropic role of genetic
variants in influencing multiple disease manifestations. Our
analyses provide the first comorbidity-based evidence for drug
repositioning investigations (n ¼ 149; 58.89% of compounds in
RepurposeDB) compounds and shared genomic evidence
(n ¼ 79; 31.22% of compounds in RepurposeDB). Together, these
approaches have validated 74.7% of drugs in RepurposeDB.
Small molecule filtering systems and high-throughput com-
pound screening platforms and drug development pipelines can
be redesigned to take the pharmacological, biological and epi-
demiological factors into account. Drug prioritization and drug
likeness assessment algorithms can also use chemical features,
molecular properties and target functions associated with drug
repositioning to assess compounds for repurposing.

Conclusion

The burden of disease is increasing globally due to a variety of
factors such as population growth, infectious disease outbreaks,
and the emergence of antibiotic resistance. In combination with
the ever-rising cost of drug-development, this demands innova-
tive and robust approaches to drug discovery. Discovering the
chemical, genetic and biological features associated with drug
development is critical for rational drug and target discovery.
Owing to the tremendous costs of successfully bringing new
pharmaceutical compounds to market, repositioning of previ-
ously approved drugs is a popular method to increase the poten-
tial therapeutic space for human diseases. Drug repositioning
can uniquely contribute to solving a significant gap in a public
health setting by providing therapeutic options for complex,
chronic or orphan diseases. The data compiled in RepurposeDB
and the collective analytical insights presented in this article
provide, for the first time, an understanding of the distinct phys-
icochemical, biochemical and chemogenomic features of repur-
posed drugs. We are releasing RepurposeDB in the public
domain under an open access license, with the hope that its
high-quality content, user-friendly search engine and visual
analytics tools will aid investigators hoping to conduct drug re-
positioning studies and discover repurposable compounds.
Using analytical frameworks based on our findings for the as-
sessment and prioritization of compounds, targets or pathways
for drug repositioning experiments and clinical trials could help
to develop drug repositioning pipelines. Availability of a refer-
ence database and chemical signatures and first set of principles
of drug repositioning to evaluate new or existing compound
could accelerate drug repositioning investigations. RepurposeDB
aims to evolve through periodic updates, as an essential re-
source for the drug discovery community, we hope will contrib-
ute to unraveling novel indications for existing small molecule,
protein or peptide drug collections. RepurposeDB could also be a

674 | Shameer et al.

Deleted Text: -
Deleted Text: -
Deleted Text: 121
Deleted Text: to 
Deleted Text: &hx2009;&hx003D;&hx2009;&hx003C;
Deleted Text:  indication
Deleted Text: -
Deleted Text: -
Deleted Text: : 
Deleted Text: -
Deleted Text: &hx2009;
Deleted Text: &hx2009;
Deleted Text: &hx2009;&hx003D;&hx2009;&hx003C;&hx2009;
Deleted Text: to 
Deleted Text: &hx2009;
Deleted Text: &hx2009;
Deleted Text: &hx2009;&hx003D;&hx2009;&hx003C;&hx2009;
Deleted Text: &hx2009;
Deleted Text: &hx2009;
Deleted Text: ;
Deleted Text: -
Deleted Text: &hx2009;
Deleted Text: &hx2009;
Deleted Text: to 
Deleted Text: &hx2009;
Deleted Text: &hx2009;
Deleted Text: &hx2009;
Deleted Text: &hx2009;
Deleted Text: &hx2009;&hx003D;&hx2009;&hx003C;&hx2009;
Deleted Text: ,
Deleted Text: &hx2009;&hx003D;&hx2009;&hx003C;
Deleted Text: -
Deleted Text: &hx2009;
Deleted Text: &hx2009;
Deleted Text: to 
Deleted Text: &hx2009;
Deleted Text: &hx2009;
Deleted Text: &hx2009;
Deleted Text: &hx2009;
Deleted Text: )
Deleted Text: (
Deleted Text: DISCUSSION
Deleted Text: drug 
Deleted Text: ,
Deleted Text: or 
Deleted Text: drug 
Deleted Text: &hx2019;
Deleted Text: more than 
Deleted Text: drug 
Deleted Text: ,
Deleted Text: Drug 
Deleted Text: drug 
Deleted Text: ,
Deleted Text: ,
Deleted Text: &hx2009;
Deleted Text: &hx2009;
Deleted Text: drug 
Deleted Text: &hx2009;
Deleted Text: &hx2009;
Deleted Text: &hx2009;
Deleted Text: &hx2009;
Deleted Text: ,
Deleted Text: Due 
Deleted Text: paper 
Deleted Text: ,
Deleted Text: drug 
Deleted Text: Employing 
Deleted Text: drug 
Deleted Text: drug 
Deleted Text: ,


useful resource for implementing personalized drug reposition-
ing in the clinical setting to enable the delivery of precision
medicine. For example, currently, no reference database of drug
repositioning enables clinicians or researchers to submit evi-
dence to a centralized resource readily available to other re-
searchers and clinicians. Individual clinicians seeking
treatments for their patients are perhaps the most common ini-
tiators of drug repurposing studies through the use of off-label
prescriptions. It has been estimated that up to one-fifth of all
available drugs are prescribed off-label; most of such off-label
uses were initiated by clinicians and then shared after establish-
ing efficacy. Observations of such off-label use, the first proof of
drug repositioning, unless published as research papers or case
reports are usually siloed in EHRs or sometimes not even publi-
cally shared, to the detriment of patient treatment.
Furthermore, as the volume of published papers increases, it
can be difficult for investigators to stay current with trends in
drug repositioning that may apply to their field of research or
clinical medicine. RepurposeDB provides an open, community-
driven environment for drug repositioning evidence, and within
few years, we hope will become the centralized resource for
drug repositioning, by harnessing crowdsourcing methods. To
conclude, the three most important developments of this article,
namely (1) the presentation of RepurposeDB; (2) the statement
of drug repositioning principles derived from our meta-
analyses; and (3) the open access drug repositioning reporting
standard (MIADRI) will be a valuable addition to drug develop-
ment and repurposing investigations. Drug development com-
panies and academic institutes can leverage these insights to
develop new filtering methods to screen and prioritize com-
pounds that may be suitable for new indications.

Limitations

RepurposeDB has various limitations and is not the only re-
source dedicated to drug repositioning. The limitations result
from the methods of construction of the database, which may
possibly introduce systematic biases into our results. We pro-
vide a detailed section on such limitations in the
Supplementary Materials (see sections under: Availability of
related resources for drug repositioning, Limitations of text
mining and biocuration workflows and Limitations in biochem-
ical inference based on enrichment analyses).

Availability

RepurposeDB database and all related data and source code are
available in the public domain at the URL: http://repurposedb.
dudleylab.org. The source code is available at the URL: https://bit
bucket.org/dudleylab/repurposedb. Supplementary Data are avail-
able from the URL http://repurposedb.dudleylab.org/data and from
the figshare URL: https://figshare.com/s/0364762ddd772076be31.

Key Points

• Drug repositioning enables data-driven discovery of
therapeutically actionable indications and offers a sus-
tainable path to develop medicines for rare, common
and chronic diseases in the setting of precision medicine.

• Academic and industry drug discovery teams can le-
verage the knowledge from existing drug repurposing
investigations to expand the knowledge-based drug
repurposing efforts in the future.

• We developed RepurposeDB: the first centralized
open-access reference database of drug repositioning
investigations and compiled data on drugs, disease in-
dications, drug targets, disease comorbidities and vari-
ous annotations.

• Using systematic analyses of pharmacological proper-
ties of drugs, proteogenomic features of drug targets
and epidemiological prevalence of disease indications
from RepurposeDB, we have characterized the funda-
mental principles of drug repositioning.

• RepurposeDB and its content could aid in rational
drug repositioning and may accelerate the implemen-
tation of data-driven, precision therapeutics and help
to implement systems pharmacology at the point of
care in the near future.

Supplementary Data

Supplementary data are available online at http://bib.oxford
journals.org/.
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