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Abstract

Cortical thickness varies throughout the cortex in a systematic way. However, it is

challenging to investigate the patterns of cortical thickness due to the intricate geom-

etry of the cortex. The cortex has a folded nature both in radial and tangential direc-

tions which forms not only gyri and sulci but also tangential folds and intersections.

In this article, cortical curvature and depth are used to characterize the spatial distri-

bution of the cortical thickness with much higher resolution than conventional

regional atlases. To do this, a computational pipeline was developed that is capable

of calculating a variety of quantitative measures such as surface area, cortical thick-

ness, curvature (mean curvature, Gaussian curvature, shape index, intrinsic curvature

index, and folding index), and sulcal depth. By analyzing 501 neurotypical adult

human subjects from the ABIDE-I dataset, we show that cortex has a very organized

structure and cortical thickness is strongly correlated with local shape. Our results

indicate that cortical thickness consistently increases along the gyral–sulcal spectrum

from concave to convex shape, encompassing the saddle shape along the way. Addi-

tionally, tangential folds influence cortical thickness in a similar way as gyral and sul-

cal folds; outer folds are consistently thicker than inner.
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1 | INTRODUCTION

Each human brain has a unique structure and morphology, similar

to fingerprints. The outermost layer of the brain, the cerebral cor-

tex, has many intricate convolutions consisting of outer ridges

called gyri and inner valleys called sulci. The cortex is fairly smooth

until the third trimester of gestation, when these folds begin to

emerge. Importantly, while gyral and sulcal folds are the subject of

most research, the cortex folds not only in the radial direction (for-

ming gyri and sulci), but also in the tangential direction. Visible on

the surface of the brain (Figure 1), gyri and sulci fold in on them-

selves and even intersect (Chen et al., 2017; Razavi, Liu, &

Wang, 2021; Razavi, Zhang, Li, Liu, & Wang, 2015; Zhang

et al., 2017; Zhang et al., 2018).

The thickness of the cortex throughout the convolutions of the

brain is important because cortical thickness is a biomarker of neuro-

logical health. Alterations of cortical thickness are observed in atypical

development (Vijayakumar et al., 2016), preterm birth (Nam

et al., 2015), and neurological diseases such as autism spectrum disor-

der (ASD) (Ecker et al., 2010; Ecker et al., 2013; Hardan, Muddasani,

Vemulapalli, Keshavan, & Minshew, 2006; Misaki, Wallace, Dankner,

Martin, & Bandettini, 2012; Pua, Ball, Adamson, Bowden, &

Seal, 2019; van Rooij, Anagnostou, & Arango, 2018; Zielinski

et al., 2014), schizophrenia (van Erp et al., 2018; White, Andreasen,
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Nopoulos, & Magnotta, 2003), and attention deficit hyperactivity dis-

order (ADHD) (Montes et al., 2013; Narr et al., 2010). Cortical thin-

ning is also observed in the prefrontal cortex of typical adults during

normal aging (Salat et al., 2004) and in Alzheimer's disease (Lerch &

Evans, 2005).

Cortical thickness is not uniform throughout the brain, with a

striking asymmetry between thick gyri and thin sulci (Bok, 1929; Cam-

pos, Hornung, Gompper, Elgeti, & Caspers, 2020; Holland et al., 2020;

Holland, Budday, Goriely, & Kuhl, 2018; Jalil Razavi, Zhang, Liu, &

Wang, 2015; Razavi et al., 2015) (Van Essen & Maunsell, 1980). This

intriguing property of the cortex has been consistently demonstrated

among humans (Fatterpekar et al., 2002; Fischl & Dale, 2000; Ge

et al., 2018; Ribas, 2010; Zhang et al., 2016) and various species

(Hilgetag & Barbas, 2005; Welker, 1990). The complete rationale

behind this thickness difference is yet to be elucidated, but given the

relevance of cortical thickness to neurological health, these variations,

and their determinants are important fundamental and clinical ques-

tions. It is important to consider cortical thickness not as a global

property of an entire brain, but rather a local, spatially varying prop-

erty. For instance, thinning in Alzheimer's disease is systematically

nonuniform, with sulci thinning and degenerating more than gyri (Lin

et al., 2021).

Although the mechanism of cortical folding is still under investiga-

tion, a combination of mechanical and biological factors is thought to

affect the buckling of the cortical sheet (Borrell, 2018; Garcia,

Kroenke, & Bayly, 2018; Kroenke & Bayly, 2018). Recently, the forma-

tion of thick gyri and thin sulci has been the subject of research in an

attempt to understand how this pattern emerges so consistently.

Advances in numerical simulations have allowed increasingly

complex simulations of brain development (Bayly, Okamoto, Xu,

Shi, & Taber, 2013; Nie et al., 2010; Tallinen, Chung, Biggins, &

Mahadevan, 2014; Toro & Burnod, 2005). The interactions between

the faster tangential growth of the cortex in comparison with the

underlying white matter core, supplemented by the cerebrospinal fluid

(CSF) pressure (Van Essen, 2020), lead to buckling of the surface

(Caviness, 1975). Tensional forces along axons and glia resist the

detachment of cortex from the core and likely bring strongly con-

nected gyri closer to each other (Van Essen, 2020). We recently

showed that wrinkling instabilities and the buckling of the cortex lead

to thick gyri and thin sulci without any influence from biological het-

erogeneity (Holland et al., 2018).

However, local changes in cellular growth and development likely

also contribute to the thickness variations seen in the brain. During

growth, the newly born cells in the ventricular zone migrate toward

their final destinations in the outer regions to form layers of the cor-

tex which consist of distinctive neuronal cell populations

(Cowan, 1979). The neuronal cell bodies in gyral crowns are more

spread out, with dense and elaborately branched neuropils (axons,

dendrites, glial cells, and their synapses) stretching vertically to the

cortical surface. On the other hand, cell bodies and their basal den-

drites in sulcal fundi are more densely packed and stretch tangential

to the cortical surface (Cowan, 1979; Welker, 1990). These particular

trajectories suggest tension within these cellular processes that con-

tributes to cortical thickness variations and affects the macroscopic

mechanical properties of the brain in vivo (Van Essen, 1997).

In our most recent work, we introduced a curvature-dependent

mechanical growth model capable of modeling different growth rates

in gyri and sulci. By comparing the gyral–sulcal thickness ratio in our

simulations with data from human brains, we found evidence for pref-

erential gyral growth in the cortex (Wang, Demirci, & Holland, 2020).

This result is consistent with previous knowledge that more neurons

are present in gyri compared to sulci banks and bottoms (Hilgetag &

Barbas, 2005) causing thicker gyral crests.

However, as mentioned previously, the cortex features not only

gyral peaks and sulcal valleys, but also in-plane bends and intersec-

tions of gyri and sulci (Figure 1). This suggests that the traditional

binary classification of cortical folding into gyri and sulci, while able to

capture a lot of the variation seen in 2D histological slices, may be

insufficient to represent the full three-dimensional complexity of the

brain. If forces generated during folding contribute to thickness

F IGURE 1 Folds of the human brain. Left: Coronal section of a T1-weighted magnetic resonance (MR) image for a human subject showing
gyral tops, sulcal valleys and sulcal walls in a two-dimensional slice. Right: Tangential folds shown in black splines on the three-dimensional
surface of the brain
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differences throughout the cortex, it seems possible that these folds

could affect thickness as well. This would imply that cortical folds

exist along a gyral–sulcal spectrum, with the outside of tangentially

folded gyri at one end, and the inside of tangentially folded sulci at

the other. Cortical thickness variations in the tangential folds of gyri

and sulci have been explored in a few studies (Chen et al., 2013; Chen

et al., 2017; Ge et al., 2018; Li, Lin, & Gilmore, 2015; Zhang

et al., 2017; Zhang et al., 2018), but these analyses have been limited

to a few dozen regions defined by brain atlases. Brain atlases auto-

matically parcellate the cortex into functional or anatomical regions

(Desikan et al., 2006; Destrieux, Fischl, Dale, & Halgren, 2010) by rely-

ing on cortical shape and widely accepted anatomical descriptions.

The Destrieux atlas (Destrieux et al., 2010), for example, segments the

cortex into predominately gyral and sulcal regions. Regional studies of

cortical thickness (Holland et al., 2018; Zhang et al., 2016) show con-

sistent cortical thickness variations between regions, but they are lim-

ited. First of all, automatically extracting and labeling the regions of a

cortex using a predefined anatomical atlas (reference template) is a

challenging task, requiring complex surface-based (Fischl, Sereno,

Tootell, & Dale, 2001) and/or landmark-based (Van Essen, Glasser,

Dierker, Harwell, & Coalson, 2012) diffeomorphic spherical registra-

tion algorithms that align cortical folding patterns with the reference

template. However, this approach generates local distortions and

transformations within the gyral–sulcal patterns which consequently

causes deviations from the original, native space, although “gentler”
multimodal algorithms are suggested (Robinson et al., 2014). Secondly,

this classification is binary, which results in straight sulcal walls being

identified as sulci. Furthermore, it is not possible to cleanly divide

every gyrus from its adjacent sulci, and vice versa, so some regions

are a combination of both. Finally, the averaging of cortical thickness

across the region discards a significant amount of information about

variations within the region. These limitations highlight the impor-

tance of quantifying cortical morphology on smaller scales (Dahnke &

Gaser, 2018; Mangin, Jouvent, & Cachia, 2010) and in native space in

order to fully capture variations throughout the brain.

Automated computational neuroimaging software has proven to

be very useful for the segmentation, reconstruction, and analysis of

3D brain morphology from 2D magnetic resonance (MR) image slices.

Widely used software packages in the field include Freesurfer

(Fischl, 2012), Mindboggle (Klein et al., 2017), CAT (Gaser &

Dahnke, 2016), toolbox of SPM (Ashburner, 2009), Brains2 (Magnotta

et al., 2002), CIVET (Kabani, Le Goualher, MacDonald, & Evans, 2001),

and BrainVisa (Cointepas, Mangin, Garnero, Poline, & Benali, 2001), as

well as Connectome Workbench for visualization of neuroimaging

data (Marcus et al., 2011). Although these software packages are very

powerful and have proven extremely useful in neuroimaging research,

they have generally been focused on adult human brains, offering

even highly automated segmentation and analysis. While there are

some efforts to develop automatic processing pipelines for infants

(Zöllei, Iglesias, Ou, Grant, & Fischl, 2020) and non-human primates

(Klink, 2020), those are still under development. Furthermore, the

automation of these pipelines, while a strength in many senses, can

also be a drawback; for instance, it is often not possible to customize

the mesh resolution or smoothness. Finally, these programs report but

do not focus on curvature, which is of primary interest in this study;

to the best of our knowledge, for instance, none of the software pack-

ages mentioned above calculate shape index. The website https://

www.nitrc.org provides a comprehensive list of frequently used neu-

roimaging tools and software packages that are useful for various neu-

roimaging tasks.

In this study, we aim to investigate the folded morphology of the

brain, including both radial and tangential folds, and the variation of

cortical thickness along the gyral–sulcal spectrum. By investigating

how the cortical thickness varies across the convoluted surface of the

brain beyond gyri and sulci, we expect to observe thickness variations

within the tangential folds as well. To do so, we analyzed cortical

thickness on a local scale, without following an automated parcellation

scheme. We employed three curvature measures (mean curvature,

Gaussian curvature, and shape index), along with sulcal depth, to dem-

onstrate the systematic cortical thickness variations of the cortex with

respect to local cortical topology. While these curvature measures

have been investigated in the brain before (Batchelor et al., 2002;

Cachia et al., 2001; Hu, Chen, Hung, Guo, & Wu, 2013; Koenderink &

van Doorn, 1992; Luders et al., 2006; Pienaar, Fischl, Caviness,

Makris, & Grant, 2008; Ronan et al., 2011; Ronan et al., 2014;

Shimony et al., 2016; Tosun et al., 2007), this is, to the best of our

knowledge, the first comprehensive local study of cortical thickness

variations with respect to local shape.

To fulfill this aim, and to overcome the challenges of already avail-

able automated neuroimaging software packages, we developed our

own in-house, open-source computational pipeline that allows for

detailed local analysis of cortical thickness and topology. This pipeline

is introduced in Section 2, and is shared publicly via https://github.

com/mholla/curveball. Next, in Section 3 we present the systematic

and consistent variation of cortical thickness with respect to local cur-

vature and depth for a sample subject set. Finally, in Section 4, we

consider how each measure of topology (mean curvature, Gaussian

curvature, shape index, and sulcal depth) reveals features of the

cortex's complex folded surface.

2 | METHODS

Our analysis begins with the inner and outer surfaces of the cortical

sheet (white and pial surfaces, respectively) reconstructed from cross-

sectional MR images. While our pipeline can take any set of surface

meshes as an input, here we used Freesurfer (Dale, Fischl, &

Sereno, 1999; Fischl, 2012), which outputs a piecewise triangular

mesh for both surfaces with �150 k vertices per hemisphere. Both

meshes are decimated and smoothed to improve uniformity

(Section 2.1), and the cortical thickness is calculated at each vertex

(Section 2.2). Next, an outer alpha-wrap surface is generated from the

pial surface to obtain the sulcal depth at each point (Section 2.3). The

pipeline then computes the Gaussian curvature (Section 2.4.1), mean

curvature (Section 2.4.2), principal curvatures (Section 2.4.3), shape

index (Section 2.4.4), total intrinsic curvature index (ICI), and total
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folding index (FI) (Section 2.4.5). Finally, all surface data are smoothed

with two iterations of averaging with neighbors (Section 2.5). The

total run-time of the pipeline is approximately 1.5 hr per hemisphere

using a single-core processor.

2.1 | Mesh decimation and smoothing

The accuracy of quantitative surface measures depends on the quality

of the mesh. As surface reconstruction from MR images introduces

noise, a more uniform, simplified, and smoothed mesh is necessary to

reduce the irregularities of the original mesh (Dahnke & Gaser, 2018)

and improve the signal-to-noise ratio. To achieve this, we used qua-

dratic edge collapse decimation with a target reduction value of 70%

and Laplacian and Taubin smoothing (Ohtake, Belyaev, &

Bogaevski, 2001; Sorkine, 2005; Taubin, 1995) algorithms (Cignoni

et al., 2008) (Figure 2a,b). In a previous study, 70% down-sampling of

Freesurfer-generated pial surfaces yielded an error value below

0.2 mm for both gyri and sulci (Tran & Fang, 2017). This decimation

results in approximately 40 k vertices and 80 k triangles per hemi-

sphere. Laplacian and Taubin smoothing are applied for 50 and

100 iterations, respectively. These values were found to avoid over-

smoothing and shrinkage of the surface while preserving the original

topology (Figure 3). Less convoluted areas are covered with slightly

fewer triangles and vice versa. To assess the quality of the decimated

mesh, we compared the radius ratio and aspect ratio of its triangular

elements before and after mesh decimation and smoothing using

open-source 3D mesh processing software Meshlab (Cignoni

et al., 2008). Radius ratio (Tecchio & Basso, 2014) is the ratio of the

radii of the circle inscribed in a triangle, rin, and the triangle’s
circumsphere, rcirc; it is calculated for triangle p as

ρ pð Þ¼2rin
rcirc

¼ 16a2

l1l2l3 l1þ l2þ l3ð Þ , ð1Þ

where a is the total area of the triangle and l1, l2, and l3 are its edge

lengths. Radius ratio ranges from 0 to 1, with an optimal value of 1 for

an equilateral triangle. Aspect ratio is the ratio of a triangle’s area to

F IGURE 2 Decimation and smoothing of triangular surface meshes of the pial (a) and white (b) surfaces. The left column shows an irregular
mesh with �150 k vertices and �300 k triangles per hemisphere. The right column shows a simplified, uniform mesh with �40 k vertices and
�80 k triangles per hemisphere
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its longest edge length, with low values indicating stretched-out

obtuse triangles. After decimation, we observed 15% improvement in

the radius and aspect ratios (Figure 4), particularly by eliminating many

of the most distorted triangles.

2.2 | Cortical thickness

Accurate estimation of the cortical thickness through automated seg-

mentation of pial and white surfaces is important for understanding

the inhomogeneous development of the cortex and hidden columnar

boundaries (MacDonald, Kabani, Avis, & Evans, 2000). Freesurfer gen-

erates white and pial surface meshes with identical numbers of verti-

ces, and calculates the cortical thickness as the average of the

distances from the point on the white surface to its nearest neighbor

on the pial surface, and from the point on the pial surface to its

nearest neighbor on the white surface (Fischl & Dale, 2000). This

method has been shown to be reliable by comparing the results with

manual measurements from MR (Kuperberg et al., 2003) and histologi-

cal slices (Cardinale et al., 2014; Rosas et al., 2002). Other methods to

calculate the cortical thickness (Wagstyl & Lerch, 2018) include Lap-

lace's equation (Jones, Buchbinder, & Aharon, 2000), the shortest

distance along the surface normal (MacDonald et al., 2000), the dis-

tance between linked vertices on the pial and white surfaces

(MacDonald et al., 2000), and the shortest distance to the nearest ver-

tex (MacDonald et al., 2000). Here, we calculated the cortical thick-

ness using the average method similar to Freesurfer, as it has been

shown to yield the lowest standard deviation and lower normalized

standard deviation values across repeated single subject and popula-

tion scans (Lerch & Evans, 2005). Cortical thickness values outside the

range of 1.6 and 4 mm might be assumed artifactual (Glasser

et al., 2016; Glasser, Goyal, Preuss, Raichle, & Van Essen, 2014); to be

more conservative, we used the limits of 0.5 and 5 mm, but our ana-

lyses are robust for either range. Limiting the cortical thickness to

between 0.5 and 5 mm excludes approximately 2% of the vertices per

hemisphere.

2.3 | Sulcal depth

Sulcal shape descriptors, such as sulcal depth (Li et al., 2014), sulcal

width (Jin, Zhang, Shaw, Sachdev, & Cherbuin, 2018; Madan, 2019),

and the location and spatial frequency of sulcal pits (the deepest

points of cortical sulci) (Im & Grant, 2019; Meng et al., 2018; Meng, Li,

F IGURE 3 Cortical surface mesh smoothing. Left: Original surface mesh after reconstruction. Middle: After 50 iterations of Laplacian
smoothing. Right: After 100 iterations of Taubin smoothing

F IGURE 4 Improvement of the surface triangular mesh shown by a histogram. Left: Radius ratio, or the ratio between rin (the radius of the
triangle's inscribed circle) and rcirc (the radius of the triangle's circumsphere). Right: Aspect ratio, where a is the total area of triangle and l is the
longest edge length. The lighter plot corresponds to the original surface mesh, while the darker plot corresponds to the mesh after decimation
and smoothing. The red shaded areas represent highly distorted elements. Figure generated by (Cignoni et al., 2008)
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Lin, Gilmore, & Shen, 2014), have been investigated previously in

order to explore cortical development (Im et al., 2010). Here, we focus

on sulcal depth as an indicator of whether a point is toward the outer

surface of the brain or deep in its interior. In general, sulcal distance is

measured either relative to a morphological closing surface which

tightly shrink-wraps the cortical surface (Kao et al., 2007), or a mid-

surface that crosses the cortical surface (Fischl, Sereno, & Dale, 1999).

Here, we incorporated both methods for our sulcal depth calculations

(Figure 5). First, a point cloud is generated from the reconstructed pial

surface mesh. Secondly, a morphological closing is achieved by gener-

ating an alpha surface which wraps the point cloud. Alpha shapes are

generalizations of convex hulls, which wrap point clouds to varying

degrees of tightness (Edelsbrunner, Kirkpatrick, & Seidel, 1983;

Edelsbrunner & Mucke, 1994). The value of the arbitrary real parame-

ter α� 0,∞½ � characterizes the shape of the point cloud; values close

to zero capture the fine details of the set of points, while higher

values create a convex hull (Gardiner, Behnsen, & Brassey, 2018). An

alpha value of 20 yielded a plausible surface for closure of the cortex

as it captured the shape of the outer cortical surface without exten-

ding into the sulcal valleys, while also outlining the concave medial

temporal lobe and inferior medial regions (Figure 5 inset). After

aligning both surfaces to a common origin, we shrink the alpha surface

by a constant offset value at each node to generate a midcortical sur-

face that divides the pial and white surfaces. The offset parameter

was chosen to be 7 mm such that, in all subjects, roughly half of the

vertices are outside the midcortical surface and half are inside. While

a single parameter is not able to achieve a perfect fit for all subjects,

this resulted in only a 5% difference between the number of inside

and outside vertices in most of the subjects, with up to a 10% differ-

ence in �10% of subjects. Finally, we calculate the Euclidean distance

between each vertex on the cortical surface and the nearest vertex on

the alpha surface. This is the sulcal depth, defined such that points

buried in the brain's folds have a positive sulcal depth and points on

the outer surface of the brain have a negative sulcal depth (Im

et al., 2008; Van Essen, 2005). This method is different from the

Freesurfer's sulcal depth measurement, which measures how far a

vertex moves during an inflation operation (Fischl et al., 1999). Other

depth measurement methods involve calculations of the shortest geo-

desic distance (Rettmann, Han, Xu, & Prince, 2002; Tosun et al., 2007)

or the adaptive distance, which is a combination of both Euclidean

and geodesic distances (Kao et al., 2007; Yun, Im, Yang, Yoon, &

Lee, 2013). However, Euclidean and adaptive distance calculations

perform similarly in distinguishing between control groups and

Alzheimer patients (Yun et al., 2013), so for the sake of simplicity, we

employ Euclidean distance.

2.4 | Curvature

The complex morphology of the cortex can be investigated by the

characteristic shape of its convolutions via curvature measures

(Batchelor et al., 2002; Hu et al., 2013; Pienaar et al., 2008; Shimony

et al., 2016). In general, curvature is a scalar quantity that gives the

amount of bending at a point on a convoluted surface. While there

F IGURE 5 Generation of alpha surface for the calculation of sulcal depth. First, the 3D surface meshes reconstructed from the MR images
using Freesurfer are smoothed and decimated. Secondly, the alpha surface is generated from the point cloud of the pial surface mesh (inset image
shows the effect of alpha parameter). Finally, the outer alpha surface is isometrically shrunken to generate a midcortical surface
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are many different ways to quantify curvature, only two are indepen-

dent (Gray, 1998; Mesmoudi, De Floriani, & Magillo, 2012;

Upadhyay, 2015). Here, we consider mean curvature, a measure of

extrinsic curvature or folding; Gaussian curvature, a measure of intrin-

sic curvature or distortion; and shape index, a non-dimensional indica-

tion of shape. Furthermore, we calculate the principal curvatures from

the mean and Gaussian curvatures.

2.4.1 | Gaussian curvature

Gaussian curvature is a surface invariant, or intrinsic property of a sur-

face (Chiek, 2006). It does not change unless the surface is distorted,

sheared, or stretched. It has previously been used to quantify degree

of cortical folding and cortico-cortical connection lengths (Ronan

et al., 2011; Ronan et al., 2014). For discrete meshes, assuming that

curvature is constant around a local neighborhood, Gaussian curva-

ture K at a given point p can be calculated by the principles of Gauss-

Bonnet theorem (Gray, 1998; Surazhsky, Magid, Soldea, Elber, &

Rivlin, 2003) by

K¼ 1
A

2π�
XN
i¼1

θi

 !
with θi ¼ arccos

l2i þ l2iþ1�k2i
2li liþ1

" #
, ð2Þ

where N is the number of triangles connected to the vertex p, θi is the

internal angle of the ith triangle, and li , liþ1, and ki are the triangle edge

lengths as can be seen in Figure 6. A¼Σai is the sum of the area of

each triangle ai ¼ s s� lið Þ s� liþ1ð Þ s�kið Þ½ �1=2, where s¼ liþ liþ1þkið Þ=2
is the semi perimeter of each triangle meeting at a vertex p (Lin &

Perry, 1982). It can also be written as 2π�θpð Þ=A, where θp is the

sum of the internal angles at the point. If the local surface at a vertex

is flat, then the sum of the internal angles would be 2π and the Gauss-

ian curvature is zero. However, if the surface is elliptic or hyperbolic,

the sum of the internal angles will be less than or more than 2π,

respectively. On these surfaces, geodesic distances also change. Geo-

desics are the curves that minimize the lengths between two points

on a curved surface (Hubbard, 2016); on a flat surface, the Euclidean

and geodesic distances are equal (Hunsaker, 1941). A given area has a

smaller geodesic radius when Gaussian curvature is negative than

when it is positive.

2.4.2 | Mean curvature

Unlike Gaussian curvature, mean curvature is an extrinsic property of

the surface, providing a useful measure of foldedness. It has an intui-

tive meaning, changing as a piece of paper is folded into a cone or cyl-

inder. Just like paper folding, the extent of shape change might be

restricted by intrinsic properties of the surface, such as its initial thick-

ness and surface area (Mota & Herculano-Houzel, 2015). The direc-

tion of the outward unit normal provides the orientation at a given

point, so that the mean curvature distinguished between convex and

concave shapes. It has previously been shown to be a good indicator

of gyral and sulcal patterns of the cortex (Batchelor et al., 2002;

Cachia et al., 2001; Luders et al., 2006). For discrete surfaces, the

mean curvature H can be calculated by

H¼
PN

i¼1 lik kβi
4A

, ð3Þ

where N is the number of edges connected to the vertex; lik k denotes

the length of the ith edge connected to the vertex p; βi is the dihedral

angle, or the angle between normal vectors of the adjacent triangles

meeting at the edge li; and A is the sum of the areas of the adjacent

triangles (Mesmoudi et al., 2012) (Figure 6). This formulation assumes

that the neighboring vertices of the polygon is a cylindrical arc with a

small radius tangent to adjacent edges.

2.4.3 | Principal curvatures

At a given point on a curved surface, there are two orthogonal planes

that correspond to the maximum and minimum normal curvatures, k1

and k2, respectively. (Here we use the convention k1⩾k2, but note

that some studies instead use j k1 j ⩾ j k2 j.) The principal curvatures

are quantified as the reciprocal of the radius of the circle of best fit

tangent to the surface at that point. The local shape of a point on an

arbitrary surface can be determined by principle curvatures (Figure 7).

They can be calculated from the mean and Gaussian curvature as

kmax ¼Hþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2�K

p
and kmin ¼H�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2�K

p
) (Gray, 1998) or con-

versely, the mean and Gaussian curvature can be written in terms of

principal curvatures as H¼ k1þk2ð Þ=2 and K¼ k1�k2, respectively. In

this study, we calculated the principal curvatures from the values of

mean and Gaussian curvature at each vertex (Hu et al., 2013).

F IGURE 6 Representative polyhedra of the surface mesh at
vertex p with N = 5 neighboring vertices. Edge li is associated with
internal angle θi and dihedral angle βi (note that vertex p is not
necessarily co-planar with the neighboring vertices vi)
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2.4.4 | Shape index

Shape index is a dimensionless and scale-independent surface mea-

sure (Koenderink & van Doorn, 1992), unlike the mean and Gaussian

curvature, which have units of mm�1 and mm�2, respectively. Shape

index can be calculated from the mean and Gaussian curvatures or

from the principal curvatures,

SI¼2
π
arctan

Hffiffiffiffiffiffi
H2

p
�K

 !
¼2
π
arctan

k2þk1
k2�k1

� �
: ð4Þ

Shape index has a value between �1 and 1, classifying a continu-

ous gradient of concave, saddle, and convex shapes.

Planar surfaces, where k1 ¼ k2, have an indeterminate shape index

value. The absolute value of the shape index identifies the distinct

shape and the sign of it represents the orientation. While both mean

and Gaussian curvature are necessary to identify the local shape of a

surface (shape, sharpness of fold, and direction), shape index can be

used efficiently for discriminating local surface shape details uniquely

and intuitively (Dorai & Jain, 1997). In addition, shape index is a useful

quantitative measure of brain folding during growth, due to its scale-

independent property which separates isometric growth (scaling) and

shape change. Cortical growth and development is known to be non-

uniform and it is challenging to analyze curvature and shape change

independently from size change (Pienaar et al., 2008). To investigate

shape change only, it is ideal to use a dimensionless measure (Hu

et al., 2013); for example, shape index (Koenderink & van

Doorn, 1992) has been used to differentiate the local shape of the

cortex in fetal brains (Hu et al., 2013). Other approaches for obtaining

scale-independent curvature measures include normalizing by the sur-

face area and cerebral volume (Shimony et al., 2016) or employing a

Gaussian-filter approach (Pienaar et al., 2008).

2.4.5 | Intrinsic curvature index and folding index

The total ICI and total FI are dimensionless measures that quantify the

total intrinsic curvature and total extrinsic folding of the cortex,

ICI¼ 1
4π

ð ð
KdA and FI¼ 1

4π

ð ð
k1j j k1j j� k2j jð ÞdA, ð5Þ

respectively (Van Essen & Drury, 1997). They are both normalized by

4π which is the total integrated curvature for a perfect sphere as

introduced by the well-known Gauss-Bonnet theorem. Whether the

cortex is more intrinsically curved or extrinsically folded attracted

F IGURE 7 A combination of principle curvatures yields different shapes at a point on a surface
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researchers previously. They have tried to quantify this by generating

2D flat mappings of the cortex (Drury et al., 1996; Van Essen &

Drury, 1997). If the cortex is only purely folded, then a 2D flat map

could be generated with no distortions. However, cortex is also intrin-

sically curved that hinders 2D flat mappings without local cuts or

tears.

2.5 | Surface data smoothing

Discrete surface measure calculations on piece-wise linear shapes

introduce local minimums and maximums. To remove these local

extrema, we applied a weighted-average smoothing algorithm, averag-

ing the surface data on a vertex with the data of its immediate neigh-

bors by

pv ¼
XN
i¼1

pi
WiPN
i¼1Wii

 ! !
with Wi ¼1:0� diPN

i¼1di

 !
, ð6Þ

where pv is the value at the vertex in consideration, pi is the value at

its ith neighbor, Wi is the weight parameter, and di is the Euclidean

distance between the vertex and its neighbor. While geodesic dis-

tance would be more robust for highly convoluted surfaces like the

cortex, for fine meshes the difference is likely negligible (Chung

et al., 2005). We employed two iterations of smoothing at each

vertex.

2.6 | Data

In this study, we present our results based on the Autism Brain Imaging

Data Exchange (ABIDE-I) repository (Di Martino et al., 2014). Although

MRI data acquisition parameters and types of scanners vary between

sites (Table 1), all of the scans were acquired at 3 T. Detailed informa-

tion regarding the functional and anatomical scan parameters of each

site can be found on the website http://fcon_1000.projects.nitrc.org/

indi/abide/abide_I.html and also in the supplementary information of

Di Martino et al. (2014). We analyzed the structural MR images of N¼
501 neurotypical human subjects of both sexes, between 7 and

64years old. While 573 subjects are available in the ABIDE-I data-

base, we excluded 72 subjects based on qualitative scan quality

(Pardoe et al., 2016). All structural MR images were preprocessed with

Freesurfer pipeline (Fischl, 2012) (version 6.0, http://surfer.nmr.mgh.

harvard.edu) to obtain reconstructed white and pial cortical surface

meshes, which can be accessed via the website http://preprocessed-

connectomes-project.org/abide/ (Cameron et al., 2013). Further

TABLE 1 Autism Brain Imaging Data Exchange MRI data acquisition details for each site

Site Sample size Voxel size (mm3)

Scan parameters

ScannerTR (ms) TE (ms) TI (ms) Flip angle (�)

Caltech 19 1 � 1 � 1 1,590.0 2.73 800 10 STT

CMU 12 1 � 1 � 1 1,870.0 2.48 1,100 8 SV

KKI 31 1 � 1 � 1 8.0 3.70 843 8 PA

Leuven-1 15 0.98 � 0.98 � 1.2 9.6 4.60 900 8 PI

Leuven-2 20 0.98 � 0.98 � 1.2 9.6 3.06 900 8 PI

MaxMun 32 1 � 1 � 1 1,800.0 3.06 900 9 SV

NYU 104 1.3 � 1 � 1.3 2,530.0 3.25 1,100 7 SA

OHSU 11 1 � 1 � 1 2,300.0 3.58 900 10 STT

Olin 13 1 � 1 � 1 2,500.0 2.74 900 8 SA

Pitt 26 1.1 � 1.1 � 1.1 2,100.0 3.93 1,000 7 SA

SBL 15 1 � 1 � 1 9.0 3.50 1,000 8 PI

SDSU 21 1 � 1 � 1 11.1 4.30 600 45 GEM

Stanford 12 0.86 � 1.5 � 0.86 8.4 1.80 NA 15 GES

Trinity 25 1 � 1 � 1 8.5 3.90 1,060 8 SV

UCLA-1 30 1 � 1 � 1.2 2,300.0 2.84 853 9 STT

UCLA-2 11 1 � 1 � 1.2 2,300.0 2.84 853 9 STT

UM-1 37 2 � 2 � 1.2 250.0 1.80 500 15 GES

UM-2 20 2 � 2 � 1.2 250.0 1.80 500 15 GES

USM 40 1 � 1 � 1.2 2,300.0 2.91 900 9 STT

Yale 7 1 � 1 � 1 1,230.0 1.73 624 9 STT

Notes: Sample size reflects the total number of subjects analyzed in this study, which in some cases is lower than the number of subjects scanned due to

scan quality (Pardoe, Kucharsky Hiess, & Kuzniecky, 2016).

Abbreviations: GEM, GE MR750; GES: GE Signa; PA, Philips Achieva; PI, Philips Intera; SA, Siemens Allegra; STT, Siemens TrioTim; SV, Siemens Verio.
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analysis is executed by our publicly available computational pipeline

shared via https://github.com/mholla/curveball.

3 | RESULTS

For each subject, we calculated the surface area, cortical thickness, sul-

cal depth, and curvature (mean curvature, Gaussian curvature, and

shape index) at each vertex of the decimated mesh (�40 k vertices and

�80 k faces per hemisphere). In addition, we calculated the total curva-

ture (ICI and FI) for the cortical surface of each subject. We present the

surface data distributions as a function of probability density with a

Gaussian kernel density estimation, where the estimator bandwidth

employs the Scott's Rule (Heidenreich, Schindler, & Sperlich, 2013). The

x-axis shows the data values and the y-axis can be interpreted as the

probability for a value in the interval (i.e., bandwith) to occur.

Moreover, we investigated the cortical thickness distributions rela-

tive to each measure of curvature and depth with the intent to repro-

duce previous knowledge of gyral and sulcal thickness variations and

gain a deeper understanding of the relationship between complex corti-

cal folding patterns and thickness differences beyond just gyri and sulci.

The distribution profiles represent aggregate data from each subject.

Before presenting our results, we wish to draw the reader's atten-

tion to the distinction between topology and anatomy. By topology,

we refer to the objective, quantifiable local shape of the cortex,

including convex, concave, and saddle shapes. By anatomy, we refer

to the features of the brain as labeled by trained experts, including

gyri, sulci, and walls, based on a combination of topology, location,

and normalized atlases. While these concepts are loosely related—that

is, gyri are mostly convex and most convex shapes are found on gyri—

there are locations in the brain that represent every possible combina-

tion of topology and anatomy (Figure 8).

In addition to calculating statistical significance via Welch's t-test

for unequal variances, we also calculated Cohen's d value, or effect

size (Cohen, 1977), to quantify the differences between cortical thick-

ness distributions in relationship to shape and depth. The effect size is

the amount of difference between the compared data; note that it is

independent of the sample size and better at quantifying the substan-

tial differences and overlap between data. A large effect size d>0:8ð Þ
is “grossly perceptible” (Cohen, 1977), while a medium effect size

(d> 0:5) is visible to the naked eye. A small effect size (d<0:2) might

not be obvious, but should not necessarily be interpreted as a negligi-

ble difference. Effect sizes are only reported when the data compared

are significantly different (p<0:05).

3.1 | Average cortical thickness

The average cortical thickness of the human cortex is around 2.5–

3 mm and varies non-uniformly from 0.5 to 4.5 mm throughout the

cortex (Fischl & Dale, 2000), providing information about its underly-

ing cytoarchitecture (Goulas et al., 2016). Across all the subjects, we

found an average cortical thickness of 2.71 ± 0.8 mm (Figure 9),

slightly higher than the reported averages of 2.44 ± 0.10 mm (Van

Essen et al., 2012) and 2.6 (Glasser et al., 2016).

3.2 | Mean curvature

After calculating the mean curvature across the surface of the brain

(Figure 10a), we saw that the visible gyral peaks had mostly negative

curvature (convex shape), while the buried sulci had positive curvature

(concave). However, while mean curvature is useful to distinguish

convex from concave shapes, this binary discrimination is insufficient

to analyze the true topology of the cortex. It is not the case that nega-

tive and positive mean curvature strictly denote gyri and sulci, respec-

tively, although this has been used previously as a heuristic (Lin

et al., 2021). Both gyri and sulci have vertices with both positive and

negative mean curvature (Figures 8 and 10a). Saddle shapes of the

cortex cannot be distinguished with mean curvature. When looking at

the distribution of cortical thickness in convex and concave points, we

found that points with negative mean curvature are significantly

thicker than the points with positive mean curvature (2.88 and

2.47 mm, respectively, with p�10�10) (Figure 10c). Mean curvature

has a medium effect on cortical thickness (d¼0:53) (Figure 10d).

3.3 | Gaussian curvature

When overlaying Gaussian curvature on the pial surface of the brain

(Figure 11a), we saw that negative Gaussian curvature highlights the

F IGURE 8 Topology versus anatomy in the cortex. While
topology and anatomy are loosely related, with gyri and convexity,
sulci and concavity, and walls and saddle shapes often found together,
every possible combination of the two can be found in the brain. Here
we visualize convex gyri, saddle-shaped gyral bends, and local
concavities located on gyral crowns; similarly (while harder to

visualize), most sulci are concave, but saddle and convex shapes can
also be found on sulci

DEMIRCI AND HOLLAND 2073

https://github.com/mholla/curveball


F IGURE 9 Cortical thickness. Left: Regional mean and local cortical thickness are overlaid onto pial and artificially inflated surfaces of a
representative left hemisphere. Right: Cortical thickness distribution of N = 501 typically developed human subjects (mean = 2.71 ± 0.8 mm)

F IGURE 10 Mean curvature and cortical thickness. (a) Mean curvature is overlaid on the pial surface of a representative left hemisphere. The
magnified image on the right shows the vertices with positive (yellow) and negative (blue) mean curvature. (b) Unimodal distribution of mean
curvature for all N = 501 human subjects (mean �0:02�0:28 mm�1). Note that the range of mean curvature is restricted to [�1,1] to eliminate
the outliers in the data. (c) Cortical thickness distribution for points with positive and negative mean curvature (H) with means 2.47 and 2.88mm,
respectively. (d) Effect size calculated for each subject (mean d = 0.53). The dotted lines show the cut-off for large (d>0:8) and small (d<0:2)
effect size thresholds
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saddle-shaped insides of tangential bends and intersections, while posi-

tive Gaussian curvature is found in both inward- and outward-bulging

areas. Thus, Gaussian curvature by itself is not able to distinguish

between sulci and gyri. Instead, we supplemented Gaussian curvature

with the principal curvatures. When both k1 and k2 are greater than

zero, this indicates an inward-bulging vertex, and vice versa. The mean

value of the Gaussian curvature of inward-bulging points and outward-

bulging points are 0.12 and 0.08mm�2 for all subjects, respectively, as

sulcal pits are more sharply folded than gyral peaks. The spatial fre-

quency of vertices with saddle shape (�20k vertices) are greater than

convex (�12k) or concave (�7 k) which might be evidence for the

compact morphology of the cortex. The cortical thickness is thicker in

convex points than concave points (2.96 and 2.33mm, respectively),

with saddle-shaped vertices in between (2.70mm) (Figure 11c). The dis-

tribution of cortical thickness is significantly different between the

three shapes (p�10�10 for all combinations), with a large effect size

between concave and convex shapes and medium effect sizes

between saddle shapes and the others (Figure 11d).

3.4 | Shape index

From a qualitative assessment, shape index categorizes the cortical

surface into a spectrum from the most inward-folded areas, such as

sulcal pits, to the most outward-folded regions such as gyral crests

(Figure 12a). In between are sulcal walls and the intersections and

tangential folds of gyri and sulci, which exhibit various combinations

of concavity and convexity. Unlike mean and Gaussian curvature,

the distribution of the shape index throughout the cortex is bimodal

with two distinct peaks (Figure 12b), corresponding to ridge and rut

shapes (SI = �0.61 and 0.54). This means that most vertices are rut

or ridge shaped, with ruts being the most prevalent. The distribution

of cortical thickness with respect to the nine distinct shape descrip-

tors of the shape index increases from cup to cap (Figure 12c). We

comprehensively compared the thickness distribution for each shape

to the others; every comparison was significant (p�10�10). As

expected, effect sizes are larger for more distinct shapes on opposite

sides of the spectrum, and get smaller as the shape gets closer

(Figure 12d).

3.5 | Sulcal depth

After calculating sulcal depth from the hypothetical midcortical sur-

face, the sulcal depth value is overlaid on the pial surface of the brain

(Figure 13a). The midsurface cuts the pial surface in approximately

two equal halves with respect to the total number of vertices in the

outer and inner sections. Exterior points are significantly thicker than

F IGURE 11 Gaussian curvature and cortical thickness. (a) Gaussian curvature is overlaid onto the pial surface of a representative left
hemisphere. The magnified image on the right shows the points with negative (yellow) and positive (blue) Gaussian curvature. (b) Unimodal
distribution of Gaussian curvature for all N¼501 human subjects mean¼�0:0003�0:037mm�2

� �
. c) Cortical thickness distribution for convex

k1,k2 < 0ð Þ, concave k1,k2 > 0ð Þ, and saddle-shaped vertices K <0ð Þ with means 2.96mm, 2.33mm, and 2.70mm respectively. d) Effect size
calculated for each subject (means d¼0:85,0:53,0:36, respectively. The dotted lines show the cut-off for large (d> 0:8) and small (d<0:2)
effect size thresholds
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interior points (2.95 and 2.48 mm, respectively, with p�10�10), with

a medium effect size (d¼0:60, Figure 13b,c).

3.6 | Interactions between curvature and depth

After investigating the distribution profile of cortical thickness in rela-

tionship to each curvature measure, we also considered interactions

between curvature and depth (Figure 14). For each range of values,

we calculated the mean cortical thickness of all the vertices within

that range from all subjects. If no points in the desired range are found

for a given subject (as occurs, e.g., when looking for sharply concave

points in the outer reaches of the cortex), that subject is omitted from

the calculations. For each shape, cortical thickness consistently

increases when moving radially from the bottom of the sulci to the

top of the gyri (Figure 14a–c). Additionally, for a given depth, convex

F IGURE 12 Shape index and cortical thickness. (a) Shape index is overlaid onto the pial surface of a representative left hemisphere.
(b) Bimodal distribution of shape index for all N = 501 subjects, with peaks at �0.6 and 0.52. (c) Cortical thickness distribution for each descriptor
of the shape index with means 2.34, 2.37, 2.39, 2.62, 2.74, 2.79, 2.86, 3.02, and 3.10 mm from cup to cap, respectively. (d) Effect size calculated
for each combinations of the nine shape descriptors

F IGURE 13 Sulcal depth and cortical thickness. (a) Sulcal depth is overlaid on the pial surface of a representative left hemisphere. Black
dashed splines on the magnified images on the right show the midcortical surface with zero depth, both inside and outside of the tangential
bends. (b) Cortical thickness distribution for the outer and inner halves of the pial surface for all N = 501 subjects. (c) Effect size calculated for
each subject. The dotted lines show the cut-off for large (d>0:8) and small (d<0:2) effect size thresholds
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shapes are thicker than concave shapes (as shown by mean curvature,

Figure 14a, and shape index, Figure 14c), while saddle shapes are in

between (as shown by Gaussian curvature, Figure 14b, and shape

index, Figure 14c). Moreover, by observing the population size, we

see that most convex points are in the exterior of the cortex, most

concave points are in the interior, and saddle-shaped vertices are clus-

tered in the middle (sulcal walls).

Insula is the deepest region of the cortex, which has six gyral and

sulcal subregions (shown in bright yellow color in Figure 13a). From a

regional analysis of the insular cortex, we observed that its gyral

regions have a higher mean cortical thickness value compared to its

sulcal regions (ranging from 3.4 to 2.3 mm). From our local analysis,

the correlation between shape and thickness is also evident for insula.

Convex-shaped points are thicker than concave-shaped points in the

insular region (Figure 14a–c) and saddle-shaped points are in-between

these two (Figure 14b).

3.7 | Intrinsic and extrinsic folding

We calculated the ICI and FI for all convex, concave, and saddle-

shaped points of the cortex as described in Section 2.4.5. They are

normalized by their corresponding total surface area (�150 cm2 for

concave, �340 cm2 for convex, and �590 cm2 for saddle). For saddle-

shaped points we took the absolute value of K. Convex points are the

least folded, while concave points are highly folded, with significantly

higher FInorm and slightly higher ICInorm. The saddle-shaped points

have a lower FI than concave points but similar curvature index

(Figure 15).

4 | DISCUSSION

4.1 | Cortical thickness varies along a gyral–sulcal
spectrum

Cortical thickness variations in the cortex have been of great interest

for decades, with early histological studies revealing a consistent dif-

ference in cytoarchitecture of the cortex where gyral crowns are

F IGURE 14 Cortical thickness variations with respect to curvature and depth. Average cortical thickness for all subjects with respect to a
range of values of sulcal depth and (a) mean curvature, (b) Gaussian curvature, and (c) shape index. Note that cortical thickness is displayed as an
averages for the given bounded values, weighted by the total number of vertices for each subject. The size of the circles indicate the number of
points found in the bounded range. Insula is located deep in the cortex, >14 mm

F IGURE 15 Normalized total ICI (ICInorm) and normalized total FI
(FInorm) for all convex, concave, and saddle-shaped points of the
cortex in N = 501 typically developed human subjects. Both folding
indices are normalized by the total surface area of the relevant points
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thicker than sulcal fundi (Bok, 1929). However, these studies of two-

dimensional pieces of tissue could not capture the full complexity of

the three-dimensional pattern of folds seen in the human brain. With

the advances of MR imaging and computational neuroimaging tools, it

is now possible to investigate the intricate morphology of the brain

and its variations in cortical thickness in three dimensions. Curvature

measures are very useful in this matter. Although there is no single

curvature measure that can capture the complex morphology in fine

detail, each of the curvature measures investigated in this study can

be useful for quantifying different aspects of the form of the cortex.

Our analysis shows that the cortical thickness does not differ only

between sulci and gyri (Figure 10), but rather gradually from sulci to

gyri in a spectrum with respect to shape (Figures 11, 12, and 14). Cap

shapes, with the highest convexity in both directions, are the thickest,

while cup shapes, with the highest concavity in both directions, are

the thinnest. In between are saddle shapes, which exhibit a combina-

tion of convexity and concavity.

4.2 | Tangential folds affect the cortical thickness

The tangential folds of the cortex have not received much attention

before, perhaps due to difficulties of outlining tangentially folded

regions. Here, we show the usefulness of Gaussian curvature in

highlighting tangential folding patterns (Figure 11a). Negative Gauss-

ian curvature indicates the saddle shapes of the cortex, which corre-

sponds to sharp circumferential infolds of gyri and sulci. These infolds

are thinner than the outside of tangential folds, as identified by posi-

tive Gaussian curvature (Figure 14b). This result is consistent with

previous results that found that convex regions were thicker than

concave at adjacent banks of the precentral gyrus (Zhang et al., 2017).

Furthermore, these inner folds are consistently thicker than purely

concave regions but thinner than purely convex regions (Figure 11c).

Tangential folds of the cortex have a consistent impact on the local

cortical thickness.

4.3 | Shape index reveals consistent thickness
variations in relationship to local topology

While mean curvature distinguishes concave from convex, and Gauss-

ian curvature distinguishes saddle shapes, shape index is able to clas-

sify the local shape in a continuous spectrum from sulcal crests to

gyral peaks (Figure 12a–c). It is possible to discern the thickness varia-

tions with respect to shape for a given depth of the cortex. Shape

index most clearly identifies the contribution of both of the principal

curvatures, allowing us to distinguish shapes where convexity and

concavity dominate to different extents. As the shapes shift from

purely concave, to mostly concave, to mostly convex, to purely con-

vex, the cortex consistently thickens. This could be because the local

thickness restricts the local shape (Mota & Herculano-Houzel, 2015),

or the shape could be an indication of the stress state generated dur-

ing folding, which naturally leads to local thickening and thinning

(Holland et al., 2018). Furthermore, the size-independent property of

the shape index is very useful when comparing cortices of different

sizes, for instance from different species or for a single individual

throughout development. For example, shape index was found to best

discriminate between term and healthy preterm infants (Shimony

et al., 2016) and revealed subtle cortical shape differences among

patients with Parkinsonian syndromes (Tosun et al., 2007).

4.4 | Insular cortex shows the same patterns of
thickness

Insula is the deepest region in the cortex, folded deep within the lat-

eral sulcus. It emerges early on during gyrification before being cov-

ered by the neocortex, forming the complete Sylvian fissure (Van

Essen, 2020). It has in total six gyral and sulcal subregions (Destrieux

et al., 2010). From a local investigation, convex points of the insula

are thicker than concave points. This explains why the cortex thickens

after thinning as sulcal depth increases (Figure 14)—even though the

insula is the most interior part of the cortex, it contains both gyri and

sulci and therefore both thick and thin regions.

4.5 | Extrinsic folding index varies in a gyral–sulcal
spectrum

The entire cortex can be represented with a 2D flat map with minimal

distortions as the cortex is more folded during gyrification than intrinsi-

cally curved (Van Essen & Maunsell, 1980). This is seen, for instance,

in our findings that Gaussian curvature has a normal distribution with

the majority of vertices very close to zero. In comparisons of ICI and

FI, a noticeable predominance of extrinsic folding is found (Van

Essen & Drury, 1997), particularly for concave and saddle points. This

supports previous findings that sulcal invaginations involve a consider-

able amount of folding during growth (Van Essen & Maunsell, 1980).

In fact, we observe an inverse correlation between the FI and cortical

thickness, where concave points have the most folding and thinnest

cortex, and convex points have the least folding and thickest cortex.

This suggests a strong relationship between extrinsic folding and cor-

tical thickness.

Intrinsic curvature quantifies areal distortions and shear, perhaps

caused by non-uniform, differential growth of the cortex

(Griffin, 1994; Ronan et al., 2011; Ronan et al., 2014), and accom-

panies reduced geodesic distances. Higher ICInorm in sulci might be a

consequence of reduced connection lengths (Ronan et al., 2011). Fur-

thermore, we note that saddle-shaped vertices dominate the cortex

(�55% of the total surface area), predominantly on tangential folds.

Hyperbolic surfaces such as these lead to reduced geodesic distances,

essentially bringing points on the surface closer to each other

(Griffin, 1994). This could help overcome the challenges of packing

increased cortical surface area into the limited cranial volume

(Fernández, Llinares-Benadero, & Borrell, 2016; Zhang &

Sejnowski, 2000) and efficiently connecting different brain regions via
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the compact cortical wiring principle (Ronan et al., 2011; Van

Essen, 1997). Thus, these folds, found in increasing numbers in highly

convoluted brains, potentially enhance cortico-cortical connections

and brain function (Im et al., 2008).

4.6 | Local cortical thickness has potential for the
study of neurodevelopmental disorders

Recent advances in MR imaging and computational algorithms have

opened possibilities for the diagnosis of neurological diseases and dis-

orders based on abnormalities in cortical morphology (Gautam &

Sharma, 2020; Raghavendra, Acharya, & Adeli, 2019; Tosun

et al., 2007). For example, multivariate parametric classifier

approaches have shown success at characterizing ASD from medical

images, involving various morphological parameters of the brain such

as total brain volume, total cortical volume, cortical thickness (Pua

et al., 2019; van Rooij et al., 2018), mean curvature (Awate, Win,

Yushkevich, Schultz, & Gee, 2008), sulcal depth (Nordahl et al., 2007),

local gyrification index (Ni, Lin, Chen, Tseng, & Gau, 2019), and sur-

face area (Ecker et al., 2010; Hong, Valk, Di Martino, Milham, &

Bernhard, 2018; Mensen et al., 2017; Pua et al., 2019). While these

results are difficult to generalize due to the heterogeneity of the dis-

order, which is influenced by various cofactors such as age, IQ, gen-

der, and severity, future work could develop these cortical features

into biomarkers for the early diagnosis of ASD in a clinical environ-

ment (Pagnozzi, Conti, Calderoni, Fripp, & Rose, 2018). Recent

advances in high-resolution MR imaging (Wagstyl et al., 2018), in par-

ticular, show great potential for investigating the relationship between

local shape and thickness on a laminar scale. This could not only pro-

vide insight into the relationship between curvature and laminar thick-

ness, but also the role of cortical laminae in both typical and atypical

development.

4.7 | Limitations

While this study represents the first comprehensive and systematic

relationship between local cortical thickness and topology throughout

the cortex, there are a several limitations. First, the ABIDE MR imag-

ing dataset was selected arbitrarily, and we did not consider any age

or gender effects. Quality control due to participant motion can be an

issue for the ABIDE dataset (Bezgin, Lewis, & Evans, 2018; Di Martino

et al., 2014; Esteban et al., 2017). A qualitative assessment of the

image quality was performed previously that rated ABIDE scans from

1 to 5, 1 indicating a low quality with high motion artifact and 5 indi-

cating a high quality with low motion artifact (Pardoe et al., 2016). We

excluded in total N¼72 subjects from our results that received a rat-

ing of 3 or below. However, our results did not change considerably

when all the subjects were included in the analysis. We also note the

challenges of multisite studies, where images were collected on differ-

ent scanners with different parameters (Table 1); however, we sepa-

rately analyzed subjects from a single site (Yale) and found very

similar results. Additionally, we used cortical surface meshes gener-

ated by Freesurfer, which is optimized to work with adult human

brains. This restricts our ability to analyze fetal or non-human animal

brains. However, our pipeline is capable of working on any surface

mesh, so analyses such as these are only limited by the segmentation

process, which can be done using other automated processes (Klein

et al., 2017) or even manually (Heuer et al., 2019). Furthermore, the

70% decimation of the mesh results in significantly fewer vertices

than are found in the original surface reconstructions from Freesurfer.

This decimation parameter is adjustable in our pipeline, but was cho-

sen because mesh resolution and computation time are inversely cor-

related. Currently, the total computation time is �1–2 hr for a single

subject, run with a single core, but a denser mesh would increase the

total computation time substantially. Finally, this article focuses on

the consistent relationship between the topology of the cortex and its

thickness, without investigating the mechanisms for this relationship.

Previous studies have established a plausible role for the mechanics

of folding in the emergence of cortical thickness variations (Holland

et al., 2018), while also pointing to a contributing role for heteroge-

neous growth throughout cortical folds (Wang et al., 2020). This work

builds on those findings by identifying a systematic relationship

between cortical folding and thickness. We leave future mechanistic

investigations into the causes of cortical thickness variations, particu-

larly those associated with cortical folding, to future studies.

5 | CONCLUSION

Our findings offer a new framework for interpreting local cortical

thickness variations throughout the cortex in much higher resolution

than previous studies of cortical thickness. The convoluted shape of

the cortex turns out to exhibit a well-organized relationship between

shape and thickness. This relationship is not limited to only the bot-

toms of sulci and the tops of gyri, but also observed in a variety of

shapes beyond and in-between, including the inner and outer edges

of tangential folds and intersections. Cortical thickness was found to

be significantly correlated with the local shape among N¼501 typi-

cally developed human subjects. Convex points are consistently

thicker than saddle-shaped points, which are in turn consistently

thicker than concave points. The more convex a point is (such as a

spherical cap), the thicker it tends to be, with a smooth decrease in

average thickness for shapes that display more and more concavity

(such as saddle and cup shapes). Our findings point to an important

role for tangential folds of gyri and sulci into the determination of cor-

tical thickness. A consistent thickness variation has also been

observed within the layers of the cortex; the deeper layers (Layers V

and VI) are thinner along the fundus of a sulcus and relatively thicker

along the crest of a gyrus, while the reverse is recognized for superfi-

cial Layers I, II, and III. The middle layer (Layer IV), on the other hand,

has a fairly constant thickness in all regions for both in humans

(Bok, 1929) and in macaques (Van Essen & Maunsell, 1980). We aim

to investigate the well-organized relationship between curvature and

thickness within the layers of the cortex in the future.
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