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In this study, transcriptome analysis of PPRV infected PBMC subsets—T helper

cells, T cytotoxic cells, monocytes, and B lymphocytes was done to delineate their

role in host response. PPRV was found to infect lymphocytes and not monocytes.

The established receptor for PPRV—SLAM was found downregulated in lymphocytes

and non-differentially expressed in monocytes. A profound deviation in the global

gene expression profile with a large number of unique upregulated genes (851) and

downregulated genes (605) was observed in monocytes in comparison to lymphocytes.

ISGs—ISG15, Mx1, Mx2, RSAD2, IFIT3, and IFIT5 that play a role in antiviral response

and the genes for viral sensors—MDA5, LGP2, and RIG1, were found to be upregulated

in lymphocytes and downregulated in monocytes. The transcription factors—IRF-7 and

STAT-1 that regulate expression of most of the ISGs were found activated in lymphocytes

and not in monocytes. Interferon signaling pathway and RIG1 like receptor signaling

pathway were found activated in lymphocytes and not in monocytes. This contrast

in gene expression profiles and signaling pathways indicated the predominant role of

lymphocytes in generating the antiviral response against PPRV in goats, thus, giving us

new insights into host response to PPRV.
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INTRODUCTION

Peste des petits ruminants (PPR) is an acute, highly contagious viral disease with high mortality
(90%) and morbidity (100%) in sheep and goats and is classified as an OIE listed disease due to its
economic relevance and severity (1). It is characterized by high fever, mucous membrane erosions,
discharge through eyes and nose, enteritis and pneumonia, culminating in a fatal outcome (2).
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The causative agent is single-stranded, negative-sense RNA
virus of genus Morbillivirus and family Paramyxoviridae. An
investigation into themolecular determinants of the pathogenesis
of PPRV is of considerable interest to understand the host-virus
interaction and to devise strategies for its eradication.

PPR virus (PPRV) is a lymphotropic and epitheliotropic cell-
associated virus, which uses peripheral blood mononuclear cell
(PBMCs) as a vehicle for its dissemination within the host
(3, 4). SLAM/CD150 established as a receptor for PPRV, is
found on activated T cells, B cells, thymocytes and dendritic
cells (5). Morbilliviruses infect both T and B lymphocytes (6,
7). PBMCs play a significant role in pathogen recognition and
initiation of early innate immune response. This makes them
a standard model for studying host-pathogen interactions in
PPRV and other related infections (8–11). We have previously
identified various immune modulating transcription factors
and predicted an immune signaling pathway in response to
Sungri/96 live attenuated PPRV vaccine strain in vitro in
PBMCs. Our group has also deciphered miRNAome of lung
and spleen of PPRV infected sheep and goats, identified and
validated suitable reference genes for expression studies in
PPRV infected tissues and revealed the role of miRNAome
of PBMCs in regulating immune processes in PPRV infected
goat (12–15).

The host immune response is often complicated due
to differences in how different cell types receive a signal
from different classes of receptors and produce distinct
effector molecules (16). The individual role of PBMC
subsets in terms of their contribution to immune response
against Zaire ebolavirus and inactivated seasonal influenza
virus infection has been explored through RNA-Sequencing
analysis (17, 18). However, RNA-Sequencing of PPRV infected
PBMC subsets has not been explored to date. Transcriptome
analysis of the subpopulation of highly enriched circulating
leukocytes and analysis of cell-specific pathways will help
in understanding leukocyte regulatory networks in PPRV
infection. In this study, subsets of peripheral blood leukocytes
were isolated from control (0 day) and PPRV infected
(9 dpi) goats through MACS technology and subjected
to RNA-Sequencing. Subsequently, transcriptome analysis
combined with system-level network analyses revealed the
contrast between monocytes and lymphocytes with respect
to expression of genes, signaling pathways and putative
upstream regulators.

MATERIALS AND METHODS

Animal Experiment, Ethics Statement, and
Viral Infection
Highly virulent PPRV (Izatnagar/94, accession number
KR140086.1) that is being maintained at National Morbillivirus
Referral Laboratory, Indian Veterinary Research Institute,
Muktehswar by animal-to-animal passages (19, 20) was
used in the present study. The permission to conduct
the study was granted by Indian Veterinary Research
Institute Animal Ethics Committee (IVRI-IAEC) under the

Committee for the Purpose of Control and Supervision of
Experiments on Animals (CPCSEA), India, vide letter no
387/CPSCEA. Healthy goats (n = 4) that were negative for
PPRV antibody by competitive-ELISA (21) and by serum
neutralization test (SNT) (22), and for PPRV antigen by
s-ELISA, were inoculated with the virus as mentioned
in our earlier study (23). s-ELISA for detection of virus
in nasal, ocular, buccal, and rectal swabs, PPRV N gene
expression by qRT-PCR in PBMC subsets, histopathology, and
immunohistochemistry of tissues were used for confirmation
of infection.

Isolation of T Helper Cells, T Cytotoxic
Cells, B Lymphocytes, and Monocytes
Blood was collected from goats (n = 4) in heparin-coated
vacutainer vials. PBMCs were isolated by using Ficol histopaque
gradient method. PBMCs were strained through cell strainer
of 0.40 micron. The PBMCs subsets were enriched by positive
selection using indirect MACS technology (Milteny Biotech).
Initially, the cell-specific surface marker FITC-conjugated
primary antibodies, anti CD4+ (T helper cells, #MCA2213F), anti
CD8+ (T cytotoxic cells, #MCA2216F), anti CD14+ (Monocytes,
#MCA1568F), and anti CD21+ (B lymphocytes, #MCA1195F),
were used. Subsequently, the cells were magnetically labeled
with anti—FITC MicroBeads. Then the cell suspension was
loaded on a miniMACS R© column which was placed in
the magnetic field of a MACS Separator. The magnetically
labeled cells were retained in the column while the unlabeled
cells run through. After removal of the column from the
magnetic field, the magnetically retained cells were eluted
as positively selected cell fraction. Cell sorting was done
as per the manufacturer’s protocol. Primary FITC-conjugated
antibodies were titrated to determine the optimal dilution.
Cells were kept on the ice and cold buffers were employed
to minimize alterations in gene expression during labeling and
sorting. The purity of the cells was further checked by flow
cytometer. The cells were stored in RNA later for further use
at−80◦C.

RNA-Sequencing of the Samples
The RNA-sequencing of each subset of PBMCs was carried out
following the standard procedure as described in our previous
study (20). Briefly, total RNA was isolated using the RNeasy
Mini kit (Qiagen GmbH, Germany). Following the quality
and integrity assessment on Bioanalyzer (Agilent Technologies,
Inc), RNA (100 ng) was used for library preparation with the
help of NEBNext Ultra RNA Library Prep Kit for Illumina
(NewEngland Biolabs Inc.). The quality of the libraries was
checked on Bioanalyzer and quantity was measured using a
Qubit 2.0 Fluorometer (Life Technologies) and by qPCR. Library
(1.3ml, 1.8 pM) was denatured, diluted, and loaded onto a
flow cell for sequencing. FastQC (Babraham Bioinformatics)
was used for quality assessment of raw sequence data and
prinseq-lite software (24) was used to remove reads of low
quality (mean phred score 25) and short length (<50) for
downstream analysis.
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FIGURE 1 | Workflow for RNA sequencing data analysis.

Identification of Differentially Expressed
Genes (DEGs)
The overview of the transcriptome analysis is given in Figure 1.
Initially, the quality-filtered reads from control and infected
samples (0 days and 9 dpi) were mapped to Capra hircus genome
using Bowtie2 (25). Themapped reads were then assembled using
RNA-Seq by expectation maximization (RSEM) (26). The counts
were used for calculating DEGs by use of R packages—EBSeq,
DESeq2 and edgeR. The common DEGs from the three packages
were used for downstream analysis while as fold changes for the
corresponding genes was taken from DESeq2.

Functional Analysis of DEGs
Using g:Profiler, the significantly expressed (p ≤ 0.05) DEGs
were functionally annotated (27). The retrieved viral processes
and immune system processes were chosen to find the genes
associated with these processes. Further, the genes involved in
immune-related functions were manually classified into antiviral
interferon-stimulated genes (ISGs), chemokines, interleukins,
viral sensors (PRRs), Interferons and Granzyme B, based on
literature evidence and the type of associated immune process,
to get comprehensive insights. Besides, 106 genes (= knowledge-
based genes) were selected based on their role in host response
against viruses from the earlier host-PPR virus interaction studies

(8, 12) to explore variation in their expression across the
PBMC subsets.

Predicted Protein-Protein
Interaction(PPI) Network
The Biological General Repository for Interaction Datasets
(BioGRID) is a repository of protein-protein and genetic
interactions for many species. Based on the interactions available
in the BioGRID database, PPI network among the selected genes
is retrieved (28). Initially, the DEGs obtained from transcriptome
analysis were narrowed down to differentially expressed highly
connected (DEHC) genes based on immune-related functions
(from g:Profiler), fold change ≥±1.5 (Up or downregulated)
and degree (calculated using igraph package) ≥5 for T helper
cells, T cytotoxic cells, and B lymphocytes and degree ≥10
for monocytes. The PPI networks were constructed between
the DEHC-DEHC genes, and between the knowledge-based
genes and DEGs. The BioGRID database contains well-defined
protein-protein interactions of human than in the case of Bos
taurus. Considering protein interactions are conserved across
species (29), orthologs in human were queried using g: Orth
in g:profiler (27). The interactions involving the DEGs were
extracted using customized perl scripts and were visualized in
Cytoscape 3.3.0 (30).
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Identification of Viral Transcripts
The unmapped reads from all samples (control and infected)
were mapped to PPRV reference genome (GenBank:
AJ849636.2) (31) through Bowtie 2.0 for identification of
viral transcripts.

Ingenuity Pathway Analysis (IPA) Analysis
QIAGEN’s IPA (QIAGEN, Redwood City, USA) was used
to analyze the data of T helper cells, T cytotoxic cells,
B lymphocytes, and monocytes. IPA has got its own
database, Ingenuity Pathways Knowledge Base (IKB) that
along with the list of DEGs were used to identify the
canonical pathways and the most significant biological
processes. Core analysis for each dataset was performed
to know activated (Z score > 2) or inactivated (Z score
< −2) canonical pathways. Also, upstream regulators

(transcription factors, cytokines, and other molecules)
were identified.

Validation of DEGs by Quantitative
Real-Time PCR (qRT-PCR)
To validate the expression of some selected genes, qRT-PCR was
performed on Applied Biosystems 7500 Fast system. GAPDH
was taken as the internal control as it was found to be the best
suitable endogenous control in earlier studies in PPRV (12). The
probe ID of selected genes used in the study for validation is
given in Supplementary Table 1. Each of the samples was run
in triplicates and relative expression of each gene was calculated
using the 2−11CT method with control as the calibrator (32).
Student’s t-test was done in JMP9 (SAS Institute Inc., Cary, USA)
to test the significance of difference. Differences between groups
were considered significant at P ≤ 0.05.

FIGURE 2 | PPR virulent virus tropism in PBMCs subsets (A) Detection of viral reads through RNA Seq (B) N gene expression by q-RT-PCR of infected goats at 9 dpi.

Venn diagrams representing unique/common (C) DEGs among cells (D) Upregulated genes among cells (E) Downregulated genes among cells.
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RESULTS

To uncover the transcriptional variation underlying the host
response to PPRV at PBMCs subtype level, enriched T helper
cells, T cytotoxic cells, B lymphocytes, and monocytes were
obtained by using MACS technology. The purity was found to
be >90% through flow cytometry (data not shown). Then, we
performed the global transcriptome profiling of T helper cells,
T cytotoxic cells, and B lymphocytes and monocytes at 0 day
(control) and 9 dpi.

Viral Quantification by RNA-Sequencing
Following alignment with Bowtie 2, several reads in the infected
T helper cells, T cytotoxic cells, and B lymphocytes mapped to
PPRV reference genome but no reads from infected monocyte
mapped to PPRV genome (Figure 2A). PPRV N gene expression
as confirmed by qRT-PCR was found in infected T helper
cells, T cytotoxic cells, and B lymphocytes, but not in infected
monocytes (Figure 2B).

Identification of DEGs—Transcriptome
Analysis of Isolated Cell Subpopulations
Divulges Unique Gene Expression Patterns
The number of DEGs in T helper cells were 2,214 (1,202
upregulated, 1,012 downregulated), T cytotoxic cells−1,948
(1,187 upregulated, 761 downregulated), monocytes−2,451
(1,311 upregulated, 1,140 downregulated), and B
lymphocytes−2,463 (1,381 upregulated, 1,082 downregulated).

The number of upregulated genes was larger than the numbers
of downregulated genes in all the cells. Furthermore, Venn
diagrams were generated to examine the overlapping mRNA
profiles between cells. This revealed 467 genes being common
all subsets and 555, 225, 964, and 527 genes being unique in T
helper cells, T cytotoxic cells, monocytes, and B lymphocytes,
respectively (Figure 2C). Upon comparison of upregulated
and downregulated genes 115 and 137 genes were common,
respectively. The number of unique upregulated genes were 381,
196, 851, and 332 in T helper cells, T cytotoxic cells, monocytes,
and B lymphocytes, respectively (Figure 2D) whereas number
of unique downregulated genes were 352, 112, 732, and 384 in
T helper cells, T cytotoxic cells, monocytes, and B lymphocytes,
respectively (Figure 2E). Based on fold change values, top 20
DEGs showing marked upregulation and downregulation were
enlisted in Supplementary Tables 2, 3, respectively. The list of
top 20 upregulated and downregulated genes in monocytes were
found to be unique with no overlap across other subsets.

Transcriptome Landscape of DEGs Like
Antiviral Interferon-Stimulated Genes
(ISGs), Chemokines, Interleukins, Viral
Sensors (PRRs), Signaling Lymphocytic
Activation Molecule (SLAM), Interferons,
Granzyme B
ISGs highly expressed in lymphocytes were, ISG15, ISG20,
IRF7, IFIT1, IFIT3, IFIT5, MX1, MX2, RELA, RSAD2, DDIT4,

FIGURE 3 | Canonical pathways activated/inactivated in (A) T helper cells (B) T cytotoxic cells of infected goats at 9 dpi generated in core analysis of Ingenuity

pathway analysis tool. Orange color pathways are activated (>2) and blue color pathways are inactivated (<2). Height of the bar graphs indicates -log (p-value) and

line graph showing the ratio of list genes found in each pathway over the total number of genes in that pathway.
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EIF2AK2, IFI6, OAS1X, PML, and RTP4. Monocytes showed a
contrasting ISGs profile with most of the genes downregulated
(Supplementary Figure 1). Among the chemokines and
their receptors, CXCL10 was upregulated in lymphocytes
and not differentially expressed in monocytes and CXCR4
was upregulated in lymphocytes as well as monocytes
(Supplementary Figure 2A). More number of interleukins
and their receptors were differentially expressed in lymphocytes
than in monocytes. IL-1β was upregulated in lymphocytes and
not differentially expressed in monocytes. IL-18 and receptor
IL1RN were topmost upregulated interleukins in lymphocytes
and monocytes, respectively (Supplementary Figure 2B).
Among Viral RNA sensors, DDX58 and IFIH1 were found

to be upregulated in lymphocytes and downregulated in
monocytes. The differential expression of DDX58 across
subsets in comparison to TLR/NLR expression indicated
the predominant role of RIG-I-like receptors under PPRV
infection (Supplementary Figure 3). IFN α and IFN β were not
differentially expressed in lymphocytes andmonocytes. However,
IFN receptors IFNAR1 was downregulated in lymphocytes and
monocytes while IFN Gamma receptors IFNGR1 and IFNGR2
were upregulated B lymphocytes (Supplementary Figure 3).
SLAM was found to be downregulated in T helper cells (Log2
fold change−2.130), T cytotoxic cells (Log2 fold change−1.185),
and B lymphocytes (Log2 fold change −2.204). On the contrary,
it was not found to be differentially expressed in monocytes.

FIGURE 4 | Canonical pathways activated/inactivated in (A) monocytes and (B) B lymphocytes of infected goats at 9 dpi generated in core analysis of Ingenuity

pathway analysis tool. Orange color pathways are activated (>2) and blue color pathways are inactivated (<2). Height of the bar graphs indicates -log (p-value) and

line graph show the ratio of list genes found in each pathway over the total number of genes in that pathway.
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Further, granzyme B (GZB) was found to be non-differentially
expressed in lymphocytes and monocytes.

DEGs Involved in Pathways in the Viral
Process, Viral Life Cycle, Viral Genome
Replication etc.
Among the DEGs, several genes were found to be involved
in viral process, viral life cycle, viral genome replication,
regulation of viral process, regulation of viral life cycle,
regulation of viral genome replication, viral gene expression,
and defense response to virus. The number of genes involved
in above-mentioned processes was more in lymphocytes
than in monocytes. Among these genes ISG15, ISG20, IFIT3,
MX2, IFIT1, IFIT2, IFIT5,OAS1X, MX1, DHX58, DDX58,
HSPB1, DDIT4, RSAD2, EIF2AK2, NPC2, C19ORF66,
ADAR, and DDX3X were found to be upregulated in
lymphocytes and downregulated in monocytes. Whereas,
as CXCL10, HMOX1, TMPRSS2, TNF, ICAM1, C1QBP,
LEF1, EIF3D, and SNW1 were found to be upregulated in
lymphocytes and not differentially expressed in monocytes
(Supplementary Figure 4).

DEGs Selected Through a
Knowledge-Based Approach
Out of these 106 knowledge-based genes, 71, 72, 72, and 80
were differentially expressed in T helper cells, T cytotoxic
cells, monocytes, and B lymphocytes, respectively. Most of
the genes were found to be downregulated in monocytes
but upregulated in lymphocytes. The innate antiviral genes—
ISGs; ISG15, ISG20, DDX58, DHX58, IRF3, IRF7, IFIT1,
IFIT3, IFIT5, MX1, MX2, and RSAD2 were downregulated
in monocytes indicating a dampened antiviral response of
monocytes (Supplementary Figure 5).

Predicted PPI Network of DEGs
DEGs regulating the immune processes were selected through
functional analysis. The number of immune-related genes
with cut off fold change ≥±1.5 and degree ≥5 were 269,
250, 70, 356 in T helper cells, T cytotoxic cells, monocytes,
and B lymphocytes, respectively, and were designated as
differentially expressed highly connected (DEHC) genes. As
the number of interactions was higher in monocytes, the
cut off was increased to degree ≥10 reducing the number
of DEHC genes to 194. The PPI networks were constructed
between immune DEHC genes; and between the genes selected
through knowledge-based approach (106 genes) and DEGs,
which revealed common hubs (Supplementary Figures 6–9). In
the PPI networks, hubs explain the functional and structural
importance of a network. The genes, which act as hubs
in PPI networks in different cells are mentioned in the
Supplementary Tables 4, 5. ISG15, PML, MYC, and MAP3K5
genes were identified as common hubs in PPI network of immune
DEHC-DEHC genes and ISG15, STAT1, and BCL6 genes were
identified as common hubs in PPI networks of selected genes
and DEGs across all the subsets. The network hub genes (except

MAP3K5) were downregulated in monocytes and upregulated
in lymphocytes.

Pathway Analysis by IPA
Core Analysis of T Helper Cells, T Cytotoxic Cells, B

Lymphocytes, and Monocytes
Core analysis for each dataset was performed to know activated
(Z score > 2) or inactivated (Z score < −2) canonical pathways.
Moreover, the focus was on the apoptosis, cellular immune
response, humoral immune response, cytokine signaling, and
pathogen influenced signaling ingenuity canonical pathways.

T helper cells
Canonical pathways associated with T helper cells in infected
goats at 9 dpi are represented in Figure 3A. The canonical
pathway TNFR1 signaling was found to have the highest
ratio of genes involved vis-a-vis the genes in the database.
The top activated pathways based on Z score were TNFR1
signaling, MIF regulation of innate immunity and the role
of RIG1 like receptors in antiviral immunity. The pathways—
CD28 signaling in T Helper Cells, iCOS-iCOSL signaling in T
helper cells, calcium-induced T lymphocyte apoptosis, the role
of NFAT in the regulation of the immune response, Fc gamma
receptor-mediated phagocytosis in macrophages and monocytes
and PKC theta signaling in T Lymphocytes were found to
be inactivated.

T cytotoxic cells
Canonical pathways associated with T cytotoxic cells in infected
goats at 9 dpi are represented in Figure 3B. The top activated
pathways based on Z score were production of NO and ROS
in macrophages, iNOs signaling, role of PRRs in recognition of
pathogens, inflammasome pathway, IL-8 pathway, Oncostatin
M signaling, and acute phase response signaling. The canonical
pathway inflammasome pathway TNFR1 signaling was found to
have the highest ratio of genes involved vis-a-vis the genes in
the database.

Monocytes
Canonical pathways associated with monocytes in infected goats
at 9 dpi are represented in Figure 4A. The top activated pathways
based on Z score were IL-8 signaling, LPS stimulated MAPK
signaling, 41B signaling in T lymphocytes, and IL-1 signaling.
Interferon signaling was the only pathway to be inactivated.
The canonical pathway inflammasome pathway was found to
have the highest ratio of genes involved vis-a-vis the genes in
the database.

B lymphocytes
Canonical pathways associated with B lymphocytes in infected
goats at 9 dpi are represented in Figure 4B. The top activated
pathways based on Z score were interferon signaling, oncostatin
M signaling, IL-1 signaling, inflammasome pathway, IL-1
signaling, acute phase response signaling, iNOS signaling, IL-
6 signaling, p38 MAPK signaling, Toll-like receptor signaling,
IL-8 signaling, MIF-mediated glucocorticoid regulation, and
MIF regulation of innate immunity. The canonical pathways
iNOS signaling and interferon signaling were found to have
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the highest ratio of genes involved vis-a-vis the genes in
the database.

Comparison Analysis of Canonical Pathways Among

T Helper Cells, T Cytotoxic Cells, B Lymphocytes,

and Monocytes
Comparison of canonical pathways in T helper cells, T
cytotoxic cells, monocytes, and B lymphocytes at 9 dpi
in goats is represented in Supplementary Figure 10.
Inflammasome pathway was activated in all cells. T
cytotoxic cells had more number of activated pathways.
MIF regulation of innate immunity, acute phase response
signaling, acute phase response signaling, and Oncostatin

M signaling were the topmost activated pathways in
T helper cells, T cytotoxic cells, monocytes, and B
lymphocytes, respectively.

Canonical pathways interferon signaling, Oncostatin M
signaling, role of RIG 1 like receptors in antiviral immunity
and complement system showed contrasting gene expression
profiles in monocytes in comparison to lymphocytes. Interferon
Signaling was found to be inactivated in monocytes (Z score
−2.66) in comparison to T helper cells (Z score 0.77), T
cytotoxic cells (Z score 1.88), and B lymphocytes (Z score
3.44). Genes in the interferon signaling network GIP2 (ISG15),
IFIT1, IFIT3, MX1, IFI6, IFITM1, IFI35, STAT1, and STAT2
were significantly downregulated in monocytes. However, all

FIGURE 5 | Canonical pathways generated in Ingenuity Pathway Analysis of interferon signaling pathway of DEGs in (A) T helper cells, (B) T cytotoxic cells, (C)

monocytes, and (D) B lymphocytes of infected goats at 9 dpi. Genes that were upregulated are shown in red and downregulated in green. The intensity of red and

green corresponds to an increase and decrease, respectively, in Log2 fold change. Genes in gray were not significantly differentially expressed and those in white are

not present in the dataset but have been incorporated in the network through the relationship with other molecules by IPA. Symbol shape indicates gene function.
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FIGURE 6 | Canonical pathways generated in Ingenuity Pathway Analysis of Oncostatin M signaling pathway of DEGs in (A) T helper cells, (B) T cytotoxic cells, (C)

monocytes, and (D) B lymphocytes of infected goats at 9 dpi. Genes that were upregulated are shown in red and downregulated in green. The intensity of red and

green corresponds to an increase and decrease, respectively, in Log2 fold change. Genes in gray were not significantly differentially expressed and those in white are

not present in the dataset but have been incorporated in the network through the relationship with other molecules by IPA. Symbol shape indicates gene function.

these genes were upregulated in T helper cells, T cytotoxic
cells, and B lymphocytes with varying degree of expression
(Figure 5). Oncostatin M Signaling was found to be activated
in T helper cells, T cytotoxic cells, and B lymphocytes. OSM
was not differentially expressed and STAT1 and CH13L1 were
downregulated in monocytes in contrast to their upregulation
in T helper cells, T cytotoxic cells, and B lymphocytes
(Figure 6). Role of RIG1-like Receptors in antiviral innate
immunity was having lowest z score in monocytes (−0.83)

in comparison to T helper cells (2.12), T cytotoxic cells
(2.12), and B lymphocytes (1.89). A contrast in the expression
of the genes involved in this pathway was also found in
monocytes and lymphocytes (Figure 7). Complement system
was found to be having negative z score in monocytes (−1.88)
and a positive score in T helper cells (1.66), T cytotoxic
cells (1.13), and B lymphocytes (0.37). Genes involved in
the complement—C1q, C3b, C3a, and C3 were upregulated
in lymphocytes but downregulated in monocytes. C1QBP was
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FIGURE 7 | Canonical pathways generated in Ingenuity Pathway Analysis of the role of RIG 1 like receptors in antiviral immunity pathway of DEGs in (A) T helper cells,

(B) T cytotoxic cells, (C) monocytes, and (D) B lymphocytes of infected goats at 9 dpi. Genes that were upregulated are shown in red and downregulated in green.

The intensity of red and green corresponds to an increase and decrease, respectively, in Log2 fold change. Genes in gray were not significantly differentially expressed

and those in white are not present in the dataset but have been incorporated in the network through the relationship with other molecules by IPA. Symbol shape

indicates gene function.

upregulated in lymphocytes but not significantly expressed in
monocytes (Figure 8).

Upstream Regulators, That Regulate DEGs in T

Helper Cells, T Cytotoxic Cells, B Lymphocytes,

and Monocytes
The number of TFs (activated/inactivated) differentially
expressed and governing the DEGs in T helper cells, T cytotoxic
cells, monocytes, and B lymphocytes were 21, 24, 10, and 30,
respectively. The top four upregulated TFs in T helper cells were
KLF4, IRF7, XBP1, and MYC; in T cytotoxic cells were KLF4,

ETS2, NFKB1A, and IRF7; in monocytes were EGR1, PPP1R13L,
and STAT3 and in B Lymphocytes were MXD1, KLF4, NFKBIA,
and BCL6 (Supplementary Figure 11).

Master regulator, IRF7—transcription factor and STAT1—
a transcription regulator, were found to be activated in
T helper cells, T cytotoxic cells, and B lymphocytes and
inactivated in monocytes. The genes governed by the IRF7
and STAT1 were mostly ISGs including IFIT3, MX1, and
ISG15 (Supplementary Figures 12, 13). Also, KLF4 was
found to be in the list of top 4 upregulated transcription
factors in T helper cells (z score 2.62), T cytotoxic cells
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FIGURE 8 | Canonical pathways generated in Ingenuity Pathway Analysis of role of complement system pathway of DEGs in (A) T helper cells, (B) T cytotoxic cells,

(C) monocytes, and (D) B lymphocytes of infected goats at 9 dpi. Genes that were upregulated are shown in red and downregulated in green. The intensity of red and

green corresponds to an increase and decrease, respectively, in Log2 fold change. Genes in gray were not significantly differentially expressed and those in white are

not present in the dataset but have been incorporated in the network through the relationship with other molecules by IPA. Symbol shape indicates gene function.

(z score −2.72), and B lymphocytes (z score −3.42).
However, KLF4 was not found involved in monocytes
(Supplementary Figure 14). Further, the comparative
analysis of other upstream regulators (enzyme, GPCR,
growth factors, ion channels, kinases, ligand-dependent
nucleic acid receptors, peptidases, phosphates, translation
regulators, transmembrane receptors, transporters) revealed
DDX58, EIF2AK2, S100A8, S100A9, C3, ICAM1, and PARP9
genes to be downregulated and IFIH1, SAMSN1, EIF4E,
and TNFAIP3 genes not to be differentially expressed in
monocytes. On the contrary, these genes were upregulated in
T helper cells, T cytotoxic cells, and B lymphocytes. The genes

involved in EIF2AK2 and DDX58 network were mostly ISGs
(Supplementary Figures 15, 16).

The contrasting features between the monocytes
and the lymphocytes are clearly given in the graphical
abstract (Figure 9).

DEGs Were Validated by qRT-PCR
Key genes identified from RNA sequencing data—
DDX58, HERC5, IFIT3, IRF7, ISG15, and MX1 at 9 dpi
were validated by qRT-PCR. The expression of all the
validated genes was in concordance with RNA sequencing
results (Figure 10).
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FIGURE 9 | Overview of results.

DISCUSSION

Transcriptome analysis of subsets of PBMCs and analysis of

cell-specific pathways facilitate in understanding the regulatory

networks involved under PPRV infection. Virulent PPRV has

been detected in PBMCs (4, 9, 33–36). No experimental evidence
is available regarding the immune cell types that are infected
with virulent PPRV. Further, due to the fact that each of the
cell types has a program inherited for generating a distinct
immune response, the analysis of each cell type under PPRV
infection attains significance (17). We, therefore, conducted
transcriptome analysis at 0 days (control) and 9 dpi (a time that
corresponds to the peak of viremia) of each subset of PBMCs to

uncover the genes involved in host response and identify distinct
transcriptional alterations in T helper cells, T cytotoxic cells,
monocytes, and B lymphocytes.

In our study, expression of N gene in PPRV was detected
in infected goats at 9 dpi in lymphocytes (T helper cells, T
cytotoxic cells, and B lymphocytes) and not in monocytes which
is in concordance with the alignment of reads with PPRV
genome. Moreover, maximum viral transcripts were found in
T helper cells in goats. These results indicate that the PPRV
virulent virus probably replicates in lymphocytes and not in
monocytes. The closely related viruses, Canine distemper virus
(CDV) and Measles virus (MV) are reported to infect and
replicate in T cells and not in monocytes (37–39). SLAM, the
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FIGURE 10 | mRNA levels of genes (A) DDX58 (B) HERC5 (C) IFIT3 (D) IRF7 (E) ISG15 (F) MX1 in unvaccinated-infected goats at 9 dpi were validated using

quantitative qRT-PCR with GAPDH as a reference gene for normalization. Log2 fold change calculated by delta-delta Ct method with control as the calibrator is

represented along with the standard error of the difference.

established receptor for PPRV, was found to be downregulated
in T helper, T cytotoxic, and B lymphocytes and was not
found to be differentially expressed in monocytes of the PRRV
infected goats. The absence of any viral transcript in monocytes
is consistent with the lack of differential expression of SLAM.
The downregulation of SLAM expression with increased viral
replication at 9 dpi in lymphocytes, may be due to superinfection
exclusion phenomenon as observed in many viruses of human
and veterinary importance (40). Superinfection exclusion is
a phenomenon in which a pre-existing or established viral
infection prevents the entry of same virus or a closely related
virus. In our earlier PPRV host-pathogen interaction studies,
SLAM was found to be downregulated in PBMCs (9).

Global transcriptome of monocytes indicated profound
deviation from the lymphocytes as evident from a large number
of unique upregulated genes (851) and downregulated genes

(605) under PPRV infection. Differential expression analysis of
immune cell types in trivalent inactivated influenza vaccine-
induced immune response also showed unique transcriptomic
expression profiles as well as changing biological networks (17).
Among the genes differentially expressed under PPRV infection,
there was predominant dysregulation in ISGs across all subtypes.
Most of the ISGs and viral sensors were found to be upregulated
in lymphocyte subtypes and downregulated in monocytes.

DEGs that were found to be involved in viral process,
viral life cycle, and viral genome replication were mostly ISGs
and few viral sensors, chemokines, and interleukins in all the
subsets. RIG1-like Receptor signaling pathway as predicted
through IPA analysis was least active in monocytes. The
upregulated viral sensors in lymphocytes, MDA5 (IFIH1), and
R1G-1 (DDX58) activate NFKB and IRF3/7 (41–43) and LGP2,
inhibits paramyxovirus-induced activation of IFN genes (44).
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This indicates that a powerful sensing mechanism to induce
effector antiviral molecules exists in PPRV infected lymphocytes,
and not inmonocytes. Further, ISGs—ISG15,Mx1,Mx2, RSAD2,
IFIT3, and IFIT5 have a protective effect against various RNA
viruses (8, 9, 45–57). The upregulation of ISGs in lymphocytes
and downregulation in monocytes suggests a predominant role
of lymphocytes and poor involvement of monocytes in anti-viral
response against PPRV.

However, the positive regulators of ISGs (58), type I
interferons (IFN-α/β) were not differentially expressed in
lymphocytes or monocytes. The upstream regulator analysis in
lymphocytes revealed activation of transcription factors, IRF-7,
and STAT-1 that regulate most of the ISGs under PPRV infection.
Thus, it expected that ISGs are transcriptionally induced more
by IRF7 and STAT1 than by stimulation of interferons in PPRV
infected lymphocytes. The presence of STAT1, which plays a
vital role in interferon type I (IFN-α/β) and type II (IFN-γ)
signaling (59) and the upregulation of ISGs substantiate for the
activation of Interferon signaling pathway in B lymphocytes, T
helper cells, and T cytotoxic cells under PPRV infection. On
the contrary, inactivation of Interferon signaling pathway, IRF-
7, and STAT-1 along with downregulation of ISGs was observed
in monocytes.

IFN-α/β are mostly secreted by Plasmacytoid dendritic cells
(pDCs) (60). Any kind of perturbance in their expression
is appreciable in pDCs than in T or B cells. Type I
interferons (IFN-α/β) were not differentially expressed in both
lymphocytes or monocytes meaning that their expression is
undeterred in B and T cells under PPRV infection. It is
likely that PPRV is inhibiting the expression of IFN-α/β
in pDCs and not in T or B cells. However, this warrants
further studies.

Chemokine-CXCL10 that was upregulated in the T
helper cells, T cytotoxic cells, and B lymphocytes and not
differentially expressed in monocytes have been reported
to have chemoattractant (61). IL-1β that was found
upregulated in lymphocytes and not differentially expressed
in monocytes, is a potent inflammatory cytokine involved
in the recruitment of immune and inflammatory cells into
the site of infection and influences the development of
adaptive immune responses (62). This suggests the role of
lymphocytes in the recruitment of immune cells and induction
of apoptosis in PPRV infected cells. Further, Complement
factors- C1QA, C1QBP, and C1QC were upregulated in
lymphocytes and downregulated in monocytes indicating
strong virus opsonization by lymphocytes. C1q (C1QA, C1QB,
C1QC) stimulates the hemagglutination and neutralization
activity (63).

Our data suggest that important cell type-specific information
is gained through transcriptome analysis of PBMCs subsets than
from PBMCs as a whole. The presence of PPRV; downregulation
of SLAM receptor; upregulation of viral sensors—MDA5 and
DDX58; activation of upstream regulators—IRF7 and STAT1;
activation of interferon signaling pathway and; upregulation of
ISGs in lymphocytes with a contrast in monocytes indicated
the predominant role of lymphocytes in generating the antiviral
response against PPRV in goats.
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