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Familial hypercholesterolemia (FH) is one of the most common monogenic diseases,
leading to an increased risk of premature atherosclerosis and its cardiovascular
complications due to its effect on plasma cholesterol levels. Variants of three genes
(LDL-R, APOB and PCSK9) are the major causes of FH, but in some probands, the
FH phenotype is associated with variants of other genes. Alternatively, the typical
clinical picture of FH can result from the accumulation of common cholesterol-increasing
alleles (polygenic FH). Although the Czech Republic is one of the most successful
countries with respect to FH detection, approximately 80% of FH patients remain
undiagnosed. The opportunities for international collaboration and experience sharing
within international programs (e.g., EAS FHSC, ScreenPro FH, etc.) will improve the
detection of FH patients in the future and enable even more accessible and accurate
genetic diagnostics.
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HISTORICAL INTRODUCTION

Variants of the genes causing familial hypercholesterolemia (FH) have recently been shown to be
important risk factors leading to premature atherosclerotic cardiovascular disease (ASCVD) and
premature death. However, these straightforward associations have not always been considered
unambiguously evidenced and have at times been rejected.

A small but interesting study by Sijbrands et al. (2001) suggested that mortality in subjects
with FH (three large pedigrees, carriers of the Val408Met variant, a total of 412 subjects through 8
generations) significantly varied over time. In the nineteenth century, the mortality of FH subjects
was lower than that in the general population. The peak mortality in FH patients (twofold increased
risk of premature CVD death) was reached by the first half of the last century followed by a
decreasing trend thereafter.

To a certain extent, this observation can be explained by the fact that in the 19th century, life
expectancy was much lower and mortality causes were dominated by infections (Zaffiri et al., 2012).
In contrast, in the twenty-first century, non-communicable diseases top mortality statistics as the
most frequent causes of death1, and it has been shown that plasma cholesterol plays an important

1https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death
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role in protection against bacterial infection. One of the
most robust pieces of evidence indicates an increased risk
of severe infections (sepsis) in subjects with low LDL-C
(Guirgis et al., 2016).

Nonetheless, with the current progress in the treatment
of infections (antibiotics), a sedentary lifestyle together with
abundant caloric intake lead to an environment (for review see
Loscalso, 2004; Hubacek, 2009) in which FH causing variants
show their detrimental effects, increasing the risk of ASCVD.

FAMILIAL HYPERCHOLESTEROLEMIA

Definition of Familial
Hypercholesterolemia
Familial hypercholesterolemia (FH; OMIM ID-143890) is an
autosomal dominant inherited disease, the cause of which is most
often a variant in the gene for the LDL receptor (LDLR), less
often a variant in the gene for its ligand, apolipoprotein B 100
(APOB). Rarely, a specific gain-of-function type of variant in the
subtilisin-kexin type 9 proprotein convertase gene (PCSK9) may
be the cause. The phenotypic expression of FH can also be caused
by variants in the LDL-receptor adapter protein (LDLRAP) gene
with a recessive inheritance. As a result of the abovementioned
variants, the removal of low-density lipoproteins (LDL) from the
blood is significantly slowed down in hepatocytes. Consequently,
the level of LDL cholesterol (LDL-C) (and thus total cholesterol
as well) increases very substantially: in patients with heterozygous
FH, total cholesterol is above 8 mmol/l (usually approximately
9–12 mmol/l) and LDL-C is above 5 mmol/l (usually 6–
9 mmol/l) but may be even higher (Cuchel et al., 2014). Both
HDL cholesterol and triglyceride levels are usually normal, but
hypertriglyceridemia does not rule out FH. The rare homozygous
form of FH presents with LDL-C levels above 13 mmol/l without
therapy or persistent LDL-C elevations above 8 mmol/l with
statin therapy (Cuchel et al., 2014). However, blood lipid levels
can have considerable variability, depending especially on the
type of variant but also on lifestyle or other associated diseases,
which makes it more difficult to diagnose FH, suggesting that the
disease should always be considered. It has been well established
that very high cumulative LDL-C levels significantly accelerate
the development of atherosclerosis, and because patients with
FH are exposed to markedly increased cholesterol levels for
most of their lives, cardiovascular disease (especially myocardial
infarction) may manifest at a very early age (in the first decade
in untreated homozygotes, after the second decade in severe
FH heterozygotes). More than 1,700 different variants have been
described in the LDL receptor gene that affect the structure and
function of the LDL receptor in various ways; consequently, the
level of LDL-C in patients with FH caused by a variant in this gene
can have considerable variability (Leigh et al., 2017). In contrast,
only a few variants are described in the apolipoprotein B gene,
with the vast majority of patients having a single type of variant
and thus relatively uniform LDL-C levels (and on average lower
than in the LDL-receptor gene). A causal variant in the gene
for PCSK9, which may lead to a clinical picture of FH, has so
far been identified in only one proband in the Czech Republic

and is therefore a rare cause of FH. The practical conclusion
of the dominant genetic transmission of FH is the fact that a
patient with confirmed FH always has at least one parent with
the same disease, and their offspring or siblings have a 50% risk
of inheriting FH. Therefore, the so-called cascade screening in
families, in which genetic testing of a known variant is performed
in relatives of an already diagnosed patient, appears to be a
suitable method for searching for people with FH.

Epidemiology of FH
The classic work of Goldstein et al. (1982) from the 1990s
reported a 1:500 prevalence of heterozygous FH. However, a
2012 Danish study of a large sample of more than 69,000
people showed a much higher prevalence, approximately 1:250,
of heterozygous FH; similar data have been replicated in other
European populations (Benn et al., 2012). It can be assumed that
the Czech population will have the same disease frequency as
other white populations. These new findings indicate that FH
is the most common congenital metabolic disorder in humans.
The homozygous form of FH is rare. Its incidence has so
far been estimated at 1:1,000,000; the abovementioned recent
studies estimate the prevalence of homozygous FH at 1: 160,000–
1:300,000 (Hu et al., 2020).

Methodological Considerations in FH
Genetic Testing
A large array of methods has been used for analysis in patients
with the FH phenotype to identify underlying genetic defects to
date. All of them have their own advantages and disadvantages.
The cost of genetic testing has dramatically fallen over the
past decade due to major advances in sequencing technology,
especially the introduction of next-generation sequencing (NGS).

This technology offers the possibility of sequencing the whole
human genome or exome (Farhan and Hegele, 2014) in a
relatively short time and produces a large amount of genetic
data. Given the vast amount of data generated, it is critical to
have an integrated and validated bioinformatics pipeline, which
assembles millions of overlapping small sequenced fragments
into a string of large contiguous sequence information. Not all
the data are useful for routine diagnostics, of course, especially
regarding the focused diagnosis of a specific condition such as
FH. This fact led to the development of a gene panel that produces
more relevant data with an enhanced likelihood of detecting
potentially clinically useful variants (Hegele et al., 2015).

This technology can also be used for the analysis of a high
number of SNPs, which have been described in connection
with the construction of population-specific/unspecific polygenic
genetic risk scores (Paquette et al., 2017; Futema et al., 2018;
Rader and Sheth, 2019; Sharifi et al., 2019). Gene panels currently
dominate FH molecular diagnostics and can be either customized
on demand by individual labs or offered as designed commercial
kits (Johansen et al., 2014).

Of course, there are some limitations of NGS technology.
Middle-range insertions and deletions containing reads were
unable to be mapped with earlier versions of alignment
software, while recent updates have overcome those issues by
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extending the range of mapping quality values. The initial limit
was dramatically increased to approximately 90 bp. The next
limitation is the existence of pseudogenes. Due to high genomic
sequence homology with genes of interest, it is very difficult or
impossible to distinguish between reads originating from genes
and their pseudogenes. Other limitations also exist, but these two
are the most important.

Another methodological issue is that analysis of large
intragenic rearrangements, which can be causal in many cases.
These events can account for between 2 and 20% of all positive
cases in some populations (Marduel et al., 2010; Pirillo et al., 2017;
Tichý et al., 2017; Sun et al., 2018). Although multiplex ligation-
dependent probe amplification is still the gold standard for the
identification of large intragenic rearrangements, the analysis
of copy number variations (CNVs) from NGS data can also
achieve very good results (Marmontel et al., 2018) and has been
gradually introduced into standard diagnostic schemes in routine
labs. The opportunity to obtain information about the genomic
sequence of many genes and about the potential presence of
rearrangements in these genes at the same time in one step is the
main advantage of the NGS approach.

Another strategy to detect CNVs is array comparative
genomic hybridization (aCGH) (Ahmad and Iqbal, 2012),
which evaluates patterns of intensities on single nucleotide
polymorphism (SNP) microarrays to detect differences in allele
dosages over a wide stretch of DNA. However, this method
requires complex infrastructure and analytical tools for SNP
microarrays. aCGH has relatively limited use in germinal
genetics, and due to the special equipment needed, it is not
common in standard diagnostic labs.

Frequent Genetic Causes of FH
Most cases of FH are caused by defects in the gene for LDL
receptor (LDLR) or for apolipoprotein B-100 (APOB) and rarely
by variants in the gene for PCSK9 that lead to its overproduction
(gain-of-function variants). Other variants in genes causing the
FH phenotype have been described sporadically: for example,
gene variations at STAP1 or APOE loci (Santos et al., 2017). The
phenotype of homozygous FH can also be caused by variants
in the LDLRAP1 gene, which are associated with an autosomal
recessive form of the disease. Only a partial correlation between
the genotype and phenotype has been reported in FH subjects.
Higher LDL-C and a more severe phenotype are associated with
so-called “null variants” in the LDLR gene, which lead to a
decrease in LDL receptor activity below 2% of normal, while in
the so-called “defective variants”, LDL receptor activity remains
between 2 and 70% of normal function.

As mentioned above, pathogenic variants in the LDLR gene
are the most common cause of FH. In most populations there is
a very wide spectrum of LDLR variants. As we have published
previously (Tichý et al., 2012), only 3 most common Czech
pathogenic LDLR variants (Table 1) are relatively common
in neighboring countries as well. Similar situation can be
documented when reviewing the available literature worldwide
(Bertolini et al., 2013; Komarova et al., 2013; Bañares et al., 2017;
Alhababi and Zayed, 2018; Pek et al., 2018; Sun et al., 2018).

TABLE 1 | The most frequent pathogenic variants in the LDLR gene and their
frequencies detected in Czech Republic.

Variant at cDNA
level

Variant at
protein level

Type of variant Location Frequency
(%)

c.1775G > A p.(Gly592Glu) Missense Exon 12 16.77

c.798T > A p.(Asp266Glu) Missense Exon 5 14.29

c.1061A > C p.(Asp354Ala) Missense Exon 8 3.90

c.626G > A p.(Cys209Tyr) Missense Exon 4 3.55

c.1246C > T p.(Arg416Trp) Missense Exon 9 2.84

c.67 + 3968_940 Exon2_6dup Gross 2.48

+ 296dup duplication

c.1186 + 700_2141 Exon9_14del Gross deletion 2.13

−545del

c.1567G > A p.(Val523Met) Missense Exon 10 1.60

c.662A > G p.(Asp221Gly) Missense Exon 4 1.51

c.1474G > A p.(Asp492Asn) Missense Exon 10 1.51

Frequency is calculated as a percentage of the particular variant of all pathogenic
variants in the LDLR gene found in the Czech population.

Ten LDLR gene variants presented in Table 1 account for
approximately 50% of all pathogenic variants in the Czech
Republic. Except for the variant p.(Arg3527Gln) in the APOB
gene, no other pathogenic variants within the less frequent FH-
causing genes have been shown to be prevalent in this population.
Some of the common causal variants in these genes are presented
in Table 2.

Identification of a causal variant in one of the genes
responsible for the development of FH confirms the diagnosis of
FH and thus a lifelong elevation of LDL-C. Most importantly,
identification of the variant is crucial for successful cascade
screening, which enables unambiguous confirmation or exclusion
of FH in the proband’s family members. Moreover, identification
of the variant in the family increases compliance of family
members to undergo the examination, which is supported by
findings from the Czech national database. In families with a
known causal variant, the number of FH patients per family is on
average 1.77, while in families without this information, it is only
1.18 (Vrablik et al., 2018). In the Czech Republic, we have found
226 different pathogenic variants—the p.(Arg3527Gln) variant in
the APOB gene, 2 variants in the PCSK9 gene and 223 variants in
the LDLR gene. More information regarding the genetic analysis
of the Czech MedPed cohort can be found in the articles by
Tichý et al. (2012, 2017).

Recent community studies from the United States underline
the benefits of genetic diagnostics, as these have shown
that identification of a variant is an independent predictor
of a manifest atherosclerotic cardiovascular disease in
hypercholesterolemic patients (Khera et al., 2016). It is important
to note that a negative result in the genetic examination does
not completely rule out the possibility of FH. Such a result
can be caused by low sensitivity of the methods used, the
position of the variant being outside the analyzed part of the
gene or a defect located in another gene. Additionally, some
patients with a clinical diagnosis of FH can have polygenic
hypercholesterolemia, as discussed below.
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TABLE 2 | Frequent pathogenic gene variants responsible for the development of FH (apart from the LDLR gene).

Gene OMIM Most frequent genetic mutations

APOB 107730 p.(Arg3527Gln) (Fernández-Higuero et al., 2015); p.(Arg3527Trp) (Yang et al., 2007)

PCSK9 607786 p.(Ser127Arg) (Abifadel et al., 2003); p.(Asp374Tyr) (Timms et al., 2004; Leren, 2004, Naoumova et al., 2005)

LDLRAP1 605747 p.(Ala145Serfs*26) (Arca et al., 2002); p.(Trp22*) (Garcia et al., 2001)

LIPA 613497 p.(Leu200Pro) (Anderson et al., 1994); p.(Gly266*) (Aslanidis et al., 1996)

ABCG5/ABCG8 605459/605460 ABCG8 p.(Trp361*) (Berge et al., 2000); ABCG5 p.(Arg408*) (Lee et al., 2001)

Recently, the diagnostic possibilities have improved
significantly with the use of NGS. In a recent study using a
whole-exome sequencing approach, the causal variant was
discovered in 20% of patients with a definite clinical diagnosis of
FH in whom previous DNA analysis found no variant (Futema
et al., 2014). On the other hand, targeted NGS in a cohort of
hypercholesterolemic patients in a primary care setting revealed
an FH-causing variant in only 2% of the individuals examined
(Norsworthy et al., 2014). Thus, appropriate selection of patients
for genetic analysis remains a crucial step in FH identification.

Occasional Variants in “Non-traditional
Genes”
Typically, novel, rare FH-associated variants have been
discovered through pedigree studies. This was the case for
the identification of CYP27A1 (cytochrome P450, subfamily
XXVIIA, polypeptide 1), LIPA (lysosomal lipase A), LIPC
(hepatic lipase), LIPG (endothelial lipase), CYP7A1 (cytochrome
P450 family 7 subfamily A member 1), PNPLA5 (patatin-like
phospholipase domain containing 5) and some other gene
variants responsible for the FH phenotype in particular families
(Lange et al., 2014; Al-Allaf et al., 2015; Pirillo et al., 2017; Corral
et al., 2018; Mikhailova et al., 2019; Table 3).

“False” Familial Hypercholesterolemia
Cases
The seemingly simple picture of FH is further complicated by
the fact that not all cases described as FH are correctly classified
and that they do not fulfill the universally recognized criteria
of the disease. Sometimes, these situations are reported as FH
phenocopies (Page et al., 2020).

A typical example of such a misclassification is represented
by variants of the ABCG5/G8 transporter genes. In fact, these
variants cause sitosterolaemia (Berge et al., 2000; Hubacek et al.,
2001), a disease with an autosomal recessive mode of inheritance,
where high plasma levels of cholesterol in fact represent a
severe elevation of plant sterol plasma concentration. Common
enzymatic assays do not discriminate between cholesterol and
plant sterols; thus, sitosterolaemia is frequently confused with
FH (Moghadasian et al., 2002). Although sitosterolaemia was
originally thought to occur in the general population with a
frequency of approximately 1:1,000,000, a recent study (Brinton
et al., 2018) suggested a prevalence of approximately 1:2,000.
This finding is of utmost importance, as 5–10% of patients with
the FH phenotype may actually be affected by sitosterolaemia.
“Reclassification” of these FH cases accordingly would have

important therapeutic implications as the therapy of choice of the
latter condition is a cholesterol absorption blocker (ezetimibe)
and not a statin.

Similarly, variants of the LDL receptor adaptor protein 1
gene [LDLRAP1, originally named the ARH (autosomal recessive
hypercholesterolemia) gene] (Garcia et al., 2001) should formally
not be considered FH-causing, as the mode of inheritance
is recessive. However, this condition cannot be clinically
distinguished from the homozygous form of autosomal dominant
FH, as its consequences are similar to those of the “classical”
form of the disease.

Finally, severe FH-like hypercholesterolemia might
infrequently be mimicked by very high plasma levels
of lipoprotein (a) [Lp(a)] (Zlatohlavek et al., 2008;
Langsted et al., 2016). When LDL-C concentration is measured,
it always comprises the amount of cholesterol carried within
Lp(a) particles. Such a situation would be connected to statin
resistance, as Lp(a) levels cannot be reduced with common
lipid-lowering therapy. Moreover, high Lp(a) concentrations in
the context of elevated LDL-C represent an additional factor
aggravating atherothrombotic risk. Thus, all patients with
the FH phenotype must be screened for Lp(a) levels as well
(Langsted et al., 2016).

Polygenic Familial Hypercholesterolemia
(Pseudo-FH)
The term “polygenic familial hypercholesterolemia” was probably
first mentioned by Talmud et al. (2013), although simultaneous
analyses of more genes to describe the polygenic nature of
hypercholesterolemia are much older (for example, Pedersen and
Berg, 1990; Poledne et al., 1994).

The last decade has witnessed an intensive scientific debate
triggered by the fact that the majority of subjects with probable or
definite FH based on clinical and biochemical criteria cannot be
confirmed genetically (e.g., do not have any detectable variation
in LDL-R, APOB, and PCSK9). Efforts to identify novel causal
genes using the results of genome-wide association studies have
been typically unsuccessful at the population level, albeit some
rare cases of FH caused by rare variants in different genes have
been described (see information above).

Many potential candidate genes, however, have failed to be
confirmed as FH-causing genes. For example, sortilin (SORT-1)
has been documented to play an important role in LDL particle
internalization, and common variants of this gene represent
an important and highly significant determinant of plasma
cholesterol values at the population level. Nevertheless, no
SORT-1 variants have been detected in almost 900 FH patients
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TABLE 3 | Overview of genetic causes of the FH phenotype.

Gene Protein Protein function Mode of
inheritance

Resulting effect

LDLR Low-density lipoprotein
receptor

Cell surface receptor that plays an important role
in cholesterol homeostasis, transporting
cholesterol through cell surface

AD ↓ binding affinity of LDL-receptor protein

APOB Apolipoprotein B Major protein of LDL particle, ligand for LDL
receptor

AD ↓ binding affinity of APOB to LDL-receptor

PCSK9 Proprotein-convertase
subtilisin kexin 9

Protease that plays a role in LDL-receptor
degradation

AD ↑ LDL-receptor protein degradation

STAP1 Signal-transducing adaptor
protein-1

Unknown AD Unknown/incomplete association with
hypercholesterolemia

LDLRAP1 Low-density lipoprotein
receptor adaptor protein 1

Adaptor protein that interacts with cytoplasmatic
tail of LDL receptor, promoting LDL particle
internalization

AR LDL-receptor dysfunction

LIPA Lysosomal acid lipase alias
cholesterol esters lipase

Hydrolysis of cholesterol esters or triglycerides AR APOB overproduction, upregulation of
HMGCoA reductase

ABCG5/ABCG8 Sterolin-1 and 2 Transporters required for secretion of cholesterol
into bile

AR ↑ absorption of plant sterols

PNPLA5 Patatin-like phospholipase
domain-containing protein 5

Influencing adipocyte differentiation, triglyceride
hydrolysis

AR Possibly lipolysis impairment

AR, autosomal recessive; AD, autosomal dominant; HMGCoA, hydroxy-methyl glutaryl coenzyme A.

negatively tested for variants at LDL-R, APOB, or PCSK9 loci
(Tveten et al., 2012).

It is hypothesized that (at least some) FH variant-negative
patients are in fact carriers of a high number of commonly
present genetic variants associated with increased plasma
cholesterol values, thus having polygenic FH.

Variant negative FH cases are sometimes referred to as
“pseudo-FH” or “polygenic FH” patients.

In 2013, Talmud and co-workers proposed 12 common
single nucleotide variants of the APOE, SORT1, LDLR, APOB,
PCSK9, HFE, ABCG8, NYNRIN, MYLIP, SLC-22 and ST3GAL4
genes identified through the Global Lipids Genetics Consortium
(GLGC; definition at http://lipidgenetics.org), which could
be useful for the detection of pseudo-FH subjects. The
authors concluded that FH-causing variant-negative “pseudo-
FH” patients have a significantly higher mean weighted LDL-C
genetic score than the general population.

Later, the 12-SNP gene score was reduced to a 6-SNP gene
score (Futema et al., 2015). This 6-SNP LDL-C score has been
found to be increased in variant-negative FH patients of Israeli
origin with respect to controls from the general population. This
further confirms that a significant accumulation of common gene
variants of small effect can lead to severe hypercholesterolemia
that might not be distinguished from autosomal dominant FH
(Durst et al., 2017).

All the abovementioned models suppose simple additive
effects of genetic and environmental effects. However, due to
gene-gene or gene-environment interactions, the final cholesterol
values can be much higher (however, also much lower) than
expected from these models (Ritchie, 2015). Currently, this
is primarily a hypothesis, but there are examples of gene-
environment (Hubacek et al., 2003; Shirts et al., 2012; Kim et al.,
2013) and gene-gene interactions (Hubacek et al., 2008; Ma
et al., 2012; Grave et al., 2016) modifying plasma cholesterol

levels at the general population level; thus, there is no reason
that such effects would not work for FH patients. To date, no
results have been published for FH patient populations, although
some studies (Gaspar and Gaspar, 2019) focused on variable FH
penetration indirectly support this model.

Additional Common Gene Variants as the
Basis for Novel Polygenic FH Scores
It could be speculated that the gene score can also comprise SNPs
occurring within the genes known to cause monogenic forms
of FH. Such an approach is plausible, as the products of these
genes determine important pathways of cholesterol absorption
and metabolism. The putative genes that could be included in this
extended gene score include, for example, the genes for BRAP
(BRCA-1 associated protein), CETP (cholesterol ester transfer
protein), FADS (fatty acid desaturase) and PPP1R3B (protein
phosphatase 1, regulatory subunit 3B). Interestingly, they were
suggested by the same authors who presented the reduced 6-SNP-
based score of polygenic FH (Futema et al., 2015).

The accumulation of common cholesterol-increasing alleles
could lead to a condition mimicking and/or worsening a
coexisting monogenic form of FH. On the other hand,
the possibility of “camouflaging” the FH phenotype by the
accumulation of common alleles associated with lower plasma
cholesterol levels can occur in the FH population as well, despite
there being no literature on the topic so far.

ETHNICITY/POPULATION-SPECIFIC
SNPs

One could speculate about the utility of a single universal
gene score, especially as during the last decade we have
witnessed increased interest in the implementation of the
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principles of personalized medicine (Currie and Delles, 2018).
The impact of GWAS-detected, lipid trait-associated SNPs
could significantly differ in different populations (Hubacek
et al., 2017, 2019). For example, in the Japanese population
(Tada et al., 2018), variants within the ABO gene have
been identified as significantly modifying plasma lipoprotein
metabolism, while “the usual suspects” (genes for SORT-1, LDLR
and HMGCR) showed rather negligible effects. Importantly,
identical variants could have different effects on plasma lipids
and the frequencies of genetic variants can differ between
different ethnicities (Han et al., 2019); thus, a different
gene score should be introduced for populations of different
ethnic backgrounds.

Given that hundreds of SNPs are probably significantly
associated with plasma cholesterol levels, we assume that the gene
score needs to be more complex and probably includes dozens of
individual SNPs.

TREATMENT CONSIDERATIONS

The treatment of FH patients must be comprehensive and
always include non-pharmacological approaches (promoted
from childhood—in this case with greater success than later
age) and (combination) pharmacotherapy. Patients with FH in
childhood and adolescence, as well as women of childbearing
potential and women during pregnancy, require a special
approach to treatment. A healthy diet and physical activity
alone in patients with FH never lead to sufficient changes in
the lipoprotein profile, and pharmacotherapy remains essential.
Nevertheless, a healthy diet with adequate (as high as possible)
physical activity has a positive effect on all known risk factors
for atherosclerosis and, most likely, those that have not yet
been identified. Pharmacotherapy for patients with FH is
based on highly effective statins with a long half-life allowing
administration at any time of the day and thus favorably affecting
patient adherence. We can titrate the treatment to the maximum
dose or at least to a high intensity (atorvastatin 40–80 mg,
rosuvastatin 20-40 mg), which is a procedure necessary in
patients with partial statin intolerance (Vrablik et al., 2014).
Monotherapy with a high-intensity statin usually reduces LDL-C
by 50%. Once the maximum tolerated dose of a statin is not
sufficient to reach the LDL-cholesterol goal, a combination of
statin+ ezetimibe should be introduced into the treatment of FH
in the next step. Ezetimibe can also be added to combinations
for patients who cannot tolerate high doses of statins. Given the
relatively lower efficacy of ezetimibe monotherapy (due to the
compensatory increase in endogenous cholesterol production in
the liver with cholesterol absorption blockage), we always try
to guide patients to at least a small dose of statins (e.g., 5 mg
atorvastatin or rosuvastatin daily or an alternative dosing). The
addition of ezetimibe to a statin reduces LDL-C levels by an
additional 20–25%. The use of resins (bile acid sequestrants)
is limited mostly due to their poor tolerance; they are used
mainly in pediatric patients with FH. On the other hand, the
population of patients with FH represents a target group in

which we continue to use resins as part of a comprehensive
effort to maximize the LDL-C reducing effect. To date, the latest
additions to the family of lipid-lowering drugs are monoclonal
antibodies against PCSK9. PCSK9 is a protein involved in both
intracellular and extracellular regulation of LDL cholesterol
receptor expression. One of the functions of PCSK9 is the
formation of a complex of PCSK9 with the LDL receptor and
its internalization in the endosome. Binding of PCSK9 to the
LDL receptor in the cell prevents the normal course of receptor
recycling and re-exposure to the plasma membrane. Instead, the
LDL receptor-PCSK9 complex is transferred intracellularly to
the lysosome, where it undergoes degradation. The number of
LDL receptors on the cell surface is thus reduced depending
on the presence of PCSK9. Anti-PCSK9 antibodies are capable
of increasing LDL receptor expression and ultimately lowering
LDL-C levels by up to twenty percent (Ogura, 2018). Two
agents, alirocumab and evolocumab, have been introduced into
clinical practice.

Lipoprotein apheresis should be considered a therapeutic
option for patients with severe hypercholesterolemia who
have persistently elevated LDL-C levels despite optimized and
intensive drug therapy (Bambauer et al., 2012). It is an
extracorporeal elimination technique that removes LDL particles
but usually also some other atherogenic lipoproteins, such as
Lp(a) or triglyceride-rich lipoproteins, from the circulation. The
main indications for lipoprotein apheresis are a diagnosis of
homozygous FH, severe heterozygous FH poorly responding to
standard therapy, and patients with Lp(a) increase resistant to
pharmacotherapy (Blaha et al., 2017a). Lipoprotein apheresis is
also a potent therapeutic player that impacts inflammation and
related mediators. A large body of evidence on this is available
(Blaha et al., 2017b; Stefanutti and Zenti, 2018).

FUTURE DIRECTIONS

FH variants leading to very high plasma cholesterol levels are
not necessarily associated with premature atherosclerosis and
mortality (Williams et al., 1986). Interestingly, even Brown and
Goldstein (1983) in their pioneering works mentioned the lack of
association between plasma cholesterol values in FH patients and
the prognosis of the disease.

Development of genetic testing has enabled better
discrimination between “classical” FH and other forms
of hypercholesterolemia, as well as improvement in our
understanding of the pathophysiology of the disease. As elegantly
summarized in a consensus statement published by Sturm et al.
(2018), genetic testing in FH:

– provides a definitive molecular diagnosis of FH
– provides prognostic and risk stratification information and

improves outcomes
– facilitates family-based cascade testing
– allows for precision during genetic counseling
– has implications for therapeutic choices in FH
– has value to the pediatric FH patient population.
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However, with developments in the genetic diagnosis and the
availability of high-throughput technologies, many “innocent”
genetic variants have been identified in the genes recognized
as causally linked to FH. Thus, based on the consensus
of the American College of Medical Genetics (ACMG), the
ClinVar initiative has been established to determine the likely
pathogenicity of variants in LDLR/APOB/PCSK9 genes reported
in patients with clinical FH (Richards et al., 2015; Iacocca
et al., 2018). Classifications include “definitely not”, “likely not
pathogenic,” “variants of unknown significance” (VUS), “likely
pathogenic” and “definitely pathogenic.” While more than 70%
of the 2314 published LDLR variants are classified as “likely” or
“definitely pathogenic,” only 10% of the APOB and 13% of PCSK9
variants are classified as such (Iacocca et al., 2018).

The next primary goal in the management of FH is to
increase medical community awareness of FH and the active
search for patients; this should lead to an increase in the
number of diagnosed and well-managed patients and, even more
importantly, a substantial increase in the number of examined
members of affected families. Many initiatives focusing on
FH detection have been launched recently. In Australia, Asia-
Pacific countries and South America, the “Ten Countries Study”
was successfully conducted by Watts et al. (2016). Another
rapidly developing FH project creating a platform for mutual
interaction of FH patients and health care professionals, “The FH
Foundation”, has been developing since 2011 in the United States
(O’Brien et al., 2014). In Europe, the “FH Studies Collaboration”
project led by K. Ray and supported by the European
Atherosclerosis Society (EAS) has evolved into a multinational
project aimed at providing consolidated data on FH worldwide
together with the creation of a universal database platform
for data collection (Vallejo-Vaz et al., 2015). The ScreenProFH
project, endorsed by the International Atherosclerosis Society
and embedded in the FHSC initiative, helps to enhance

FH screening activities in the Central, Eastern and Southern
European region as well as Central Asia and is described in detail
in a separate article (Ceska et al., 2017). The Czech MedPed
project is actively participating in and/or collaborating with all
these international activities. Undoubtedly, these coordinated
international efforts should increase the chances of achieving
the principal goal—to identify, diagnose and provide treatment
for all FH patients early enough to prevent the development
of atherosclerotic vascular complications and avoid unnecessary
premature death.
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