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Artificial neural network, predictor
variables and sensitivity threshold
for DNA methylation-based age
prediction using blood samples
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Regression models are often used to predict age of an individual based on methylation patterns.
Artificial neural network (ANN) however was recently shown to be more accurate for age prediction.
Additionally, the impact of ethnicity and sex on our previous regression model have not been studied.
Furthermore, there is currently no age prediction study investigating the lower limit of input DNA

at the bisulfite treatment stage prior to pyrosequencing. Herein, we evaluated both regression and
ANN models, and the impact of ethnicity and sex on age prediction for 333 local blood samples using
three loci on the pyrosequencing platform. Subsequently, we trained a one locus-based ANN model
to reduce the amount of DNA used. We demonstrated that the ANN model has a higher accuracy

of age prediction than the regression model. Additionally, we showed that ethnicity did not affect
age prediction among local Chinese, Malays and Indians. Although the predicted age of males were
marginally overestimated, sex did not impact the accuracy of age prediction. Lastly, we present a
one locus, dual CpG model using 25 ng of input DNA that is sufficient for forensic age prediction. In
conclusion, the two ANN models validated would be useful for age prediction to provide forensic
intelligence leads.

In recent years, technological developments and advancements in biomedical sciences has propelled forensic
genetics into a new era of DNA intelligence, one example being the ability to predict the chronological age of the
donor of a body fluid sample recovered from a crime scene. This investigative lead on age can potentially assist
the police in narrowing down the number of suspects for cases where the unknown donor cannot be identified
from DNA direct matching or by a search of the DNA database. Previous molecular approaches for age prediction
rely on shortening of telomeres'?, mitochondrial DNA deletions®*, advanced glycation end-products®, aspartic
acid racemization®’, and signal-joint T-cell receptor excision circles®. These approaches, however, have several
limitations including large standard error, limited age range, inconsistent sampling procedure and sophisticated
methodology®*#-1° that limit their applicability in the forensic context.

Over the past 10 years, DNA methylation has gained acceptance as the standard approach to predict age.
Initial models for epigenetic age prediction were based on genome-wide array platforms''-'*. Koch and Wagner'?
developed an age model using five CpGs for 13 different tissue types, but with differences between chronological
and predicted ages as large as 11 years. A more accurate model was subsequently developed by Horvath et al."%,
using 353 CpGs to predict age in 51 different tissue types with an improved average accuracy of 2.9-3.6 years.
Nevertheless, the predicted age in some tissue types deviated from the chronological age by more than * 10 years,
indicating that the prediction accuracy is tissue-dependent or that different markers may be needed for different
tissues in order to achieve high accuracy levels. Hannum et al.'* was the first group to report an age model for
blood samples using 71 CpGs with an average error of 3.9-4.9 years. They were also the first to report on the
effects of auxiliary variables such as gender and body mass index on age prediction. Although the genome-wide
array platform is essential during the discovery stage, it may not be applicable in the forensic context due to
expensive methodology, longer processing time and requirement of large amount of input DNA.

The pyrosequencing assay has been successfully applied to quantitate DNA methylation levels of targeted
CpGs. Weidner et al.”” built a multivariate regression model with mean absolute deviation (MAD) of 5.4 years
using just three CpGs for blood samples. The model was subsequently validated with MAD of 4.5 years in the
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test data. Within the forensic community, Zbie¢-Piekarska et al.'® developed a multivariate regression model
with MADs of 5.0-5.7 years using two CpGs from ELOVL2 for blood samples. To improve the accuracy of the
model, the group retrained the model with five CpGs from ELOVL2, Clorfl132/MIR29B2C, FHL2, KLF14 and
TRIM59 to decrease the MADs to 3.4 years and 3.9 years in the training and test data, respectively'”. Thereafter,
several groups have reported using CpGs from ELOVL2 along with other age-associated markers for forensic
age prediction in blood"®-?*, teeth!®%, saliva’»?* and buccal swabs?’. The methodologies adopted were also var-
ied, covering pyrosequencing'®-*°, EpiTYPER?"*, SNaPshot*? and high resolution melting**. Results from these
studies cemented the position of ELOVL2 as the primary marker for age prediction. Further studies also revealed
that ELOVL2 CpGs consistently display age-related increase in DNA methylation across many tissue types, while
CpGs from other age-associated markers are generally tissue-specific®®. Interestingly, ELOVL2 is not associated
with age in semen. Using the SNaPshot assay, Lee et al.* developed a multivariate model with three CpGs from
TTC7B, NOX4 and cg12837463 to predict age from semen samples with MADs of 4.2-5.4 years.

In the past three years, studies have emerged employing a combination of massively parallel sequencing (MPS)
technology and artificial intelligence to understand epigenetic age signatures. Vidaki et al.?” compared a regres-
sion model (MAD =4.6 years) using 23 CpGs with an artificial neural network (ANN) model (MAD = 3.3 years)
using 16 CpGs in training data. The ANN model was subsequently validated with MAD of 4.4 years in test data.
Naue et al.?® developed a random forest regression model with MADs of 3.2 years in training data and 3.1 years in
test data using 13 CpGs in blood samples. These two groups further explored the implication of different machine
learning models? and different tissues®® on age prediction. Additionally, Aliferi et al.”® also demonstrated accu-
rate age prediction using only 10 ng of input DNA on the MPS platform. Nevertheless, there is a lack of studies
showing the limit of input DNA on the pyrosequencing platform for forensic age prediction.

Amongst the various models reported, the Zbie¢-Piekarska model'” is perhaps the most well-known age
prediction model for targeted bisulfite treatment and pyrosequencing. We have previously retrained the Zbie¢-
Piekarska model to suit the local population in Singapore®'. The retraining was performed to resolve potential
differences attributed to population-specific differential methylation patterns as well as to investigate the use of
fewer CpGs (less than five) to predict age in the forensic context. The accuracy of our retrained regression model
was reported with MADs of 3.3 years and 5.0 years in the training data and test data, respectively’!, suggesting
signs of overfitting. Although our local population comprised three major ethnic groups—Chinese, Malays and
Indians, the effects of ethnicity on age prediction were not investigated in our previous study. In the present
study, we re-determined the best age predictors prior to (1) comparison of prediction accuracy between ANN
and regression models, (2) investigation on the effect of co-variables such as ethnicity and sex on age prediction
and (3) determination of the minimum amount of input DNA required for bisulfite treatment and pyrosequenc-
ing to predict age.

Materials and methods

Sample source and DNA extraction. The study was conducted using 333 blood samples of Singapore
Chinese, Malay and Indian individuals aged between 0 and 88 years. These blood samples were from previ-
ous crime cases retained in the laboratory with identity information anonymised with the exception of age,
ethnicity and gender. DNA was extracted from whole blood using the Wizard Genomic DNA Purification Kit
(Promega Corporation, Madison, WI, USA) or the Maxwell 16 LEV Blood DNA Kit (Promega Corporation)
on the Maxwell 16 instrument following the manufacturer’s protocol. The extracted DNA was quantified using
the Quantifiler Duo DNA Quantification kit (Applied Biosystems, Foster City, CA, USA) on the QS7 Real-Time
PCR System (Applied Biosystems).

Bisulfite conversion and pyrosequencing. Age-associated CpGs within ELOVL2, TRIM59, KLF14 and
FHL2 were evaluated through DNA methylation analysis conducted using bisulfite treatment and pyrosequenc-
ing. Previously published PCR primers and sequencing primers!” were employed (Supplementary Table S1). A
starting template of 500 ng of DNA was subjected to bisulfite conversion using the EpiTect Fast Bisulfite Con-
version Kit (Qiagen, Hilden, Germany) following the manufacturer’s protocol. Based on an 80% DNA recovery
rate after bisulfite conversion (personal communication with Qiagen’s technical support specialist), 20 ng of
bisulfite-treated DNA were used for PCR amplification of each locus using the PyroMark PCR Kit (Qiagen).
Amplifications were performed in a total volume of 25 uL, containing 0.2 uM of standard primer, 0.2 uM of
biotinylated primer, 20 ng of DNA template, and PyroMark PCR Master Mix (which contained HotStarTaq DNA
Polymerase, 1 x PyroMark PCR Master Buffer and dNTPs). The amplification programme comprised an initial
denaturation step at 95 °C for 15 min, 45 PCR cycles of 94 °C for 30 s, 56 °C for 30 s and 72 °C for 30 s, followed
by a final extension at 72 °C for 10 min. Following amplification, 10 pL of the biotinylated PCR product was
immobilized on 1 pL of Streptavidin-coated Sepharose high-performance beads (GE Healthcare, Chicago, IL,
USA) and annealed with 20 uL of 0.375 uM sequencing primer for 5 min at 80 °C on the PyroMark vacuum prep
workstation (Qiagen). Pyrosequencing was subsequently performed using the PyroMark Q24 Advanced CpG
Reagents (Qiagen) on the PyroMark Q24 Advanced instrument (Qiagen) following the manufacturer’s protocol.
The generated pyrograms were analysed using the PyroMark Q24 Advanced Software (Qiagen) to obtain the
DNA methylation levels of targeted CpGs. For reproducibility assessment, ten blood samples were put through
the assay in duplicates starting from bisulfite treatment.

Sensitivity testing. For sensitivity testing, varying amounts of input DNA (500 ng, 25 ng, 15 ng) were
bisulfite converted as described above. Subsequently, 10 ng of bisulfite-treated DNA were amplified and sub-
jected to pyrosequencing.
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Experiment design and statistical analysis. The dataset of 333 blood samples was randomized into
training and test sets in a ratio of 3:2. The training data of 196 blood samples (106 Chinese, 45 Malays, 45 Indi-
ans; 141 males and 55 females) between 0 and 88 years of age was used to develop the age prediction model.
Univariable regression analysis was applied to determine the correlation between DNA methylation level and
chronological age. Forward stepwise regression was performed to simultaneously analyse the 29 CpGs from
ELOVL2, TRIM59, KLF14 and FHL?2 to identify suitable CpGs as predictors of chronological age. Beginning
with an empty model, best CpG predictor was sequentially added in each iterative step based on a default entry
of probability of F (0.05). The iteration stopped when no CpG predictor met the entry criterion.

The multivariable regression (MVR) equation developed based on the 196 training samples was validated
using an independent set of 137 test samples (63 Chinese, 33 Malays, 41 Indians; 108 males and 29 females) with
ages ranging from 0 to 85 years. The MVR formula used in this study was:

Predicted age (years) = —25.991+0.762x [ELOVL2C4] +1.162x [KLF14C1] 4 0.589x [TRIM59C5].

Besides MVR, multilayer perceptron (MLP), which is a class of ANN, was also used to develop a model
based on ELOVL2 C4, KLF14 C1 and TRIM59 C5 using the same training data. Neural network module of IBM
SPSS statistics was used to build the ANN model. The network architecture, which uses feedforward method,
is composed of three layers: input layer, hidden layer and output layer. Before training, the data was randomly
assigned to training (70%) and test (30%) subsets. The network was built with three inputs (ELOVL2 C4, KLF14
C1 and TRIM59 C5), two units in hidden layer, and one output (Supplementary Fig. S1). One hidden layer and
an automatically selected number of units (between 1 and 50) was applied. All covariates were normalized to
values between 0 and 1. The data of age was rescaled as normalization in the range of 0 to 1 by correction of 0.02.
The activation function linked the weighted sum units in a layer to the values of units in the succeeding layer.
The hidden layer was activated by the hyperbolic tangent function, and the output layer was activated by the
identity function. For the remaining settings, default parameters of the IBM SPSS statistics were applied (Sup-
plementary Table S2). The synaptic weights (also referred to as coefficient estimates) that show the relationship
between the units in a given layer to the units in the following layer (summarized in Supplementary Table S3),
were exported as .xml file. These training iterations were repeated until the network adjusted the synaptic weights
to produce predictions with only a minimal difference to the actual values. Subsequently, the trained ANN model
was validated by applying the .xml file to the test set of 137 samples. For sensitivity testing, the ANN models were
trained similarly as described, but with only one CpG (ELOVL2 C4), or two CpGs (ELOVL2 C4 and ELOVL2 C5).

To evaluate the MVR and ANN models, mean absolute deviations (MADs) from chronological age were calcu-
lated for the training and test data. Additionally, prediction results were interpreted as correct if the predicted age
was within £ 5 years of chronological age. This cut-off value was determined according to the root mean square
error (RMSE) of the developed MVR model. To investigate the influence of different age groups on prediction
accuracy, deviation of predicted age from chronological age was evaluated for four age groups: ‘Below 21}, 21-40,
‘41-60’ and ‘61 and above. Wilcoxon signed-rank test was used to assess the MADs to evaluate the difference
between the MVR and ANN models for all age groups in both the training and test data. Kruskal-Wallis test
followed by Dunn-Bonferroni post-hoc comparison was used to assess the deviations.

To explore the effects of ethnicity and sex on age prediction, deviations from chronological age were catego-
rized according to the different ethnic groups and sex using the developed ANN model. DNA methylation levels
of targeted CpGs for Polish and French populations reported by Zbie¢-Piekarska et al.'” and Daunay et al.** were
used for further comparison with foreign ethnic groups. There was no further treatment to these reported data
to eliminate potential technical variation prior to using them to evaluate our ANN model. Kruskal-Wallis test
followed by Dunn-Bonferroni post-hoc comparison was used to assess the deviations for the different ethnic
groups. Two-tailed t-test was used to assess the deviations for each sex.

For sensitivity testing, forward stepwise regression analysis was conducted on the 196 training samples data
to determine the ELOVL2 CpG predictors to be used in retraining of the ANN model. Subsequently, the ANN
models were trained as described above. The ANN models developed were evaluated on 27 individuals (11
Chinese, 10 Malays, 6 Indians) where methylation data were obtained using 500 ng, 25 ng and 15 ng of input
DNA for bisulfite conversion.

All analyses were performed using IBM SPSS statistics ver. 25. Shapiro-Wilk test was conducted to assess for
data normality prior to application of a statistical test. An alpha of 0.05 was used as the cut-off for significance
for all analyses involved in this study. The .xml files for ANN models and step-by-step instructions are provided
in the supplementary information.

Results

Reproducibility assessment. To assess the reproducibility of the pyrosequencing assay, 10 blood samples
were separately bisulfite-converted and amplified prior to pyrosequencing for all four genes (ELOVL2, TRIM59,
KLF14 and FHL?2). The mean difference in DNA methylation between conversions for all the 29 CpGs was below
3% (Supplementary Table S4), comparable to that reported by Tost and Gut even in cases of different bisulfite
treatments and/or separate PCR reaction®, indicating that our assays were highly reproducible.

Correlation analysis of age-associated markers. To reconfirm the magnitude of age association
for the CpGs in ELOVL2, TRIM59, KLF14 and FHL2, bisulfite treatment and pyrosequencing were used to
quantitate the DNA methylation levels of the 29 CpGs using 196 blood samples. Strong positive correlations
(0.731 <R<0.947) between methylation levels and age were observed for all examined CpGs (Table 1, Supple-
mentary Fig. S2). The correlation analysis also revealed significant associations (P <0.001) for all examined CpGs
(Table 1). The strongest correlation for each locus was observed at ELOVL2 C4 (R=0.947), KLF4 C1 (R=0.860),
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Locus CpG | Chr | Map info (GRCh38) | R Adjusted R*> | Standard error | Pvalue
C1 6 11044661 0.907 |0.822 9.020 9.72x107
C2 6 11044655 0.905 |0.818 9.107 6.35%x107
C3 6 11044647 0.920 |0.845 8.397 9.00x 1078
ELOVL2 C4 6 11044644 0.947 | 0.896 6.900 2.47x10™7
C5 6 11044642 0.946 | 0.894 6.956 1.19% 107
Cé6 6 11044640 0.945 |0.893 6.990 3.08x107%
Cc7 6 11044634 0913 |0.833 8.736 1.93x 1077
C1 7 130734355 0.860 | 0.738 10.920 1.29x107%®
C2 7 130734357 0.817 | 0.666 12.339 2.69%107%
KLF14
C3 7 130734373 0.824 |0.678 12.123 8.70x 10
C4 7 130734375 0.749 | 0.559 14.178 1.49x 107
C1 3 160450172 0.851 |0.723 11.229 2.94x107%
C2 3 160450174 0.821 | 0.672 12.218 4.00x107%
C3 3 160450179 0.907 |0.821 9.035 1.34x107*
TRIMS9 C4 3 160450184 0.879 |0.772 10.201 2.33x107%
C5 3 160450189 0.919 | 0.844 8.425 1.70x10°%°
C6 3 160450192 0.916 |0.838 8.582 6.23x107°
Cc7 3 160450199 0.913 |0.834 8.711 1.10x 10777
C8 3 160450202 0.898 |0.805 9.438 6.49%107
C1 2 105399282 0.932 | 0.867 7.775 2.90x 1077
C2 2 105399288 0.903 |0.815 9.181 3.00x107
C3 2 105399291 0.907 |0.821 9.021 9.88x107°
C4 2 105399297 0.833 | 0.693 11.828 7.28x107%
FHL2 C5 2 105399300 0.887 |0.785 9.901 7.03%x 1077
Cé 2 105399310 0.847 | 0.716 11.377 3.79%107%
(674 2 105399314 0.818 | 0.667 12.319 1.96x 1074
C8 2 105399316 0.821 | 0.672 12.225 4.46x10°%
c9 2 105399323 0.808 | 0.651 12.614 1.97x 1074
C10 2 105399327 0.731 |0.531 14.615 5.49x 1073

Table 1. Univariable regression analysis and chromosomal coordinates of 29 CpGs at four DNA methylation
loci using 196 training data. Map coordinates refer to the genomic positions in human reference genome

38 (GRCh38). CpG from each locus with the strongest correlation with age is highlighted in bold. Chr
chromosome.

TRIM59 C5 (R=0.919) and FHL2 C1 (R=0.932), explaining 89.6%, 73.8%, 84.4% and 86.7% of age-associated
variation, respectively. These results indicated that changes in DNA methylation levels in these four loci are
highly associated with aging.

Retraining of age prediction model. To improve on the accuracy and resolve potential overfitting in our
previous age prediction model, we randomized the 333 samples into a training (n=196) and test set (n=137).
Forward stepwise regression analysis was performed on the 29 CpGs for the 196 training samples to establish a
suitable age prediction model comprising the most informative CpG predictors. In this iterative process, CpG
predictors were added sequentially into the model to assess the statistical improvement (if any) to the model. As
shown in Supplementary Table S5, the model with ELOVL2 C4 alone was observed with RMSE of 6.9 years and
MAD of 5.2 years, accounting for 89.6% of age-associated variation (95% CI 0.869-0.923). With the addition of
KLF14 Cl1 and TRIM59 C5, the model showed an improved age predictive power with RMSE of 5.4 years and
MAD of 4.1 years, explaining 93.7% of age-associated variation (95% CI 0.922-0.954). With more than three
predictors, confidence intervals of the R? were largely overlapping. Furthermore, models with four and five pre-
dictors had variance inflation factor (VIF) values of more than 10. A VIF value above 10 indicates multicollin-
earity among the predictors, which could potentially inflate the variance of estimates until the model is rendered
unstable®*. As such, ELOVL2 C4, KLF14 C1 and TRIM59 C5 were selected as the age predictors for building the
multivariable regression (MVR) and ANN models.

Applying artificial neural network for age prediction. To examine whether machine learning can
predict chronological age more accurately, we developed an ANN model using the three selected age predictors
with the same training data and compared its predictive performance with the MVR model. Although confi-
dence intervals of the age-associated variation explained by the ANN and MVR models were largely overlapping
(Supplementary Table S5), the ANN model had higher accuracy with MAD of 3.7 years, which was significantly
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Figure 1. Age prediction with multivariable regression (MVR) and artificial neural network (ANN) models on
(a,b) training (n=196) and (c,d) test (n=137) data comprising the three local ethnic groups. Age was predicted
with three predictors—ELOVL2 C4, KLF14 C1 and TRIM59 C5. MAD mean absolute deviation; RMSE root
mean square error. The units for MAD and RMSE are years.

different from that of the MVR model with MAD of 4.1 years (P=0.001, Fig. 1a,b, Table 2). The ANN model
also displayed a higher percentage of correct prediction (75.5%) when compared with the MVR model (70.9%).
Among the different age groups, the ANN model had significantly lower MADs than the MVR model in two
age groups— Below 21’ (MADs =2.2 vs 2.9 years, P=0.001) and 21-40" (MADs =3.5 vs 4.1 years, P=0.005). As
expected, these two younger age groups also exhibited a higher percentage of correct prediction with the ANN
model (92.6%, 80.0%, respectively) than with MVR model (79.6%, 74.0%, respectively). No difference in MADs
(P>0.05) were observed for both models with respect to the two older age groups—‘41-60’ and ‘61 and above’
These data suggested that the ANN model overall could predict the age of an individual more accurately than
the MVR model.

Validation of age prediction models. To validate the accuracy of the MVR and ANN models for age
prediction and determine if these models were overfitting, we challenged the models with another independent
set of 137 blood samples. The ANN model displayed no difference in prediction accuracy (MADs=3.7 years)
between the training and test data (Fig. 1b,d) while the MVR model exhibited only a small difference in accuracy
(MADs=4.1 vs 4.2 years) between the datasets (Fig. 1a,c). These results indicated the absence of overfitting in
both the MVR and ANN models. In concordance with the training data, the ANN model was validated with a
higher accuracy when compared with the MVR model (MADs=3.7 vs 4.2 years, P=0.002, Table 2). The ANN
model also produced a higher percentage of correct prediction (73.0%) for predicted age when compared with
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MAD (years) % Correct prediction (n)
Data Age group MVR | ANN | Pvalue | MVR ANN
Below 21 2.9 22 0.001*** | 79.6 (43/54) 92.6 (50/54)
21-40 4.1 3.5 0.005** 74.0 (37/50) 80.0 (40/50)
Training 41-60 4.1 4.2 0.951 70.8 (34/48) 68.8 (33/48)
61 and above | 5.3 52 0.949 56.8 (25/44) 56.8 (25/44)
Overall 4.1 37 0.001* | 70.9 (139/196) | 75.5 (148/196)
Below 21 4.3 3.1 0.001*** | 73.3 (22/30) 86.7 (26/30)
21-40 29 2.6 0.130 80.9 (38/47) 85.1 (40/47)
Test 41-60 42 4.1 0.422 65.7 (23/35) 62.9 (22/35)
61 and above | 6.3 5.8 0.326 40.0 (10/25) 48.0 (12/25)
Overall 4.2 3.7 0.002** 67.9 (93/137) 73.0 (100/137)

Table 2. MADs and percentage of correct predictions of multivariable regression (MVR) and artificial neural
network (ANN) models for different age groups with both training and test data. Correct prediction was
calculated based on <5 years between predicted and actual ages. Asterisk denotes the degree of significance.
MAD mean absolute deviation.
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Figure 2. Boxplot showing deviation of predicted age from chronological age for 137 blood samples
determined by multivariable regression (MVR) and artificial neural network (ANN) models for the different
age groups. All pairwise comparisons with statistical significance (P <0.05) are indicated. Asterisk denotes the
degree of significance. Open circle denotes outlier.

the MVR model (67.9%), which was consistent with the training data. Among the different age groups, the ANN
model had a significantly lower MAD than the MVR model for the youngest age group—Below 21’ (MADs =3.1
vs 4.3 years, P=0.001). The results showed that the ANN model outperformed the MVR model in predicting the
chronological age of an individual, especially for the younger individuals.

Effect of different age groups on age prediction. MADs in the training data were observed to gener-
ally increase from the youngest age group (2.2-2.9 years) to the oldest age group (5.2-5.3 years), although this
increasing trend was less prominent in the test data (Table 2). To explore whether the increasing deviation of
predicted age from chronological age correlates with chronological age, we plotted the deviations against chron-
ological age. The Blant-Altman plots did not reveal any obvious increase in deviations as age increases (Supple-
mentary Fig. S3). The age of older individuals however could be observed to be underestimated. This underesti-
mation of age for the older individuals was most apparent when the deviations were categorized according to the
four different age groups (Fig. 2). The deviations from chronological age obtained using the MVR model showed
significant difference between the age group ‘61 and above’ and the other age groups (P=0.041 for ‘Below 21’;
P=0.010 for 21-40’; P=0.001 for ‘41-60’). Additionally, significant differences between the age group ‘61 and
above’ and two other age groups (P=0.019 for ‘Below 21’; P=0.016 for ‘41-60’) were also observed for the ANN
model.
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Figure 3. Boxplot showing deviation of predicted age from chronological age determined by the artificial
neural network (ANN) model for the different (a) ethnic groups and (b) sex. For ethnicity analysis, the dataset
consisted of 63 Chinese, 33 Malays, 41 Indians, 120 Polish and 100 French. For sex analysis, the dataset consisted
of 108 males and 29 females from the local Chinese, Malay and Indian populations. All pairwise comparisons
with statistical significance (P <0.05) were indicated. Asterisk denotes the degree of significance. Circle denotes
outlier. Diamond denotes extreme outlier.

Variables affecting age prediction. To determine whether co-variables such as ethnicity affect age pre-
diction, the deviations from chronological age was examined for the three ethnic groups in our local population
using the ANN model. No significant difference (P=0.531) in deviations was observed among the Chinese,
Malays and Indians using the ANN model (Fig. 3a). A significant difference, however, was observed for the Pol-
ish when compared with the other ethnic groups including the French (P<0.003). An underestimation of age
was generally observed for the Polish samples while extreme outliers were observed for the French samples on
our ANN model. These data indicated that prediction accuracy using our ANN model would be lower for the
Polish and French populations, while having no impact on age prediction among the local Chinese, Malay and
Indian populations. Therefore, our ANN model is better suited for the local ethnic groups in Singapore.

To examine whether sex affects age prediction, the deviations from chronological age was examined by sex in
our local population. Although the predicted ages of men were marginally higher than that for women (P=0.039,
Fig. 3b), sex does not have an effect on age prediction.

To confirm the effect of ethnicity and sex on age prediction for our local population, we developed MVR
models holding ethnicity and/or sex constant. Our default MVR model provided an accuracy with MADs of
4.1-4.2 years (Fig. 1; Table 2). With an adjustment for ethnicity and/or sex, there was no prominent improvement
in prediction accuracy observed (MADs =4.0-4.2 years) (Supplementary Table S6). Using a cut-off of more than
10% change in the regression coefficient to identify any confounding factors, we observed less than a 10% change
for all three predictors adjusted for ethnicity and/or sex (Supplementary Table S7). The data demonstrated that
the accuracy of our age prediction model is unlikely to be affected by local ethnicity and/or sex.

Sensitivity testing. As multiplexing is not readily achievable during pyrosequencing, larger quantities of
DNA template are required when more loci are to be analysed for DNA methylation. To reduce the amount of
input DNA used for age prediction, forward stepwise regression was performed to identify the most informa-
tive ELOVL2 CpGs that can be used to build an ANN model. The dual CpG model comprising C4 and C5 was
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Model Input DNA (ng) MAD (years) Correct prediction % (n)
Default ANN 500 32 81.5(22/27)
500 32 77.8 (21/27)
Single CpG
25 3.7 85.2 (23/27)
500 3.1 85.2 (23/27)
Dual CpG
25 3.5 88.9 (24/27)

Table 3. MADs and percentage of correct predictions of different artificial neural network (ANN) models
using varying amounts of input DNA for age prediction on 27 local individuals. Default ANN = original ANN
model comprising three CpGs from ELOVL2 C4, KLF14 C1 and TRIM59 C5. Single CpG = sensitivity ANN
model comprising only ELOVL2 C4. Dual CpG = sensitivity ANN model comprising ELOVL2 C4 and C5.
Correct prediction is calculated based on <5 years between predicted and actual ages. MAD mean absolute
deviation.

observed with RMSE of 6.1 years (Supplementary Table S8), which was lower than the single CpG model com-
prising C4 with RMSE of 6.9 years (also see Supplementary Table S5). Notably, the dual CpG model had high
VIFs of 10 for both CpGs, a value which was the upper limit of acceptable multicollinearity**. The presence of
multicollinearity was likely due to the close proximity of both CpGs in their chromosomal positions. With the
addition of C1 to the dual CpG model, a higher degree of multicollinearity (VIF=16.021) was detected with no
change in RMSE. Therefore, we focused on evaluating the single and dual CpG sensitivity ANN models. Using
500 ng of input DNA, the dual CpG model exhibited a relatively better performance (MADs=4.4-4.7 years)
when compared with the single CpG model (MADs=4.7 years) (Supplementary Fig. S4). Nevertheless, the dual
CpG model still has a lower accuracy for age prediction when compared with the default ANN model with three
CpGs from three loci (MADs=3.7 years, Fig. 1b,d; Table 2).

To determine the minimum amount of input DNA required for age prediction with only one locus ELOVL2,
two different amounts of input DNA (25 ng and 15 ng) for bisulfite conversion were evaluated. These two
amounts were decided by taking into consideration the 80% DNA recovery from bisulfite conversion as well
as the minimum requirement of 10 ng of bisulfite-treated DNA for reproducible amplification®. The bisulfite
pyrosequencing with 15 ng of input DNA, however, produced either no or low pyrosequencing signal. Thus, the
evaluation of sensitivity was based on the original amount (500 ng) and 25 ng of input DNA.

Based on 500 ng of input DNA on 27 blood samples, the single and dual CpG ANN models (MADs=3.2 and
3.1 years, respectively) had comparable prediction accuracies as that of the default ANN model comprising three
CpGs from three loci (reference MAD = 3.2 years, Table 3). When both sensitivity ANN models were challenged
with the reduced input DNA quantity of 25 ng, the accuracies of the single and dual CpG models decreased
(MADs=3.7 and 3.5 years, respectively). Our results showed that the dual CpG model performed marginally
better than the single CpG model, especially with 25 ng of input DNA. The architecture of the dual CpG sensi-
tivity ANN model and its parameter estimates are shown in Supplementary Fig. S5 and Table S9, respectively.

Discussion
The regression-based age prediction model developed in our previous study was recently independently evalu-
ated to be a better performing model for the French population®?. However, we have attempted to further retrain
our model as the 1.7 years difference in MADs obtained from our previous training (MAD = 3.3 years) and test
(MAD =5.0 years) data’! suggested possible overfitting. In the current training data, ELOVL2 C4 was observed
to exhibit the strongest correlation with age (Table 1) as opposed to C5 in our previous study’'. Notably, the
top three ELOVL2 CpGs were consistently C4-C6 and their differences in correlation strength were negligible.
Similarly, negligible differences in age correlation among the top three TRIM59 CpGs (C5-C7) were observed.
KLF14 C1 and FHL2 C1 also concordantly displayed the strongest correlation with age in both studies. In com-
parison to the R coefficients observed in the Zbie¢-Piekarska et al. study'’, several R coeflicients observed in our
previous study®! and present study exceeded 0.9. The higher R coefficients in our study could be attributed to
the larger age range used in our training model (0-88 years) as compared with the Zbie¢-Piekarska et al. study
(2-75 years). This is consistent with the report by Daunay et al.*? that a smaller age range was responsible for the
lower R coefficients observed in their study. These results suggested that R coefficient is highly dependent on
the age range of samples used. As compared to the MVR model developed in our previous study™, the retrained
MVR model comprised ELOVL2 C4 (replacing C5), KLF14 C1 (replacing C2) and TRIM59 C5. The current MVR
model had a higher precision (MADs =4.1-4.2 years, Fig. 1a,c and Table 2) when compared with the previous
model (MADs=3.3-5.0 years)*!. Importantly, the 0.1 year difference in MADs between the training and test
data indicated the absence of overfitting in the current MVR model. Although the current model produced a
higher MAD of 4.1 years in the training data, we believe it is more robust and reliable than the previous model*’.
Moreover, an improvement in prediction accuracy over the previous MVR model®! was also observed when the
current MVR model was used to evaluate the French samples—a decrease from the reported MAD of 5.2 years®
to MAD of 5.0 years (Supplementary Table S10). Similarly, French samples with age predicted correctly had also
increased from the reported 55°*~-61% (Supplementary Table S10). Together, these results demonstrated that the
current MVR model performed better than our previous MVR model®! for age prediction.

In recent years, artificial intelligence (AI) has been increasingly applied towards predictive analytics in bio-
medical research. Machine learning, which is a subset of Al constructs algorithms that can learn from data and
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make predictions. One such example is that of the artificial neural network (ANN, which comprises of layers of
neurons that interact via carefully weighted connections to produce a predictable outcome. Due to its adaptive
learning process, ANN reduces errors in prediction outputs by systematically optimising the connecting weights
between the neurons within the network. Recent studies have demonstrated that age prediction using ANN
models gave higher prediction accuracies than regression models?”-*>*%¥. In our present study, we observed a
similar higher age prediction accuracy using an ANN model over a MVR model in both training (MADs=3.7
vs 4.1 years, P=0.001) and test data (MADs =3.7 vs 4.2 years, P=0.002) (Fig. 1; Table 2). Using the ANN model,
we also obtained a higher prediction accuracy for the French samples (MAD =4.8 years, 68% correct predic-
tion), exceeding the accuracy obtained by the current MVR model (MAD =5.0 years, 61% correct prediction)
(Supplementary Table S10).

From a forensic casework perspective, both MVR and ANN models work well and can be applied towards
predicting the age of the donor of the blood sample. However, the MVR model has a lower accuracy for overall
age prediction. The MVR model works best with straight-line relationships, and attempts to determine the
best-fit line for non-linear trends. In contrast, the innate ability of the ANN model to learn holistically from the
observed non-linear trends (Supplementary Fig. S2), accounts for higher accuracy. One major caveat of using
ANN model is overfitting where a model with high variance is made to achieve higher accuracy. Overfitting can
also be caused by excessive input variables, insufficient training samples, or complicated ANN structures that use
several hidden layers that consequently result in poor generalization. These overfitting issues were, however, not
observed in the present study, as demonstrated by the similar MAD values obtained for the training and test sets.

Although MAD is usually used to assess the overall accuracy of the prediction model, it may be an over-
simplification as prediction error has been observed to increase with age®. We therefore divided our data into
four distinct age groups for further analysis on the prediction accuracy. The age boundary of each age group was
set based on the age demographics of the local convicted offender population®” with slight modifications (Sup-
plementary Table S11). It was observed that MADs generally increased from the youngest age group to the oldest
age group (Table 2), which was consistent with observations in other studies'’~"°. In principle, MAD measures
the average of all deviations from true age, but it lacks the capability to measure the spread of the deviations. By
assessing the deviations from chronological age for every sample, we observed larger deviations for samples above
61 years of age. (Supplementary Fig. S3). This was further illustrated when the deviations from chronological
age were categorized according to the different age groups (Fig. 2). The median lines from age group “61 and
above” were observed to lie below other boxes belonging to the three other age groups, indicating the elderly
was underestimated for age prediction. In contrast, the interquartile ranges of boxplots belonging to the three
other age groups were largely overlapping, suggesting no difference in the deviations. The underestimation of
age for the elderly could be attributed to an epigenetic drift in which the DNA methylation pattern altered due
to more environmental stress experienced by the elderly. Together, our results indicated there is no difference
in prediction accuracy for individuals below age 61. However, age prediction of individuals aged 61 and above
are likely to be less accurate.

As intergroup variability such as ethnically diverse population and gender could be associated with variation
in epigenetic age®®, it is important to evaluate these effects on age prediction accuracy. In the present study, no
significant difference in prediction error (P=0.531) was observed among the local Chinese, Malays and Indians
(Fig. 3a). This observation could be attributed to the incorporation of the three ethnic groups in the training
data, thus accounting for most of the variations in DNA methylation patterns due to ethnic differences. This may
also explain why there was no obvious change in prediction accuracy when ethnicity with and without sex was
adjusted (Supplementary Table S7). However, pronounced variations in prediction errors were observed when
the ANN model was used on the Polish sample population (Fig. 3a). The Polish sample was underestimated
and its prediction error was significantly different (P<0.003) compared to all ethnic groups investigated in the
present study. Despite the notable differences in prediction accuracy observed for the Polish and French samples,
it may be possible that these differences could, in part, be due to methodology and instrumental variations dur-
ing bisulfite conversion and/or pyrosequencing. As such, the ethnic effects from foreign populations may not
be conclusive. We would suggest that a model trained with targeted ethnic groups should not be applied to an
individual from a non-targeted ethnic group without model retraining. As our model comprised all three local
ethnic groups, further study could be performed to directly evaluate the influence of ethnic-specific models on
other ethnic groups. But for practical reasons, we were of the opinion that ethnic-specific model for each ethnic
group in our local population may be less helpful for law enforcement as confusion may arise with separate
models, for example, 30+ 3.7 years old for Chinese, 32 + 4.3 years for Malay, or 29 + 4.1 years old for Indian. This
was further supported by our finding that there was no prominent difference in prediction accuracy among the
three ethnicities. Therefore, we sought to optimise a single model with a sufficiently high level of accuracy to the
three ethnic groups in our population to be more practical for crime investigation.

For the effect of sex on age prediction, the results showed that there was marginal overestimation for males as
compared to females (P=0.039, Fig. 3b), similar to that observed in studies by Weidner et al.', Zbie¢-Piekarska
etal.”” and Naue et al.?®. It should be noted that there were studies which had suggested that gender had no effect
on age prediction'>18212732 In the present study, there was no apparent change in prediction accuracy even when
sex with and without ethnicity was adjusted (Supplementary Table S7). This observation could possibly be due
to the weaker contribution by sex, which was consistent with the findings by Zbie¢-Piekarska et al.'” and Naue
et al.?®. Likewise, although the DNA methylome in men “ages” faster (~4%) than in women, there was no differ-
ence in aging between the two genders'*. Together, our results showed that sex has no impact on age prediction.

The age prediction models discussed thus far were evaluated based on three loci predictors—ELOVL2 C5,
KLF14 C1 and TRIM59 C5. A considerable amount of DNA is required to predict age using the three predic-
tor model as singleplex amplification reactions had to be performed prior to pyrosequencing. This approach
may not be feasible in the forensic context where crime evidential material may often be limiting. We therefore
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explored the feasibility of an alternative age prediction model that predicts age with just a single predictor
ELOVL2. To obtain a higher accuracy for age prediction, we evaluated models that included more than one
ELOVL2 CpG while taking into account the multicollinearity effects on age prediction. Our multicollinearity
diagnostic supported the inclusion of up to two ELOVL2 CpGs in the model, ELOVL2 C4 and C5 (Supplemen-
tary Table S8). Zbie¢-Piekarska et al.'® also reported a dual ELOVL2 CpG model, though their model comprised
ELOVL2 C5 and C7. Although the ANN model comprising two ELOVL2 CpGs had a relatively higher accuracy
(MADs =4.4-4.7 years) than the ANN model with a single ELOVL2 CpG (MADs=4.7 years) (Supplementary
Fig. $4), its predictive performance was still lower as compared with the MVR (MADs=4.1-4.2 years) and ANN
(MADs=3.7 years) models that comprised of three loci predictors (Fig. 1). Nevertheless, the dual ELOVL2 CpG
model may be of practical relevance during forensic casework applications when only a limited amount of DNA
is available for age prediction assays.

With the development of the one-locus ELOVL2 model, we tested the performance of the model with a
reduced amount of input DNA used for bisulfite conversion on 27 blood samples. With an input DNA of 500 ng,
both the single and dual ELOVL2 CpG models have comparable prediction accuracies (MADs=3.2 and 3.1 years,
respectively) as that of the default model with three CpGs from three loci (MAD =3.2 years) (Table 3). This
observation could be attributed to the smaller sample size examined. With an input DNA of 15 ng, we were
unable to obtain reliable pyrosequencing results (due to no/low pyrosequencing signal), likely due to insuffi-
cient amounts of bisulfite-treated DNA being used for amplification. We postulated that the DNA recovery rate
after bisufilte conversion decreases as the amount of input DNA decreases. As there is currently no standard
approach to accurately quantify bisulfite-treated DNA, most studies to date have relied on theoretical recovery
rates proposed by manufacturers. As such, the reported amount of bisulfite-treated DNA is generally perceived
as arbitrary. While the recovery rate of bisulfite-treated DNA does not have a significant impact when larger
amounts of input DNA are used (ie. at least 50 ng DNA), it can affect studies involving lower amounts of input
DNA. It is therefore useful that methods to accurately quantify bisulfite-converted DNA be developed so as to
maximise the potential of epigenetic applications in the forensic context.

Using a slightly higher amount of input DNA of 25 ng, we were able to obtain good quality pyrosequencing
results. We observed that the dual CpG model performed better than the single CpG model (MADs=3.5 vs
3.7 years). While a recent MPS-based study had demonstrated that 10 ng of input DNA was sufficient to pro-
duce an accurate age prediction®’, the MPS approach has a longer preparation and processing time compared to
pyrosequencing. Furthermore, it has been reported that MPS may be less accurate compared with pyrosequencing
for epigenetic age prediction*’. Though a previous pyrosequencing study first reported using only 10 ng of DNA
on two ELOVL2 CpGs without notable change in prediction error'é, this value refers to the bisulfite-treated,
PCR-ready DNA rather than the initial amount of input DNA used for bisulfite conversion, that would determine
the minimal amount of DNA required for age prediction. Therefore, this may be the first study to demonstrate
the minimal amount of DNA to perform bisulfite conversion followed by pyrosequencing for age prediction.

Conclusion

Our study has demonstrated that the use of an artificial neural network machine learning outperforms the con-
ventional regression model in predicting age through quantitating the methylation levels of ELOVL2 C4, KLF14
C1 and TRIM59 C5 on the pyrosequencing platform. There were no prominent differences in prediction error
with increasing age, though the age of older individuals was observed to be underestimated. We also showed
that ethnicity did not affect the accuracy of our prediction model when applied on our local Chinese, Malay
and Indian populations, although the accuracy of age prediction may decrease if the model is used to predict
for an individual from another ethnic population. Although the age of males was generally overestimated, the
sex effect did not have an impact on the accuracy of age prediction. Lastly, our study also reported a dual CpG
model based on only the ELOVL2 locus which could be used to predict age with as little as 25 ng of input DNA
for bisulfite conversion followed by pyrosequencing. This may be of particular relevance in the forensic context
when DNA evidence is often limited. We anticipate that our two validated ANN prediction models could be
applied to predict the age of the donor of a sample as a forensic intelligence lead to help law enforcement officers
narrow the pool of possible suspects.

Received: 2 January 2020; Accepted: 29 December 2020
Published online: 18 January 2021

References

1. Tsuji, A., Ishiko, A., Takasaki, T. & Ikeda, N. Estimating age of humans based on telomere shortening. Forensic Sci. Int. 126, 197-199
(2002).

2. Karlsson, A. O., Svensson, A., Marklund, A. & Holmlund, G. Estimating human age in forensic samples by analysis of telomere
repeats. Forensic Sci. Int. Genet. Suppl. Ser. 1, 569-571 (2008).

3. Meissner, C., von Wurmb, N. & Oehmichen, M. Detection of the age-dependent 4977 bp deletion of mitochondrial DNA. A pilot
study. Int. J. Legal Med. 110, 288-291 (1997).

4. Meissner, C., von Wurmb, N., Schimansky, B. & Oehmichen, M. Estimation of age at death based on quantitation of the 4977-bp
deletion of human mitochondrial DNA in skeletal muscle. Forensic Sci. Int. 105, 155-124 (1999).

5. Sato, Y., Kondo, T. & Ohshima, T. Estimation of age human cadavers by immunohistochemical assessment of advanced glycation
end products in the hippocampus. Histopathology 38, 217-220 (2001).

6. Ohtani, S., Abe, I. & Yamamoto, T. An application of D- and L-aspartic acid mixtures as standard specimens for the chronological
age estimation. J. Forensic Sci. 50, 1298-1302 (2005).

7. Ohtani, S. & Yamamoto, T. Age estimation by amino acid racemization in human teeth. J. Forensic Sci. 55, 1630-1633 (2010).

8. Zubakov, D. et al. Estimating human age from T-cell DNA rearrangements. Curr. Biol. 20, R970-R971 (2010).

Scientific Reports |

(2021) 11:1744 | https://doi.org/10.1038/s41598-021-81556-2 nature portfolio



www.nature.com/scientificreports/

9. Pilin, A., Pudil, E & Bencko, V. Changes in colour of different human tissues as a marker of age. Int. J. Legal Med. 121, 158-162

(2007).

10. Meissner, C. & Ritz-Timme, S. Molecular pathology and age estimation. Forensic Sci. Int. 203, 34-43 (2010).

11. Bocklandt, S. et al. Epigenetic predictor of age. PLoS ONE 6, 14821 (2011).

12. Koch, C. M. & Wagner, W. Epigenetic-aging-signature to determine age in different tissues. Aging (Albany NY) 3,1018-1027 (2011).

13. Horvath, S. DNA methylation age of human tissues and cell types. Genome Biol. 14, R115 (2013).

14. Hannum, G. et al. Genome-wide methylation profiles reveal quantitative views on human aging rates. Mol. Cell. 49, 359-367
(2013).

15. Weidner, C. I. et al. Aging of blood can be tracked by DNA methylation changes at just three CpG sites. Genome Biol. 15, R24
(2014).

16. Zbiec-Piekarska, R. et al. Examination of DNA methylation status of the ELOVL2 marker may be useful for human age prediction
in forensic science. Forensic Sci. Int. Genet. 14, 161-167 (2015).

17. Zbie¢-Piekarska, R. et al. Development of a forensically useful age prediction method based on DNA methylation analysis. Forensic
Sci. Int. Genet. 17, 173-179 (2015).

18. Bekaert, B., Kamalandua, A., Zapico, S. C., Van de Voorde, W. & Decorte, R. Improved age determination of blood and teeth
samples using a selected set of DNA methylation markers. Epigenetics 10, 922-930 (2015).

19. Park, J. L. et al. Identification and evaluation of age-correlated DNA methylation markers for forensic use. Forensic Sci. Int. Genet.
23, 64-70 (2016).

20. Cho, S. et al. Independent validation of DNA-based approaches for age prediction in blood. Forensic Sci. Int. Genet. 29, 250-256
(2017).

21. Freire-Aradas, A. et al. Development of a methylation marker set for forensic age estimation using analysis of public methylation
data and the Agena Bioscience EpiTYPER system. Forensic Sci. Int. Genet. 24, 65-74 (2016).

22. Jung, S. E. et al. DNA methylation of the ELOVL2, FHL2, KLF14, Clorfl32/MIR29B2C, and TRIMS59 genes for age prediction from
blood, saliva, and buccal swab samples. Forensic Sci. Int. Genet. 38, 1-8 (2019).

23. Giuliani, C. et al. Inferring chronological age from DNA methylation patterns of human teeth. Am. J. Anthropol. 159, 585-595
(2016).

24. Hamano, Y., Manabe, S., Morimoto, C., Fujimoto, S. & Tamaki, K. Forensic age prediction for saliva samples using methylation-
sensitive high resolution melting: exploratory application for cigarette butts. Sci. Rep. 7, 10444 (2017).

25. Slieker, R. C,, Relton, C. L., Gaunt, T. R., Slagboom, P. E. & Heijmans, B. T. Age-related DNA methylation changes are tissue-specific
with ELOVL2 promoter methylation as exception. Epigenet. Chromatin 11, 25 (2018).

26. Lee, H. Y. et al. Epigenetic age signatures in the forensically relevant body fluid of semen: a preliminary study. Forensic Sci. Int.
Genet. 19, 28-34 (2015).

27. Vidaki, A. et al. DNA methylation-based forensic age prediction using artificial neural networks and next generation sequencing.
Forensic Sci. Int. Genet. 28, 225-236 (2017).

28. Naue, J. et al. Chronological age prediction based on DNA methylation: massive parallel sequencing and random forest regression.
Forensic Sci. Int. Genet. 31, 19-28 (2017).

29. Aliferi, A. et al. DNA methylation-based age prediction using massively parallel sequencing data and multiple machine learning
models. Forensic Sci. Int. Genet. 37, 215-226 (2018).

30. Naue, J. et al. Proof of concept study of age-dependent DNA methylation markers across different tissues by massive parallel
sequencing. Forensic Sci. Int. Genet. 36, 152-159 (2018).

31. Thong, Z., Chan, X. L. S,, Tan, J. Y. Y., Loo, E. S. & Syn, C. K. C. Evaluation of DNA methylation-based age prediction on blood.
Forensic Sci. Int. Genet. Suppl. Ser. 6, €249-251 (2017).

32. Daunay, A., Baudrin, L. G., Deleuze, J. F. & How-Kit, A. Evaluation of six blood-based age prediction models using DNA methyla-
tion analysis by pyrosequencing. Sci. Rep. 9, 8862 (2019).

33. Tost, J. & Gut, I. G. DNA methylation analysis by pyrosequencing. Nat. Protoc. 2, 2265-2275 (2007).

34. O’Brien, R. M. A caution regarding rules of thumb for variance inflation factors. Qual. Quant. 41, 673-690 (2007).

35. Dejeux, E., El Abdalaoui, H., Gut, I. G. & Tost, J. Identification and quantification of differentially methylated loci by the pyrose-
quencing technology. Methods Mol. Biol. 507, 189-205 (2009).

36. Spolnicka, M. et al. DNA methylation in ELOVL2 and Clorf132 correctly predicted chronological age of individuals from three
disease groups. Int. J. Legal Med. 132, 1-11 (2018).

37. Xu, C. et al. A novel strategy for forensic age prediction by DNA methylation and support vector regression model. Sci. Rep. 5,
17788 (2015).

38. Freire-Aradas, A., Philips, C. & Lareu, M. V. Forensic individual age estimation with DNA: from initial approaches to methylation
tests. Forensic Sci. Rev. 29, 121-144 (2017).

39. Singapore Prison Service. Singapore prison service annual statistic release for 2018 [Data file]. Retrieved from http://sps.gov.sg/
docs/default-source/stats-release/sps-annual-stats-release-for-2018_511kb.pdf (2019). Accessed 3 May 2019.

40. Han, Y. et al. New targeted approaches for epigenetic age predictions. Preprint at http://biorxiv.org/content/10.1101/799031v1.
full (2019)

Acknowledgements

This study was supported by the Health Sciences Authority, Singapore. We would like to thank Professor Bruce
Bodowle, University of North Texas Health Science Center and Dr. Athina Vidaki, Erasmus Medical Center for
their critical inputs on various aspect of the manuscript.

Author contributions

All authors contributed significantly to this work. Z.T. and C.K.C.S. conceived and supervised the study. Z.T.,
J.Y.Y.T, ES.L, YW.P. and X.L.S.C. performed the experiments. Z.T., ].Y.Y.T and E.S.L. analysed the data. Z.T.
and J.Y.Y.T drafted and revised the manuscript. Z.T. prepared all figures, tables and supplementary information.
All authors read and approved the final version of the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://doi.org/
10.1038/541598-021-81556-2.

Correspondence and requests for materials should be addressed to Z.T.

Scientific Reports |

(2021) 11:1744 | https://doi.org/10.1038/s41598-021-81556-2 nature portfolio


http://sps.gov.sg/docs/default-source/stats-release/sps-annual-stats-release-for-2018_511kb.pdf
http://sps.gov.sg/docs/default-source/stats-release/sps-annual-stats-release-for-2018_511kb.pdf
http://biorxiv.org/content/10.1101/799031v1.full
http://biorxiv.org/content/10.1101/799031v1.full
https://doi.org/10.1038/s41598-021-81556-2
https://doi.org/10.1038/s41598-021-81556-2

www.nature.com/scientificreports/

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International

License, which permits use, sharing, adaptation, distribution and reproduction in any medium or
format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021

Scientific Reports |  (2021) 11:1744 | https://doi.org/10.1038/s41598-021-81556-2 nature portfolio


www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Artificial neural network, predictor variables and sensitivity threshold for DNA methylation-based age prediction using blood samples
	Materials and methods
	Sample source and DNA extraction. 
	Bisulfite conversion and pyrosequencing. 
	Sensitivity testing. 
	Experiment design and statistical analysis. 

	Results
	Reproducibility assessment. 
	Correlation analysis of age-associated markers. 
	Retraining of age prediction model. 
	Applying artificial neural network for age prediction. 
	Validation of age prediction models. 
	Effect of different age groups on age prediction. 
	Variables affecting age prediction. 
	Sensitivity testing. 

	Discussion
	Conclusion
	References
	Acknowledgements


