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Abstract: Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease world-
wide, with a broad spectrum ranging from simple steatosis to advanced stage of nonalcoholic
steatohepatitis (NASH). Although there are many undergoing clinical trials for NAFLD treatment,
there is no currently approved treatment. NAFLD accounts as a major causing factor for the develop-
ment of hepatocellular carcinoma (HCC), and its incidence rises accompanying the prevalence of
obesity and diabetes. Reprogramming of antidiabetic and anti-obesity medicine is a major treatment
option for NAFLD and NASH. Liver inflammation and cellular death, with or without fibrosis
account for the progression of NAFLD to NASH. Therefore, molecules and signaling pathways in-
volved in hepatic inflammation, fibrosis, and cell death are critically important targets for the therapy
of NAFLD and NASH. In addition, the avoidance of aberrant infiltration of inflammatory cytokines
by treating with CCR antagonists also provides a therapeutic option. Currently, there is an increas-
ing number of pre-clinical and clinical trials undergoing to evaluate the effects of antidiabetic and
anti-obesity drugs, antibiotics, pan-caspase inhibitors, CCR2/5 antagonists, and others on NAFLD,
NASH, and liver fibrosis. Non-invasive serum diagnostic markers are developed for fulfilling the
need of diagnostic testing in a large amount of NAFLD cases. Overall, a better understanding of the
underlying mechanism of the pathogenesis of NAFLD is helpful to choose an optimized treatment.

Keywords: nonalcoholic fatty liver disease; nonalcoholic steatohepatitis; molecules; signaling path-
way; treatment options; clinical trials

1. Introduction

Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver dis-
ease worldwide, ranging from simple hepatic steatosis to advanced stage of nonalcoholic
steatohepatitis (NASH), which may lead to liver fibrosis, cirrhosis, and hepatocellular carci-
noma (HCC) [1]. Recently, a new definition was suggested for NAFLD, namely metabolic
dysfunction-associated fatty liver disease (MAFLD) [2]. The prevalence of MAFLD among
obese adults worldwide is 50.7%, with 95% CI 46.9–54.4 [3], relatively higher in men (59.0%,
95% CI 52.0–65.6) than women (47.5%, 95% CI 40.7–54.5). NAFLD is tightly associated with
obesity, diabetes, and metabolic syndromes [4,5]. A survey study showed that over the past
three decades, NAFLD is the only consistently increasing liver disease in the United States,
accompanying the increase in obesity and type 2 diabetes mellitus (T2DM) [5]. In addition
to Western countries, the prevalence of NAFLD also increases in the past two decades in
Asian countries, due to the sedentary lifestyle, overnutrition, obesity, and T2DM [6].

Both genetic and epigenetic factors impact the development and progression of
NAFLD and NASH [7,8]. For example, the allele variant of rs738409 C > G in the patatin-like
phospholipase domain containing 3 (PNPLA3) can increase the susceptibility of NAFLD
and NASH, which was found from studies in Brazil [9,10]. In addition, NASH patients with
PNPLA3 GG alleles had a higher level of aspartate aminotransferase (AST) and advanced
liver fibrosis compared to patients with PNPLA3 CC alleles [10]. As the most evaluated
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epigenetic factor, DNA methylation in the CpG islands can be applied to test the progres-
sion of NAFLD to liver fibrosis and HCC [11,12]. These factors have been well described in
other review papers [13,14], which will not be discussed here.

In the past decade, non-invasive diagnostic techniques and novel therapeutic strategies
have been developed. In this review, we first discuss the underlying molecular mechanisms
of the pathogenesis of NAFLD and NASH. Then, we summarize the latest progression
of diagnostic markers applied in NAFLD, NASH, or both. Following the investigation
of the molecules in the pathogenesis and diagnosis of NAFLD and NASH, the potential
therapeutic targets are summarized. Finally, treatment options in pre-clinical trials and
clinical trials are discussed.

2. Important Molecules and Their Mediated Signaling Pathways in NAFLD
and NASH

There are some essential molecules and their associated signaling pathways involved
in the progression of NAFLD by mediating the lipid and sugar metabolism, cell apoptosis,
liver inflammation and fibrosis, and so on. For example, the well-known transforming
growth factor-beta 1 (TGF-β1) signaling pathway plays critical roles in liver cell apopto-
sis [15], inflammation [16], NAFLD, and NAFLD-related HCC progression [17,18]. The
signaling pathways involved by important molecules are potential targets for developing
NAFLD and NASH diagnosis and treatment. Here, we summarize some latest findings in
this field (Figure 1).
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2.1. Peroxisome Proliferator-Activated Receptors

The peroxisome proliferator-activated receptors (PPARs) are nuclear receptor pro-
teins and play a vital role in modulating fatty acid and glucose metabolism. There are
three subtypes of PPARs: PPARα, PPARβ/δ, and PPARγ. Currently, the single and dual
PPAR agonists have been applied in the clinic for the treatment of hyperlipidemia, T2DM,
metabolic syndrome and associated cardiovascular diseases [19]. For example, a PPARγ
activator, rosiglitazone approved by the FDA for the treatment of T2DM, showed effects
against steatosis, hepatocellular inflammation, ballooning degeneration, and fibrosis [20].
A clinical trial study showed that treatment with lobeglitazone, a dual PPARα/δ agonist,
at a dose of 0.5 mg daily for 24 weeks, significantly improved glycemic, hepatic steato-
sis, and serum enzymes for liver damage in T2DM patients with NAFLD [21]. Another
antidiabetic drug elafibranor (GFT505), a dual PPARα/δ agonist, can improve NASH and
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multiple cardiometabolic risk factors associated with metabolic syndrome and T2DM with-
out worsening fibrosis at a dose of 120 mg/d for one year [22]. Molecular mechanism
study showed that elafibranor can promote lipid metabolism by upregulating genes such
as fatty acid-binding protein 4 (Fabp4) and acyl-CoA oxidase 1 (Acox1), and inhibit liver
inflammation and liver fibrosis, evidenced by inhibited expression of genes such as C-C
motif chemokine ligand 6 (CCL6), TGF-β1, type one collagen alpha 1 (Col-1A1), and tissue
inhibitor of metalloproteinases 1 (TIMP-1) [23].

2.2. Krüppel-Like Factors

Krüppel-like factors (KLFs) are transcription factors that play pivotal roles in diseases.
For example, KLF10-deficient mice on a high-sucrose diet promoted the progression of
hepatic steatosis, inflammation, and fibrosis compared to wild-type mice [24]. Another
study showed that KLF15 can activate twist-related protein 2 (TWIST2) to ameliorate liver
steatosis and inflammation by modulating nuclear factor (NF)-κB or sterol regulatory
element-binding protein 1c (SREBP1c)-fibroblast growth factor 21 (FGF21) signaling path-
ways [25]. Global knockdown of KLF6 or hepatocyte-specifical knockdown of KLF6 can
improve glucose and lipid metabolism, as well as insulin tolerance by attenuating the
function of PPARα [26]. However, most of the current studies are pre-clinical investigations,
and so the significant role of KLFs in human liver pathogenesis remains to be clarified.

2.3. Insulin Signaling Pathway

Insulin resistance (IR) is a feature of metabolic dysfunction, which contributes to
the development of NAFLD and NASH. Hepatic insulin resistance can induce dyslipi-
demia and increase the development of atherosclerosis, as 100% of hepatic insulin receptor
knockout (LIRKO) mice developed hypercholesterolemia but not wild-type mice on an
atherogenic diet for 12 weeks [27]. An increase in IR can impair glucose homeostasis
in NAFLD patients [28]. Treatment of Eugenol, an aromatic oil extracted from cloves,
activated insulin receptor substrate-2 (IRS-2) to improve IR evidenced by reducing Home-
ostasis model assessment for insulin resistance (HOMA-IR) and hepatic triglycerides [29].
Improving hepatic insulin sensitivity by treatment of insulin sensitizers can also improve
glycemia or glycose tolerance and liver function [30]. Treatment with pioglitazone, an
antidiabetic drug for T2DM, can enhance insulin signaling and increase glucose uptake
and lipid metabolism in adipose tissue and reduce liver gluconeogenesis [31]. In addition,
pioglitazone shows a therapeutic effect against NAFLD/NASH by reducing hepatic steato-
sis and anti-lobular inflammation via regulating PPARγ signaling and mitochondrial gene
expression [32,33].

2.4. Wnt Signaling Pathway

The Wnt family consists of 19 members in human. Among them, Wnt1, Wnt2, Wnt2b,
Wnt3, Wnt3a, Wnt7a, Wnt8, Wnt8b, and Wnt10a are involved in the canonical Wnt signaling
pathway, while Wnt4, Wnt5a, and Wnt11 are implicated in the noncanonical Wnt signaling
pathway [34]. Activation of canonical Wnt/β-catenin signaling pathway can enhance the
development and progression of primary liver cancers [35,36]. Canonical Wnt/β-catenin
and non-canonical Wnt signaling pathways are also implicated in the progression of NASH
and liver fibrosis. For example, the expression of aortic carboxypeptidase-like protein
(ACLP), a secreted glycosylated protein in hepatic stellate cells (HSCs), is associated with
mouse and human NASH by activating canonical Wnt/β-catenin [37]. The expression of
Wnt5a and Wnt11 was increased by 3-fold and 15-fold, respectively, in the diet-induced
mouse NASH model, indicating the involvement of non-canonical Wnt signaling in NASH
progression [38].

2.5. p53 Signaling Pathway

Tumor suppressor gene p53 plays an important role in the pathogenesis of NAFLD and
NASH [39,40]. For example, silencing p53 in human liver cancer cell lines HepG2 cells and
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Huh7 cells decreased palmitate-induced lipid accumulation [41]. In addition, p53-deficient
mice significantly reduced hepatic lipid accumulation and high-fat diet (HFD)-induced
NAFLD symptoms in vivo. Supplementation of vitamin D can reduce the senescence and
apoptosis of hepatocytes via inhibiting p53, p21, and p16 signaling pathways, resulting in
amelioration of NAFLD [42]. In contrast, long-term activation of p53 with low-dose of dox-
orubicin showed a beneficial effect on the HFD-induced murine NAFLD model, including
reduction of lipogenesis, inflammation, and endoplasmic reticulum (ER) stress [43], which
was abrogated in liver-specific p53 deficiency mice. Moreover, p53 is also implicated in the
pathogenesis of liver fibrosis [44,45] and HCC [46,47].

2.6. Vascular Cell Adhesion Molecule 1

Liver sinusoidal endothelial cells (LSECs), hepatic gatekeeper cells, play critical roles
in liver diseases as discussed in our previous publication, including NAFLD, liver fibrosis,
cirrhosis, and HCC [48]. Hepatic infiltration of inflammatory monocytes and lymphocytes
is of critical importance in liver injury. Under the lipotoxic condition, the expression of
vascular cell adhesion molecule 1 (VCAM-1) on LSECs is significantly increased in murine
and human NASH [49], which mediates the migration of inflammatory cells and results in
the progression of NASH [50]. In addition, the serum level of VCAM-1 is an independent
marker to predict advanced liver fibrosis (≥F2) in NAFLD patients, showing a sensitivity
of 80% and specificity of 83% at the cutoff point of 13.2 ng/mL [51].

2.7. Glucagon-Like Peptide-1

Glucagon-like peptide-1 (GLP-1) receptor agonists have been approved for the treat-
ment of type 2 diabetes and obesity. Intraperitoneal treatment of a synthetic peptide
AWRK6, a candidate agonist of GLP-1, can improve hepatic steatosis, glucose metabolism,
and obesity in high energy diet (HED)-induced MAFLD mice, via modulating phospho-
inositide 3-kinase (PI3K)/Protein kinase B (AKT)/AMP-activated protein kinase (AMPK)/
acetyl-CoA carboxylase (ACC) signaling pathway [52]. In diabetic fatty rats, GLP-1 agonists
liraglutide and Ex-4 can enhance the expression of PPARα through a GLP-1 receptor/AMPK
signaling pathway [53]. However, a cohort study showed that the treatment of GLP-1 ago-
nist did not decrease the risk of NAFLD development compared to insulin treatment [54].
Therefore, more studies are needed to clarify the therapeutic role of GLP-1 in NAFLD.

2.8. MicroRNAs

The microRNAs (miRNAs) of epigenetic factors play essential roles in each step of the
development and progression of NAFLD. For example, liver-specific miR-21 depletion can
inhibit obesogenic diet-induced steatosis and glucose intolerance in mice [55]. Inhibiting
miR-21 expression can also suppress a methionine-choline-deficient (MCD) diet-induced
liver inflammation and fibrosis by recovering the function of PPARα, evidenced by loss
of function of inhibitor of miR-21 in PPARα-deficient mice [56]. Different miRNAs can
modulate different molecules or signaling pathways to impact the progression of NAFLD
and NASH, which are summarized in Table 1.
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Table 1. The miRNAs-mediated function and therapy in NAFLD.

miRNAs Target Function Reference

miR-21 PPARα
In a diet-induced NASH model, miR-21 ablation ameliorated the progression
of hepatic steatosis, apoptosis, and fibrosis via inhibiting the expression
of PPARα.

[57]

miR-29a HMGCR

Overexpression of miR-29a in steatosis hepatic SMMC-7721 cells significantly
reduced the accumulation of free cholesterol and the expression of
3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR), a
rate-limiting enzyme of cholesterol synthesis in the liver. Furthermore, the
expression of miR-29a was inversely correlated with HMGCR expression in
MCD-fed mice and two steatosis hepatic cell models (SMMC-7721 and
HL-7702 cells), indicating that miR-29a can be utilized as a potential
therapeutic target for the treatment of NAFLD.

[58]

miR-34a PPARα
Inhibition of miR-34a expression suppressed lipid accumulation and
improved the degree of steatosis, ameliorating the development of NAFLD
by targeting PPARα.

[59]

miR-122 Sirt1

Knockdown of miR-122 effectively decreased excessive lipid production and
suppressed the expression of lipogenic genes in FFA-treated HepG2 and
Huh-7 cells via upregulating Sirt1 by binding to its 3’-untranslated region
(UTR). In addition, miR-122 knockdown activated the liver Kinase B1
(LKB1)/AMPK signaling pathway.

[60]

miR-146a-
5p ROCK1

It has been reported that nuclear enriched abundant transcript 1 (NEAT1)
was significantly upregulated in the NAFLD model. NEAT1 regulates the
expression of miR-146a-5p that targets ROCK1 (rho-associated,
coiled-coil-containing protein kinase 1), which further affects the
AMPK/SREBP pathway.

[61]

miR-181a PPARα

Inhibition of miR-181a expression resulted in the upregulation of PPARα
signaling pathway and inhibited palmitic acid (PA)-induced lipid
accumulation in hepatocytes. The upregulation of miR-181a showed a
reverse effect in hepatocyte lipid accumulation. Meanwhile, upregulating
PPARα abrogated miR-181a mimics-induced lipid accumulation in
hepatocytes. This study suggests that the downregulation of miR-181a may
improve lipid metabolism in NAFLD.

[62]

miR-192-5p SCD-1

In PA-treated Huh7 cells, overexpression of miR-192-5p significantly reduced
lipid accumulation, which was abrogated by stearoyl-CoA desaturase 1
(SCD-1) siRNA. Transfection of miR-192-5p mimic and inhibitor in Huh7 cells
dramatically repressed and promoted SCD-1 protein expression, respectively.

[63]

miR-205 NEU1

MiR-205 expression was inversely correlated with neuraminidase 1 (NEU1)
expression in both HFD-fed mice and oleic acid (OA)-treated HepG2 and PH
cells. In HFD-fed mice, overexpression of miR-205 resulted in a decrease in
body weight, liver weight and triglyceride, and lipid accumulation. The
in vitro study indicated that overexpression of miR-205 ameliorated lipid
accumulation in OA-induced HepG2 and PH cells by targeting NEU1,
identified by the TargetScan analysis and Luciferase assay. Knockdown of
NEU1 reduced lipid accumulation in vivo, suggesting that miR-205 might be
a therapeutic target for NAFLD.

[64]

miR-873-5p GNMT

In hepatocytes of a preclinical murine NASH model, miR-873-5p controlled
the enzyme glycine N-methyltransferase (GNMT) expression, which
mediates mitochondrial functionality. Upregulation of miR-873-5p was also
shown in the liver of NAFLD/NASH patients, correlating with hepatic
GNMT depletion. Treatment with anti-miR-873-5p resolved lipid
accumulation, inflammation, and fibrosis by enhancing fatty acid
β-oxidation in the mitochondria, suggesting that miR-873-5p inhibitor
emerges as a potential treatment for NASH.

[65]
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3. Serum Marker for the Diagnosis of NAFLD and NASH

NAFLD is a broad spectrum of liver disease, ranging from early steatosis to NASH
with advanced liver inflammation and fibrosis. The basis of treatment is dependent on
the stage of NAFLD. Therefore, early diagnosis of NAFLD and the advanced stage of
NASH is critically important for selecting appropriate treatment. Currently, liver biopsy is
the gold standard for NAFLD diagnosis [66]. However, it is invasive and expensive and
may cause improper diagnosis due to sampling bias [1]. Multi-omics have been used to
investigate new non-invasive markers for the diagnosis of NAFLD and advanced liver
disease [67,68]. A significant reduction of hepatic fat with advanced liver fibrosis in patients
with NASH, even to the point of complete fat loss, burnt-out NASH [69]. An increase in
serum adiponectin level was significantly associated with burnt-out NASH [70]. Here, we
summarize the serum markers and score system for detecting NAFLD and NASH (Table 2).
Performing the analysis of the area under the receiver operating characteristic curve
(AUROC) is commonly applied to evaluate the applicability of models or score systems.

Table 2. Serum markers and score system for NAFLD and NASH diagnosis.

Score/Marker Test Components Diagnosis References

TG/HDL-C ratio
Triglycerides to high-density
lipoprotein cholesterol ratio

(TG/HDL-C)
Presence of NAFLD [71,72]

Biglycan (BGN)

The cutoff value of 189.58
pg/mL of serum BGN with
the best sensitivity (93.55%)

and specificity (87.18%)

Fibrosis stage of
NASH [73,74]

NAFLD ridge score

ALT, HDL-C, TG,
haemoglobin A1c, white

blood cell count, the presence
of hypertension

Presence of NAFLD [75]

Hepatic steatosis
index (HSI)

8× (ALT/AST ratio) + BMI
(+2, if female; +2, if diabetes

mellitus)
Presence of NAFLD [76]

BARD score BMI, AST/ALT ratio,
diabetes mellitus Presence of NAFLD [77,78]

FIB-4 score Age, platelet count, ALT, AST
Presence of NAFLD
or fibrosis stage of

NASH
[79–81]

NAFLD fibrosis score
Age, hyperglycemia, body
mass index, platelet count,

albumin, and AST/ALT ratio

Presence of fibrosis in
NAFLD [80,82]

Fatty Liver Index
BMI, waist circumference,

triglycerides, and
γ-glutamyltransferase

Presence of NAFLD [83–85]

AUROC Waist circumference, ALT,
HbA1c, and HOMA-IR Presence of NAFLD [86]

Abbreviations: ALT, alanine aminotransferase; AST, aspartate aminotransferase; AUROC, area under the receiver
operating characteristic curve; BMI, body mass index; FIB-4, fibrosis-4 score; HbA1c, hemoglobin A1c; HOMA-IR,
homeostasis model assessment for insulin resistance; TG, triglyceride.

4. Treatment Options for NAFLD and NASH

The liver is an essential organ for energy metabolism, and dysfunction of energy
metabolism or metabolic syndrome impacts its function, resulting in the progression of
NAFLD and NASH. Therefore, strategies modulating the change of metabolic dysfunction
can be applied to treat liver diseases.
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4.1. Lifestyle Modification

Lifestyle modification is an effective way of prevention and treatment of NAFLD.
The main purpose of lifestyle modification, such as a healthy diet and exercise, is to keep
appropriate body weight.

4.1.1. Calorie-Restricted Diet or Low-Fat Diet

Consumption of a diet with calories less than the required daily energy, such as the
Mediterranean diet, can reduce body weight, hepatic lipid accumulation, and insulin
resistance, as well as decreased serum levels of saturated fatty acid and increased serum
levels of monounsaturated and n-3 polyunsaturated fatty acid [87]. In a controlled clinical
trial, 74 patients with NAFLD were randomized in a 1:1:1 ratio to a 12-week treatment
with either a 5:2 diet with an intermittent calorie restriction (500 kcal/day for women
and 600 kcal/day for men) for two non-consecutive days per week, or a low-carbohydrate
high-fat diet (LCHF) with an average daily calorie intake of 1600 kcal/day for women
and 1900 kcal/day for men, or general lifestyle advice from a hepatologist by choosing a
healthy diet, doing exercise, reducing alcohol, and others [88]. The results indicated that
both the 5:2 diet and LCHF are more effective to reduce hepatic steatosis and body weight
compared to general lifestyle modification.

Dietary intervention can also modulate the components of gut microbiota and im-
prove the health condition of NAFLD patients [89], such as reduction of body weight
and improvement of insulin resistance. Consumption of a Dietary Approaches to Stop
Hypertension (DASH) diet can reduce BMI, serum markers of alanine aminotransferase
(ALT), alkaline phosphatase (ALP), insulin levels, and HOMA-IR compared to the control
diet [90].

4.1.2. Exercise

A cross-sectional study in Korea showed that adults who have long working hours
(53–83 h/week) are more likely to develop NAFLD compared to those who work the stan-
dard hours (36–42 h/week), especially in women workers and workers with age < 63 years [91].
This result was concluded after adjusting factors including age, sex, BMI, smoking, alcohol,
exercise, diabetes, hypertension, and serum triglyceride and total cholesterol [91]. Another
study in Japan showed that there was a significant association between working hours
and metabolic syndrome in men workers age ≥ 40 years [92]. The workers who worked
8–9 h/day had an odds ratio of 2.02 (95% CI, 1.04–3.90) and those working > 10 h/day
with an odds ratio of 3.14 (95% CI, 1.24–7.95) in developing metabolic syndrome compared
with those who worked 7–8 h/day [92]. In addition, long hours compared to standard
hours may increase the risk of other diseases, such as coronary heart disease [93] and
stroke [94]. However, when interpreting clinical trial results or design clinical trials for
lifestyle modification, introducing some uncertainties such as Hawthorne effects among
participants may result in alteration of their behavior and trial results [95,96]. Therefore,
appropriate controls are critically important in these kinds of trials.

Long-term exercise can prevent NASH development by improving the phagocytic
capacity of liver resident Kupffer cells (KCs) and reducing liver inflammation and fibro-
genesis [97]. A murine study showed that maternal exercise can reduce western-style-
diet (WSD)-induced obesity and improve hepatic lipid metabolism via activating the
AMP-activated protein kinase (AMPK) and PPARγ-coactivator-1α (PGC-1α) signaling path-
ways [98]. Exercise-training intervention can also reduce intrahepatic fat accumulation,
blood pressure, and insulin resistance in obese adults [99]. However, the working pressure
and fast-food products make the change of lifestyle very difficult or cause most people to
give up in this process.
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4.2. Bariatric Surgery

Bariatric surgery (BS) or weight loss surgery is considered the most effective way
to treat obesity and diabetes [100,101], by reducing food absorption and modulating
gut hormone secretion and metabolic dysfunction. A meta-analysis showed that BS can
significantly reduce mortality and expand lifetime in adults with obesity compared to
usual obesity management [102]. The bariatric procedures sleeve gastrectomy (SG) and
Roux-en-Y gastric bypass (RYGB) on NAFLD and NASH are similarly effective, evidenced
by the change of liver function tests (LFTs) after one year of surgery [103]. Other studies
indicate that there are some differences induced by BS procedures [104,105]. For example,
a 5-year follow-up study (a long-term effect) showed that laparoscopic Roux-en-Y gastric
bypass (LRYGB) was better to improve weight loss and reduce hypertension compared to
laparoscopic sleeve gastrectomy (LSG), but there was no significant difference in remission
of T2DM, obstructive sleep apnoea, or improvement in quality of life, data collected
from two randomized clinical trials [105]. In patients aged ≥ 65, the effect of LRYGB on
controlling weight loss, HbA1c (diabetes), and low-density lipoprotein (LDL) is better than
LSG [106].

4.3. Modification of Gut Microbiota

Dysbiosis of gut microbiota is a causing factor for NAFLD, due to the change of gut
hormones, metabolites, inflammatory factors. The abundance of some bacterial species is
associated with the progression of liver disease. For example, there is a negative correlation
between the severity of liver fibrosis and Eubacterium abundance in non-obese patients
with NAFLD [107]. The abundance of Ruminococcaceae and Veillonellaceae is also positively
associated with the severity of liver fibrosis in non-obese subjects [108]. Modulation of
gut microbiota via different strategies [109], including fecal microbiota transplantation
(FMT), drug therapy (e.g., antibiotics), modification of lifestyle (e.g., dietary change), the
above-mentioned BS, and others can improve liver disease. A meta-analysis study showed
that supplementation of probiotics can reduce the expression of inflammatory factors, such
as tumor necrosis factor-α (TNF-α) and C-reactive protein (CRP) in the livers of NAFLD
patients [110]. Allogenic fecal microbiota transplantation (FMT) from thin and healthy
people to patients with NAFLD can reduce the small intestinal permeability post-six-week
treatment [111]. However, the effect of FMT on liver dysfunction and metabolic syndrome
remains minimal. A double-blind phase 2 trial also showed that a yearly treatment of
synbiotics, a combination of probiotic and prebiotic, only modulated the change of gut
microbiota but not the liver fat content and fibrotic markers [112].

Furthermore, BS modulates the components of the gut microbiota profile. For example,
the predominant bacteria of Bacteroides before surgery was decreased after laparoscopic gas-
tric bypass (LGB) [113]. Both the altered bacterial profile and their associated metabolism
following BS contribute to the impact on patients [114].

4.4. Medicines
4.4.1. Antidiabetic and Anti-Obesity Drugs

The incidence of NAFLD is significantly associated with T2DM and obesity, especially
in patients with a higher body mass index (BMI) [115,116]. In contrast, the incidence of
NAFLD is decreased in patients with T2DM, who received treatments such as sodium-
glucose cotransporter-2 (SGLT2) inhibitors, GLP-1 receptor antagonists, and insulin [115].
The reprogramming of antidiabetic or anti-obesity drugs, such as pioglitazone and sarogli-
tazar, are being considered as the options for NAFLD/NASH treatment. Saroglitazar, a
double agonist against PPAR-α/γ, can reduce hepatic lipid accumulation, lobular inflam-
mation, hepatocyte ballooning, and liver fibrosis in a mouse NASH model [117]. A phase
2 clinical trial study showed that 4 mg of saroglitazar can significantly decrease ALT and
liver fat content, improve insulin resistance and dyslipidemia in patients with NAFLD or
NASH [118].
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Farnesoid X receptor (FXR), a nuclear receptor that can be activated by bile acids
(BAs), plays a critical role in hepatic lipid accumulation [119–121], as well as glucose home-
ostasis [122]. Cilofexor (GS-9674), a nonsteroidal agonist of FXR with an EC50 of 43 nM,
has anti-inflammatory and antifibrotic effects. A phase 2 trial study showed that cilofexor
significantly improved hepatic steatosis and decreased serum γ-glutamyltransferase, C4,
and primary bile acids, but not liver fibrosis and stiffness in NASH patients [123].

SGLT2 inhibitors, such as canagliflozin, dapagliflozin, and empagliflozin, have pleiotropic
functions to treat NAFLD and T2DM by preventing de novo lipogenesis, liver inflammation
and cell apoptosis, and increasing fatty acid oxidation [124].

GLP-1 receptor agonists can inhibit hepatic fat accumulation as the effect of metformin
and insulin-based treatment [125]. In addition, they can moderately improve liver fibrosis.
Metformin is the first-line treatment for patients with T2DM, which can control high
blood sugar [126] and decrease total cholesterol, LDL, and triglycerides [127]. However,
the effects of metformin, as well as dipeptidyl peptidase-4 (DPP-4) inhibitors in NAFLD
treatment, remain debatable [128].

4.4.2. Antioxidants

A meta-analysis of clinical trials showed that adjuvant vitamin E treatment is favorable
for adult patients with NAFLD compared to pediatric patients [129]. Vitamin E can also
improve NASH in HIV-infected patients, evidenced by the reduction of serum biomarker
ALT and cytokeratin 18 (CK-18) for hepatocyte apoptosis [130].

Polyphenols as anti-inflammatory and antioxidant reagents show a protective effect
in liver disease, and consumption of polyphenol-rich diets also pride beneficial effects
for NAFLD patients [131]. For example, a high intake of lignans, a large group of low
molecular weight polyphenols in plants such as whole grains, reduces the incidence of
NAFLD [132].

4.4.3. Antibiotics

Rifaximin has been used for treating hepatic encephalopathy, and it also has a protec-
tive effect against intestinal leaking [133]. A 28-day treatment of rifaximin (1200 mg/day)
in NASH patients resulted in a dramatic reduction of serum endotoxin, AST, ALT, γ-
glutamyltransferase, LDL, and ferritin, and a mild reduction of the average BMI [134].
However, the effect of rifaximin on patients with simple steatosis was significantly reduced,
with only effects on the reduction of ALT and ferritin [134].

4.4.4. Anti-Cell Death Reagents

Lipotoxicity causes hepatic cell death and promotes the progression of NAFLD and
NASH, which induces proinflammatory cytokines and chemokines and activation of
hepatic stellate cells (HSCs). Therefore, inhibiting cellular death is critically important for
the treatment of chronic liver disease. For example, selonsertib, a selective inhibitor of
apoptosis signal-regulating kinase 1, showed an antifibrotic effect in patients with NASH
and F2-F3 liver fibrosis [135]. However, two phase 3 clinical trials showed that selonsertib
monotherapy did not improve liver fibrosis in patients with NASH and bridging fibrosis
(F3) or compensated cirrhosis (F4) compared to placebo control treatment [136]. In another
phase 2 trial showed that a combination of selonsertib with cilofexor or firsocostat (a small
molecule inhibitor of acetyl-CoA carboxylase) improved steatosis, while a combination
of selonsertib with cilofexor improved the early stage of liver fibrosis (F1) [137]. These
completed trials showed that selonsertib has some effects on the early stage of NASH,
but not advanced liver fibrosis or cirrhosis. Metformin, a first-line antidiabetic drug, also
shows a protective effect against palmitate-induced necrosis in primary rat hepatocytes by
reducing reactive oxygen species (ROS) and improving mitochondrial function [138].
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4.4.5. Antifibrotic Reagents

Antifibrotic reagents can prevent the progression of liver fibrosis and NAFLD to
fibrotic NASH. The activated HSCs are a source of predominant extracellular matrix
proteins-producing cells during liver fibrosis [139,140]. Anti-liver fibrosis methods mainly
consist of inhibiting the activation and growth of HSCs, anti-inflammation, anti-cell death
agents, and regulating the production of extracellular matrix (ECM) proteins. The above-
mentioned methods for the treatment of NAFLD or NASH are also treatment options for
liver fibrosis. Some natural products have multiple effects. For example, Scoparone, a
bioactive compound from a Chinese herb, can decrease hepatic steatosis, inflammation,
cell death, and fibrosis in mice with diet-induced NASH [141].

In addition, there are some other targets for NAFLD and NASH treatments, such as
G protein-coupled receptors (GPCRs) [142], estrogen-related receptor alpha (ERRα) [143],
bone morphogenetic proteins (BMPs) [144], and KLFs [24,145]. The treatment options for
NAFLD/NASH are summarized in the graphic picture (Figure 2). Overall, regulating liver
and gut metabolism, liver inflammation, fibrosis, and cell death can effectively prevent the
development of NAFLD and NASH.
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5. Clinical Trials

This review summarizes the completed clinical trials targeting the improvement
of NAFLD and NASH (Table 3). The data were collected from the website https://
clinicaltrials.gov (accessed on 20 June 2021) with the keywords NAFLD, NASH, and treat-
ment. The testing candidates may not provide the prospective effect as shown in preclinical
studies. For example, a phase 2 clinical trial showed that GLP-1 receptor agonist semaglu-
tide can improve NASH resolution without worsening liver fibrosis compared to placebo,
but semaglutide did not significantly ameliorate liver fibrosis in NASH patients [146].
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Table 3. The completed clinical trials for NAFLD/NASH treatment.

Liver
Disease Treatment Target Trials References

NAFLD
NASH MSDC-0602K

Two higher doses of MSDC-0602K (125 mg and 250 mg), a
second-generation thiazolidinedione (TZD) significantly
reduced the levels of glucose, glycated hemoglobin, insulin,
liver enzymes, and NAS compared to placebo.

NCT02784444 [147]

NAFLD Volixibat
Treatment with volixibat for 12 days, a selective inhibitor of
the apical sodium-dependent bile acid transporter, can inhibit
bile acid reabsorption in overweight and obese adults.

NCT02287779 [148]

NASH Cilofexor
(GS-9674)

Therapy with Cilofexor for 24 weeks, a nonsteroidal agonist of
FXR, was well-tolerated and provided significant reductions in
hepatic steatosis, liver biochemistry, and serum bile acids in
patients with NASH.

NCT02854605 [149]

NASH Vitamin E Vitamin E can decrease serum ALT levels and NAS score, but
not liver fibrosis. NCT00063622 [150]

NAFLD Vitamin E Treatment with vitamin E (α-tocopherol, αT) improved liver
injury and steatosis. NCT01792115 [151]

NASH Firsocostat
(GS-0976)

Treatment with GS-0976 for 12 weeks dramatically decreased
serum level of ALT, liver de novo lipogenesis (DNL), steatosis,
and stiffness.

NCT02856555 [152,153]

NASH Pegbelfermin
(BMS-986036)

Administration of Pegbelfermin for 16 weeks, a PEGylated
human fibroblast growth factor 21 (FGF21) analogue, was
generally well tolerated and significantly decreased liver fat.

NCT02413372 [154]

NAFLD Obeticholic
acid (OCA)

Treatment with FXR agonist OCA for 6 weeks improved
insulin sensitivity and decreased markers of liver
inflammation and fibrosis in patients with T2DM and NAFLD.

NCT00501592 [155]

NASH Losartan
Treatment with losartan, an angiotensin II receptor blocker,
improvement in alanine ALT, AST, and HOMA-IR compared
to the placebo.

NCT01913470 [156]

NASH Silymarin
Treatment with silymarin, an extract of milk thistle, did not
significantly improve NAFLD Activity Score (NAS) and liver
fibrosis.

NCT00680407 [157]

NASH Metformin
Forty-eight weeks of metformin (2000 mg/day) therapy
improved NASH activity index and ALT levels, and reduced
bodyweight.

NCT00063232 [158]

NASH Cenicriviroc
(CVC)

Therapy with Cenicriviroc, CCR2 and CCR5 dual antagonist,
showed an antifibrotic effect without impacting steatohepatitis
at year 1 in responders, which was maintained in year 2 with
greater effect in advanced fibrosis.

NCT02217475 [159]

NASH Pentoxifylline
(PTX)

Pentoxifylline, a competitive nonselective phosphodiesterase
inhibitor, can improve liver steatosis and AST, ALT in patients
with NASH compared to the baseline.

NCT00267670 [160]

NAFLD Low free
sugar diet

Eight weeks of use of a low-free sugar diet in adolescent boys
with NAFLD resulted in significant improvement in hepatic
steatosis compared to the usual diet.

NCT02513121 [161]

NAFLD Synbiotics
Administration of a synbiotic combination of probiotic and
prebiotic for one year changed gut microbiota but did not
reduce liver fat content or markers of liver fibrosis.

NCT01680640 [112]

NAFLD Emricasan

Treatment with Emricasan, a pan-caspase inhibitor, caused a
reduction of ALT and cleaved cytokeratin-18, full-length
cytokeratin-18, and caspase 3/7 in patients with NAFLD at
day 7 and day 28 post-treatment.

NCT02077374 [162]



Int. J. Mol. Sci. 2021, 22, 7571 12 of 19

This review summarizes the completed clinical trials targeting the improvement
of NAFLD and NASH (Table 3). The data were collected from the website https://
clinicaltrials.gov (accessed on 20 June 2021) with the keywords NAFLD, NASH, and treat-
ment. The testing candidates may not provide the prospective effect as shown in preclinical
studies. For example, a phase 2 clinical trial showed that GLP-1 receptor agonist semaglu-
tide can improve NASH resolution without worsening liver fibrosis compared to placebo,
but semaglutide did not significantly ameliorate liver fibrosis in NASH patients [146].

6. Conclusions

The incidence of NAFLD and NASH is increasing currently, which is positively
associated with the prevalence of obesity and diabetes. NAFLD and NASH are the major
increasing factors that contribute to the progression of HCC, the primary liver cancer.
However, there is no currently approved treatment for NAFLD and NASH. New non-
invasive diagnostic markers such miRNAs have been evaluated for future diagnosis of
NAFLD. Early diagnosis of the progression of NAFLD to liver fibrosis, cirrhosis, or HCC
is critically important due to irreversible or difficulty to reverse of server liver disease.
Some key molecules such as PPARs, GLP-1, miRNAs, and KLFs are potential targets for
the treatment of metabolic diseases including NAFLD and NASH. Preclinical studies and
clinical trials have been processed to evaluate potential treatment options for NAFLD and
NASH, including synbiotics, pan-caspase inhibitors, CCR2/5 antagonists, FXR agonists,
and so on. A combined treatment such as combined medical treatment and physical activity
could reduce the treatment time and improve the outcome.
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