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Abstract: Clinicians face challenges in the timely diagnosis and management of pediatric sepsis. Pediatric 
heart rate has been incorporated into early warning systems and studied as a predictor for critical illness. We 
aim to review: (I) the role of heart rate in pediatric warning systems and (II) the role of heart rate variability 
(HRV) in adult and neonatal sepsis, with a focus on its potential applications in pediatrics. We conducted a 
literature search for papers published up to December 2019 on the utility of heart rate and HRV analysis in 
the diagnosis and management of sepsis, using four medical databases: PubMed, Google Scholar, EMBASE 
and Web of Science. This review demonstrates that the clinical utility of pediatric heart rate in predicting 
clinical deterioration is limited by the lack of consensus among warning systems, consensus-based guidelines, 
and evidence-based studies as to what constitutes abnormal heart rate in the pediatric age group. Current 
studies demonstrate that abnormal heart rate itself does not adequately discriminate children with sepsis 
from those without. HRV analysis provides a quick and non-invasive method of assessment and can provide 
more information than traditional heart rate. HRV analysis has the potential to add value in identification 
and prognostication of adult and neonatal sepsis. With further studies to explore its role, HRV analysis has 
the potential to add to current tools in the diagnosis and prognosis of pediatric sepsis.
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Introduction

Pediatric sepsis, a serious and potentially lethal condition, 
remains an important cause of morbidity and mortality (1).  
The World Health Organisation (WHO) estimates that 
1.2 million children suffer from sepsis every year (2), and 
infections account for more than half of the deaths in 
children under 5 years old (3). While isolating the offending 
agent allows for definitive management, microbiological 
investigations usually take about 24–72 hours to return 
and are often influenced by factors including the adequacy 
of blood volume taken and the presence of low, transient 
bacteraemia (4,5). Therefore, early identification of patients 

with sepsis cannot rely on microbiology investigations  
alone (6); accurate prediction of which child has sepsis 
remains a clinical challenge.

The 2018 update to The Surviving Sepsis Campaign 
Bundle included an “hour-1 bundle” to be achieved 
within one hour from the time of triage in the Emergency 
Department (ED) (6). Clinicians need to be able to quickly 
identify a critically ill child and administer treatment 
protocols without definitive blood culture results. Many 
clinicians define pediatric sepsis based on the systemic 
inflammatory response syndrome (SIRS) criteria established 
by Goldstein in 2005 to identify a critically ill child with 
sepsis (7). However, the SIRS criteria has limited clinical 
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applicability. A recent study showed that most children who 
fulfil the SIRS criteria do not require critical care, and 
many children who required resuscitation did not meet the 
SIRS criteria at the time of presentation (8). Moreover, 
identification of a septic child is often complicated by 
its heterogeneous clinical presentation, which can range 
from a non-specific presentation like fever, irritability, 
and poor feeding to fulminant sepsis with hemodynamic 
compromise (9).

The need for an objective assessment in pediatric critical 
illness has led to the use of vital signs. Vital signs have been 
and continue to be extensively studied as part of triage 
systems and warning scores (10-16). Scoring and triggering 
systems which include heart rate have been used to predict 
potential deterioration and the need for intensive care (17). 
Other investigators have attempted to define normal ranges 
for heart rate, built on the understanding that an abnormal 
heart rate is an important indicator of critical illness, 
including sepsis (18-20). As such, heart rate parameters are 
attractive to clinicians in that they can potentially add to the 
timely recognition of pediatric sepsis.

This review seeks to: (I) review the role of heart rate in 
pediatric warning scores, including its role as a predictor 
for critical illness including sepsis; and (II) introduce the 
concept of heart rate variability (HRV) analysis. In this 
review, we will highlight the current uses of HRV analysis 
(including in adult and neonatal sepsis) and explore 
how it can be utilized in pediatric sepsis. We present 
the following article in accordance with the Narrative 
Review reporting checklist (available at http://dx.doi.
org/10.21037/atm-20-148).

Methods

We conducted a literature search for papers published 
up to December 2019 on the utility of heart rate and 
HRV analysis in the diagnosis and management of sepsis, 
using four medical databases: PubMed, Google Scholar, 
EMBASE and Web of Science. Study selection was based 
on three medical databases, PubMed, EMBASE and Web 
of Science, with the following search strategy (including 
specific Medical Subject Headings, MeSH): “heart rate/
physiology”, “sepsis/diagnosis”, “sepsis/mortality” and 
“sepsis/complications”. Other free text terms used were: 
“heart rate variability”, “emergency medical service”, 
“critical care”, “intensive care unit”, “neonate”, “infant” and 
“child”. Qualitative and quantitative data were extracted 
through interpretation of each article in cycles to avoid 

missing on data of potential value.

Discussion

Heart rate as a predictor for critical illness including sepsis

Heart rate is an easily obtained parameter that many 
clinicians use as an early marker of deterioration in children. 
Various hospitals have developed pediatric early warning 
systems (PEWS) (10-13). A large systematic review of 66 
studies of various PEWS and its derivatives demonstrated 
limited evidence of PEWS in identifying children with 
impending clinical deterioration (16). Of note, there was 
marked heterogeneity of outcome metrics, interventions, 
populations and clinical settings in the various studies (16).  
Categorical examples with their respective heart rate 
reference ranges can be found in Table S1, where we 
compare age-related thresholds for abnormal heart rate 
in selected PEWS scores to currently published heart rate 
guidelines and threshold limits used in large cross-sectional 
studies.

Although heart rate is a convenient and easily accessed 
physiological parameter, there is a lack of consensus 
among warning scores on what constitutes significant, out-
of-proportion tachycardia in a sick child (Table S1). For 
instance, the normal heart rate of a 8-year-old child is 
between 80 to 120 bpm according to APLS guidelines, and 
PALS places the normal heart rate of a 8-year-old child at 
between 60 to 140 bpm (21,22).

There have been multiple attempts to define a normal 
heart rate range for different age groups in large and 
robust study populations (18-20). When one considers 
the normal ranges of heart rate based on these population 
studies, the heart rate ranges in various PEWS scores may 
not necessarily be representative of a “sick” child. This is 
especially so for PEWS scores that incorporate wide age 
bands. We know that with increasing age comes a steady 
decrease in heart rate. Consequently, these PEWS scores 
may result in false positive triggers (18-20). If implemented 
into monitoring systems, it can result in unnecessary 
resource utilisation, poor performance of scoring and 
triggering systems, and ultimately alarm fatigue (23). This 
creates a conundrum fundamental to the importance of 
heart rate as a vital component of prediction scores.

Tachycardia out of proportion to age and height of 
fever has also been proven not to have good discriminatory 
value in the prediction for infants with sepsis (24). Multiple 
contributors to tachycardia including pain, anxiety, and 
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fever limit the interpretation of this important vital sign 
in children. It is recognized that continuously measured 
physiologic variables and their trends may better inform 
monitoring strategies for critically ill children with different 
admission diagnoses (including sepsis) (25).

The clinical value of traditional heart rate as a predictive 
tool is thus limited, and this has led to the exploration of 
novel methods such as HRV analysis.

Heart rate variability (HRV)

The study on measuring heart rate and rhythm has 
progressed from cardiac auscultation, the advent of the 
galvanometer (used to detect and measure small electric 
currents), to the era of digital signal processing systems 
such as the electrocardiogram (ECG). It was through the 
1996 report of the Task Force of the European Society of 
Cardiology and The North American Society of Pacing and 
Electrophysiology that a novel method of HRV analysis was 
definitively introduced (26). HRV analyzes the oscillation in 
the interval between consecutive heart beats (RR interval), 
and is a measure of autonomic nervous system (ANS) 
regulation (27). ANS dysfunction is a maladaptive response 
in injury and critical illness, including sepsis (27). In the past 
few decades, more studies have delved into the relationship 
between HRV as a measure of ANS dysfunction, and 
various critical illnesses (26,28).

HRV parameters

Data collected from an ECG over a continuous time-period 
forms the basis for HRV analysis. Figures 1 and 2 show the 
difference between a patient with good heart rate variability 
and one without.

The three domains employed in HRV are the time-
domain; frequency-domain; and the non-linear domain. 
Time-domain parameters are derived from measuring the 
normal “RR intervals”, otherwise known as “NN intervals”, 
or from the differences between NN intervals. In practice, 
these three measurements are often used interchangeably. 
Frequency-domain parameters measure how often a signal 
recurs within a specific frequency band, and this is derived 
from spectral analysis. Non-linear methods are a means 
to explain the complex interactions of HRV involving the 
hemodynamic, electrophysiological and humoral variables, 
and our autonomic and central nervous system (26). Many 
of these parameters are well-described in the report of the 
Task Force (26). Some of the parameters discussed in this 

report are listed in Table 1.

Current applications of HRV

The clinical applications of HRV analysis are well 
documented in the practice of adult cardiology. Reduced 
HRV in adults is predictive for sudden cardiac death (29-31),  
increased mortality after an acute myocardial infarction 
(26,32,33), and is deemed an independent risk factor 
for developing cardiovascular diseases (34,35). In recent 
years, as a risk stratification tool in chest pain, HRV has 
been consistently demonstrated to outperform commonly 
used validated scoring systems [e.g., thrombolysis in 
myocardial infarction (TIMI) score, patient acuity 
category scale (PACS), and the modified early warning 
score (MEWS)] (36,37). In diabetes mellitus, patients with 
diabetic autonomic neuropathy demonstrated a reduced 
low frequency/high frequency (LF/HF) ratio (38) and 
this reduction in variability preceded clinical symptoms 
of diabetic neuropathy (39,40). In anesthesiology, reduced 
HRV is also associated with the risk for developing 
hypotension following general anesthesia induction (41). 
In sepsis, HRV analysis has been studied in the adult and 
neonatal setting with promising results when compared to 
traditional heart rate alone. In the next two subsections, we 
will describe the use of HRV analysis in these settings and 
explore how these methods can be potentially applied in 
pediatrics.

Adult sepsis

In adult sepsis, HRV analysis has paved the way for the 
development of new scoring systems, such as the Singapore 
Emergency Department Sepsis (SEDS) model (42). The 
SEDS model, which includes HRV-derived parameters 
(mean NN and DFA alpha-2) and other parameters such as 
age, respiratory rate and systolic blood pressure, was shown 
to outperform the qSOFA score, MEWS and NEWS in 
predicting 30-day in-hospital mortality for adults with 
sepsis (42). This was followed by a subsequent study which 
outlined the high performance of a HRV-based machine 
learning model in predicting 30-day in-hospital mortality 
among suspected sepsis patient in the ED (43).

Specific HRV parameters to predict sepsis in the ED 
have also been explored. An increased square root of the 
mean of the sum of the squares of differences between 
adjacent NN intervals (RMSSD) was found in patients who 
developed septic shock within 6 hours of presentation at the 
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ED (44). Reduced RMSSD has also been shown to predict 
for 28-day mortality in septic patients presenting at the 
ED (45). Some prior studies demonstrated that a decreased 
LF/HF ratio of less than 1.0 may predict severity of illness 
in septic patients (46,47). When integrated with various 
components of other warning scores, HRV parameters have 
been found to be superior in risk-stratifying septic patients 
at the ED (48). In the adult intensive care units (ICU), the 
use of artificial intelligence has allowed HRV parameters to 
be incorporated into systems and scores that detect sepsis 

and severe sepsis (49-51). Continuous HRV monitoring has 
reduced the gap between the onset of sepsis and its clinical 
recognition by up to five hours, allowing clinicians to direct 
early intervention efforts in sepsis treatment (52-54).

Given current research efforts, scoring systems 
incorporating HRV parameters may outperform those 
with traditional heart rate alone (Table 2). Short-term HRV 
analysis is a potential game-changer in better diagnostic 
accuracy for adult sepsis in the ED and ICUs and should be 
integrated with other vital signs obtained at triage for better 

Figure 1 Subject with high heart rate variability (HRV).

Figure 2 Subject with reduced heart rate variability (HRV).

Table 1 Commonly used HRV parameters for statistical analysis

Time-domain parameters Frequency-domain parameters Non-linear domain parameters

Standard deviation of all NN intervals (SDNN) Very-low-frequency (VLF) Approximate entropy/sample 
entropy

Square root of the mean of the sum of the squares of differences 
between adjacent NN intervals (RMSSD)

Low-frequency (LF) De-trended fluctuation analysis 
(DFA-α1/α2)

Number of pairs of adjacent NN intervals differing by more than 50 ms 
in the entire recording (NN50 count)

High-frequency (HF) Fourier spectra 

NN50 count divided by the total number of all NN intervals (pNN50) LF/HF ratio Poincare section (i.e., SD1, SD2)

Baseline width of the minimum square difference triangular interpolation 
of the highest peak of the histogram of all NN intervals (TINN)

HRV, heart rate variability.
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performance (55,56). HRV remains a promising research 
field and there are ongoing studies that evaluate its utility as 
part of scoring systems (57).

Neonatal sepsis

Unlike pediatric and adult sepsis, there is still no commonly 
agreed definition for neonatal sepsis (58-60). Since 
continuous non-invasive cardiac monitoring is often 
standard procedure in the neonatal intensive care unit 
(NICU), studies have explored the use of HRV analysis 
as a diagnostic and prognostic tool for sepsis. Heart 
rate characteristic (HRC) index measures the degree of 
reduced variability and decelerations to determine the fold-
increase in the risk of developing neonatal sepsis (61,62). 
The detection of sepsis by HRC index precedes clinician 
suspicion of sepsis (62-64). Studies have shown that HRC 
index monitoring in the NICU resulted in a reduction in 
mortality in very-low-birth-weight (VLBW) neonates, and 
its use as an independent tool in predicting for neonatal 
sepsis has been validated (62-65) (Table 3).

Looking at specific HRV parameters, time-domain 
indices such as NN50 count divided by the total number 
of all NN intervals (pNN50) was significantly decreased 
in neonates with sepsis as compared to healthy controls, 
while changes in frequency-domain indices such as very 
low frequency (VLF), LF, HF, and LF/HF ratio were 
statistically insignificant (66). However, another study 
showed that specific HRV parameters were not significantly 
modified following sepsis (67). As such, further studies are 
needed to determine the added value of HRV, and if time 
domain indices are truly more sensitive than frequency 
domain indices in predicting for neonatal sepsis.

Pediatric sepsis

HRV prediction in sepsis has been explored in the adults 
and neonates, but data on infants and children beyond the 
first month of life is very limited. An old PICU study of 
children with critical illness and injury demonstrated that 
HRV trends correlate with severity of illness and may have 
important clinical implications, but did not focus specifically 
on sepsis (28). ANS dysfunction in pediatric septic shock has 
been successfully demonstrated with HRV, but this has not 
translated into the use of HRV to guide clinical practice (68).  
In this small study of 7 children with septic shock,  
6 children showed changes in the low/high frequency ratio 
and the authors postulate added value in using loss of HRV 

and complexity in monitoring these ill children (68). In 
another study of 22 children with known cardiovascular 
diseases, HRV changes may precede clinical diagnosis of 
sepsis by up to 24 hours (69).

Given the potential application demonstrated in adult 
and neonatal patients with sepsis, we postulate that HRV 
use can be expanded in the pediatric population. For 
example, HRV analysis can be investigated as a potential 
tool to identify septic children in the pediatric ED. Higher 
frequency data collection would allow the patient’s evolving 
clinical status to be more accurately captured (70). If proven 
to discriminate between children with sepsis and those 
without, it has the potential to add to the ED physician’s 
armamentarium on which child should have early cultures 
and urgent antibiotic administration, thus guiding resource 
utilisation.

Continuous HRV analysis, similar to those performed 
in the NICU, could also be explored in the PICU. Similar 
to the NICU septic population, a reduction in HRV 
could potentially precede clinical symptoms and signs of 
sepsis. New applications of HRV including predicting and 
prognosticating nosocomial and line-related sepsis in the 
critically ill PICU population should also be explored. The 
responsiveness of abnormal HRV parameters in successful 
treatment and resolving sepsis deserves further study. If 
promising, it may prove useful to guide clinicians in their 
monitoring and treatment strategy (28).

Limitations of HRV

Despite ongoing research efforts for the past century, 
HRV remains a relatively new concept to many. Before 
considering its use for pediatric sepsis, several limitations of 
HRV need to be taken into account. The current availability 
of ECG machines does not equate to the commercial 
availability of HRV analysis, and this may explain why HRV 
analysis has not been integrated into everyday use. There 
is often proprietary software and hardware requirements, 
with upfront cost barriers that need to be overcome. 
Training of personnel in data interpretation remains an 
issue, and healthcare professionals including doctors and 
nurses have to understand the principles of HRV analysis 
and how it may impact sepsis diagnosis and prognostication. 
In children specifically, artefacts need to be dealt with and 
post-processing capabilities are needed for meaningful 
analysis of HRV signals. In neonates, abnormal HRV can be 
affected by factors other than sepsis, such as gestational age 
and underlying medical conditions (71), and as such needs 
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to be interpreted accordingly. Many prior studies have 
also excluded patients with cardiovascular diseases such 
as arrhythmias due to the lack of satisfactory RR intervals 
for analysis (36,37,42,43). This may potentially limit the 
generalisability to the wider population with a history of 
congenital and acquired cardiac disorders. The use of HRV 
in different settings can also result in undesirable effects 
on health services with an overall increase in interventions, 
hence impact on the wider healthcare setting must be 
evaluated before translation into practice (72). Most 
importantly, we acknowledge that the use of HRV has 
not been documented in pediatric sepsis, and the findings 
relating HRV to adult sepsis and neonatal sepsis may not 
apply similarly in this population. To establish definitive 
evidence, it is necessary to conduct similar studies in this 
setting.

Conclusions

When compared to traditional heart rate, HRV has been 

shown to value-add in the identification and prognostication 
of adults and neonates with sepsis. This exciting non-
invasive tool could guide the recognition and management 
of pediatric sepsis and impact clinical practice.
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2% mortality reduction rate in infants with 
HRC monitoring displayed (10.2% to 8.1%, 
P=0.04), with increased days alive and 
ventilator-free (95.9 days compared to 93.6 
days in control subjects, P=0.08)

Griffin et al. 
(63)

2003 633 infants 
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of which 270 
were VLBW 
infants

To derive and validate 
multivariable statistical 
models involving HRC 
to predict for sepsis 
and sepsis-like illness in 
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Regression models involving the use of HRC 
index is highly predictive for sepsis and 
sepsis-like illness in both NICUs (P<0.001), 
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compared to High HRC without abnormal 
laboratory test results (P<0.001)
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laboratory results in 
predicting neonatal 
outcomes
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Table S1 Comparing the threshold values of tachycardia among selected examples of PEWS, international guidelines and large cross-sectional studies in the pediatric setting

Warning score Author of study Year of study Study population Age of patient Threshold definition of tachycardia (bpm)

Bristol PEWT Haines et al. (12) 2006 360 patients under 19 years old in pediatric wards <5 years ≥150

5–12 years ≥120

>12 years ≥100

Melbourne Activation Criteria 
(MAC)

Edwards et al. (13) 2011 1,000 patients aged under 16 years old in pediatric wards <12 months >180

1–4 years >160

5–12 years >140

>12 years >130

PEWS score Duncan et al. (14) 2006 215 patients under 18 years old in pediatric wards <3 months >180

3–12 months >170

1–4 years >150

4–12 years >130

>12 years >120

Modified Brighton PEWS Skaletzky et al. (15) 2012 350 children under 18 years old in pediatric medical-surgical wards <3 months >205

3–24 months >190

2–10 years >140

>10 years >100

Evidence-based cross-sectional 
studies*

Fleming et al. (18) 2011 143,346 children aged under 18 years old <1 month >182

1–2 months >180

2–3 months >178

3–6 months >172

6–9 months >165

9–12 months >159

1–2 years >147

2–4 years >135

4–6 years >126

6–8 years >120

8–10 years >116

10–12 years >112

12–14 years >108

14–16 years >105

16–18 years >102

O’Leary et al. (19) 2015 111,696 children aged under 15 years old <3 months >181

3–6 months >174

6–9 months >172

10–12 months >174

12–18 months >176

18–24 months >172

2–3 years >162

3–4 years >152

4–6 years >146

6–8 years >141

8–12 years >135

12–15 years >127

15–16 years >122

Bonafide et al. (20) 2013 116,383 children under 18 years old < 3 months >186

3–6 months >182

6–9 months >178

9–12 months >176

12–18 months >173

18–24 months >170

2–3 years >167

3–4 years >164

4–6 years >161

6–8 years >155

8–12 years >147

12–15 years >138

15–18 years >132

Consensus-based international 
guidelines

Advanced Pediatric 
Life Support (APLS) 

(21)

2004 <1 year >160

1–2 years >150

2–5 years >140

5–12 years >120

12–18 years >100

Pediatric Advanced 
Life Support (PALS) 

(22)

2006 <6 months >200

6–24 months >190

2–10 years >140

10–18 years >100

*, data in the last row mean suggested cut-off points of tachycardia. PEWS, Pediatric Early Warning Systems; bpm, beats per minute.
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