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Abstract

Background: Tilapia is the common name for a group of cichlid fishes and is one of the most important
aquacultured freshwater food fish. Mozambique tilapia and its hybrids, including red tilapia are main representatives
of salt tolerant tilapias. A linkage map is an essential framework for mapping QTL for important traits, positional
cloning of genes and understanding of genome evolution.

Results: We constructed a consensus linkage map of Mozambique tilapia and red tilapia using 95 individuals from
two F1 families and 401 microsatellites including 282 EST-derived markers. In addition, we conducted comparative
mapping and searched for sex-determining loci on the whole genome. These 401 microsatellites were assigned to
22 linkage groups. The map spanned 1067.6 cM with an average inter-marker distance of 3.3 cM. Comparative
mapping between tilapia and stickleback, medaka, pufferfish and zebrafish revealed clear homologous relationships
between chromosomes from different species. We found evidence for the fusion of two sets of two independent
chromosomes forming two new chromosome pairs, leading to a reduction of 24 chromosome pairs in their
ancestor to 22 pairs in tilapias. The XY sex determination locus in Mozambique tilapia was mapped on LG1, and
verified in five families containing 549 individuals. The major XY sex determination locus in red tilapia was located
on LG22, and verified in two families containing 275 individuals.

Conclusions: A first-generation linkage map of salt tolerant tilapia was constructed using 401 microsatellites. Two
separate fusions of two sets of two independent chromosomes may lead to a reduction of 24 chromosome pairs in
their ancestor to 22 pairs in tilapias. The XY sex-determining loci from Mozambique tilapia and red tilapia were
mapped on LG1 and LG22, respectively. This map provides a useful resource for QTL mapping for important traits
and comparative genome studies. The DNA markers linked to the sex-determining loci could be used in the
selection of YY males for breeding all-male populations of salt tolerant tilapia, as well as in studies on mechanisms
of sex determination in fish.
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Background
Tilapia is the common name for a group of cichlid fishes
native to Africa and the Middle East. The annual yield of
farmed tilapia and captured tilapia reached 3.10 and 0.79
million tons, respectively, in 2009 [1], making this fish one
of the most important food fishes in the world. Though
tilapias normally live in freshwater, a few species of them
show high salt tolerance and could be raised in brackish
water or sea water [2,3]. Mozambique tilapia and its
hybrids, including red tilapia are the major representatives
of these euryhaline cichlids in aquaculture [4,5]. Due to the
increasing lack of freshwater in the world, it would be bene-
ficial to culture tilapia stocks in brackish or saline rearing
environments to ensure a source of cheap and high-quality
animal protein into the future. Based on the growth
performance in salt water, Mozambique tilapia and red
tilapia are competent candidates for breeding saline tilapia
strains [5,6].
A genetic linkage map is an essential framework for QTL

mapping of important traits, positional cloning of interest-
ing genes and understanding of genome evolution [7-11].
The first-generation linkage maps of cultured fish species
were constructed mainly by using dominant markers such
as RFLP, RAPD and AFLP [8,12]. Due to the quick develop-
ment of sequencing and genotyping technologies, co-
dominant markers, such as microsatellites and SNPs, have
replaced dominant markers for constructing linkage maps
[10]. Due to their high polymorphism and application of
genetic analyzers that enable high-throughput, automatic
and precise genotyping, microsatellites have been the main
markers used in genetic mapping of major aquaculture spe-
cies such as Atlantic salmon [13], rainbow trout [14,15],
channel catfish [7], grass carp [9] and Asian seabass [16].
Recently, SNPs were used in constructing a high density
linkage map of salmon [17]. Several linkage maps have been
constructed using microsatellite and AFLP markers [18-20]
in tilapia. Two of them were constructed based on Nile
tilapia and F2 hybrids of Nile tilapia and blue tilapia,
respectively [18,19], and a third linkage map constructed
based on a three-way cross family contained only 62 mar-
kers from Mozambique tilapia [20]. An integrated genetic
linkage map is still unavailable in saline tilapia.
Sex determination is complex in vertebrates. In birds and

snakes, females have a pair of ZW heteromorphic chromo-
somes [21], while in mammals, most males have a Y
chromosome which harbors a male-determining gene SRY
[22,23]. The mechanisms of sex determination are more
complex in fishes, where sex is determined by different
genetic and environmental factors [21]. Some closely
related fishes in the same genus may have different sex-
determination systems, such as XY and ZW. The DMY
gene was identified as a sex-determining gene in medaka
(Oryzias latipes), but not in other fish species [24,25]. In
previous studies, markers associated with sex determination
were mapped to LG1 and LG23 in Nile tilapia [26,27]. In
addition, another sex determination locus was found on
LG3 in the hybrid population of O. niloticus x O. aureus
[19]. Nile tilapia, Mozambique tilapia and blue tilapia all
are classed into the genus Oreochromis. The first two share
a XY sex determination system while blue tilapia has a ZW
one [28,29]. Though sex-determination loci in Nile tilapia
and blue tilapia have attracted much attention, few reports
have been published in Mozambique tilapia.
To facilitate the mapping of quantitative trait loci (QTL)

for important traits and comparative genomics studies, we
have constructed a consensus linkage map of Mozambique
tilapia and red tilapia using microsatellites, and conducted
comparative mapping. In addition, we have performed a
whole genome search for sex-determining loci, and found
that sex-determination loci of Mozambique tilapia and red
tilapia were located on LG1 and LG22 (LG23 of a previous
map [19]), respectively.
Results
Microsatellite makers
Sequences of 117,222 ESTs of tilapia were downloaded
from Genbank, and assembled into 18121 contigs and
32034 singletons. After analyzing these unisequences using
SiRoKo software [30], 1599 sequences containing microsa-
tellites of at least seven perfect repeats were obtained, and
434 of them were further selected for the designing of
primers to amplify the microsatellites in genome DNA.
Among the 434 pairs of primers, 390 amplified specific
products in both Mozambique and red tilapia, and 286
were informative in mapping families. In addition, 121 of
the 142 markers from the previous tilapia map [19]
produced informative genotypes. A total of 407 informative
markers were used in the linkage analysis (Additional file 1:
Table S1).

Linkage analysis
Consensus linkage map
Four hundred and one markers, including 282 from ESTs
and 119 from the previous tilapia map, were assigned to
the consensus map, while the remaining six markers
remained unmapped. The consensus map consisted of 22
linkage groups spanning 1067.6 cM (Figure 1). The number
of markers per linkage group ranged from 9 to 36. The
average inter-marker distance was 3.3 cM (Table 1). In
most parts of the linkage map, the marker spacing was less
than 20 cM, while only one marker interval on LG3 was
bigger than 20 cM (Figure 1).

Maps of Mozambique tilapia and red tilapia
The linkage maps of Mozambique tilapia and red tilapia
were also constructed (see Additional file 2: Figure S1),
respectively. These two maps contained 301 and 320



Figure 1 (See legend on next page).
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Figure 1 A consensus linkage map of saline tilapia. The location of each marker is indicated on the left side of linkage groups in Kosambi
centimorgans, and names of the markers are indicated on the right side of linkage groups.
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markers, and spanned 1042.5 and 984.0 cM, respectively.
The number of shared markers was 232, and the total
lengths of the map based on shared markers were 866.2
and 881.8 cM in Mozambique tilapia and red tilapia,
respectively (see Additional file 3: Table S2). The number of
linkage groups and the marker order in the two maps were
basically identical, except LG14, where a region of three
markers in the middle of the group in Mozambique tilapia
was located at the end of the group in red tilapia. In
addition, the recombination rate of LG15 in Mozambique
tilapia was much higher than in the red tilapia, and that of
LG2 was lower than red tilapia (Figure 2, Additional file 3:
Table S2).

Comparison between the female and male maps
Linkage maps were also constructed for males and females
(see Additional file 4: Figure S2). The maps of males and
females contained 351 and 299 markers, and spanned
1104.3 and 1051.3 cM, respectively. These two maps shared
261 markers, and the total lengths of the linkage map based
on shared markers were 950.8 and 1030.6 cM in males and
females, respectively. The ratio of lengths of the common
interval in females and males was 1.08. Though females
and males had similar map lengths, the differences of
recombination rates between the two genders were signifi-
cant on a few linkage groups. For instance, the ratios of
lengths between females and males were 0.58, 2.64 and 1.52
on LG1, LG15 and LG20, respectively (see Additional file 3:
Table S2).

Comparison between the present map, previous maps and
mapping markers onto the genome sequence of Nile tilapia
By comparing the positions of shared markers, we estab-
lished the correspondence of linkage groups between the
present map and the previous tilapia maps (see Additional
file 5: Table S3). All 119 markers derived from 24 linkage
groups of a previous map [19] were assigned to 22 linkage
groups in our map. The previous groups 8, 24 and 16, 21
were merged into LG8 and LG16, respectively, reducing
the linkage group numbers from 24 to 22, which corre-
sponded to the 22 chromosomes in tilapia. For conveni-
ence, we named our linkage groups according to the
previous maps with the exception of the former groups 21,
22, 23 and 24. The former groups 21 and 24 had been
merged into groups 16 and 8, and the former groups 22
and 23 corresponded to the present groups 21 and 22,
respectively.
After BLAST against the genome sequences of Nile

tilapia in NCBI, all 401 markers were assigned to 185
scaffolds, including 84 of the 100 largest scaffolds in
genome sequences (see Additional file 6: Table S4).

Annotation of mapped ESTs
After BLAST against nt and nr databases in NCBI using
282 marker sequences derived from ESTs, 125 of them
were annotated by known genes, including immune-
related genes such as MHC I, chemokine receptor,
interleukin-5 receptor, alpha-2-macroglobulin, lysosomal-
associated transmembrane protein and ADAMTS-1 pro-
tein, and growth-related genes such as somatostatin and
growth hormone receptor. Most annotations had a hit of
E-value less than 10-10 (see Additional file 7: Table S5).

Comparative mapping
Among all 401 mapped marker sequences, 226, 188, 159,
and 88 had a specific and significant hit in stickleback,
medaka, pufferfish, and zebrafish, respectively. A total of
287 markers matched at least one model fish, and 188, 111,
and 62 markers matched two, three, and four model fishes,
respectively (Additional file 8: Table S6). Surprisingly, most
of these homologous markers from the same linkage group
in tilapia were located in one or two chromosomes in
model fishes (Figure 3), indicating obvious homologous
chromosomal relationships between tilapia and all four
model fishes (see Additional file 9: Table S7).
A comparative map between tilapia and stickleback was

constructed (Figures 4 and 5). A total of 212 markers were
assigned to the paired linkage groups in the map. All
linkage groups in tilapia also had one major homologous
group in stickleback except group 7 and 22, which had two
homologous groups. In addition, 14 markers of tilapia with
significant hits were assigned to unmapped scaffolds in
stickleback (Figure 3).

Mapping of sex-determining loci
The nonparametric mapping identified only one sex-
determining locus on LG22 in the mapping family
MR-Cross 1 and another sex-determining locus on LG1 in
the mapping family MR-Cross 2 (P < 0.005 recommended
by MapQTL manual) (Tables 2, 3). Both interval mapping
and MQM mapping were further used to discover potential
sex determination loci, while the permutation test was used
to determine the LOD value of 95% confidence interval.
The results verified the results of the nonparametric map-
ping data, where only one sex-determining locus on LG22
was found in mapping family MR-Cross 1, and only one
sex-determining locus on LG1 was found in mapping
family MR-Cross 2 (see Additional file 10: Figure S3).



Table 1 Properties of the consensus linkage map of saline
tilapia

LG Length (cM) No. of loci cM/marker

1 46.7 19 2.9

2 36.7 23 2.2

3 61.0 10 6.1

4 41.7 19 2.5

5 42.8 10 6.1

6 55.8 19 3.3

7 61.3 36 2.0

8 54.7 12 4.6

9 51.9 12 4.3

10 50.7 24 2.5

11 53.3 17 3.3

12 49.2 26 2.1

13 49.9 13 4.5

14 64.2 18 4.0

15 30.7 21 1.7

16 55.6 23 2.5

17 9.3 9 1.6

18 46.6 16 3.1

19 50.1 16 3.6

20 48.4 20 2.5

21 43.3 23 2.5

22 63.7 15 4.2

Total 1067.6 401 –

Average 48.5 18.2 3.3

(±SD) (±11.9) (±6.2) (±1.3)

Figure 2 Comparative maps of LG2, LG14 and LG15 between Mozam
tilapia are presented on the left side of each pairs of homologous linkage g
right side. LG2 and LG15 show the differences of recombination rates betw
potential inversion.
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When we verified the sex-determining loci in seven
families, all families showed significant correlations between
sex and genotypes of markers from LG1 or LG22. These
results indicate the locus on LG1 was the only sex-
determining locus in Mozambique tilapia and hybrid tilapia
produced by Mozambique tilapia males, and the locus on
LG22 was the main sex-determining locus in hybrid tilapia
produced by red tilapia males. The breakpoint analysis of
recombination revealed that the XY sex-determining locus
on LG1 was located between OMO086 and OMO287, and
the XY sex-determining locus on LG22 was mapped
between GM047 and OMO049 (Figure 6). However, 66
individuals (58 females and eight males, which account for
approximately 30% of the progeny in the two families
produced by red tilapia males) had the genotypes of oppos-
ite sex on LG22. Further genotyping was performed for
LG1, and no correlation between sex and genotypes of
markers from LG1 was found in these individuals.
Discussion
Microsatellites for linkage mapping in tilapia species
Although some microsatellites developed in one species
can be used in other closely related species, the success rate
of cross-species amplification is usually low [31]. In this
study, microsatellites derived from the genome and EST
sequences of Nile tilapia were used to construct a linkage
map for saline tilapia. Among 576 microsatellites from Nile
tilapia, 407 amplified specific and polymorphic products in
Mozambique tilapia and red tilapia, indicating that the
majority (70.7%) of microsatellites could be universally used
in Nile tilapia, Mozambique and red tilapia for genetic and
genomics studies.
bique tilapia and red tilapia. The linkage groups of Mozambique
roups, and the linkage groups of red tilapia are presented on the
een Mozambique tilapia and red tilapia, and LG14 shows the



Figure 3 Macrosyteny relationships between genomes of tilapia and 4 model fishes. The number of tilapia markers with significant hits
against model fishes are presented in the table, and the putative syntenic pairs are indicated by grey boxes. “Others” represents the unmapped
scaffolds and contigs.
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The linkage maps in tilapias and recombination rates
Several genetic linkage maps have been constructed in
tilapias previously [18-20]. The first two maps, one in Nile
tilapia, and another based on a three-way cross family, were
constructed mainly using dominant AFLP markers [18,20].
Though a female map of Mozambique tilapia was con-
structed in the three-way cross family, it only consists of 14
linkage groups with 62 loci [20]. The latest linkage map in
tilapia was constructed using an F2 interspecific hybrid
family between Nile tilapia and blue tilapia, consisting of 24
linkage groups [19]. In the present study, we constructed
the first integrated linkage map in Mozambique and red til-
apia. Well-known for their high salt tolerance, Mozambique
tilapia and its hybrid including red tilapia have been widely
used in the aquaculture and breeding of saline tilapia [4-6].
The consensus and linkage maps of Mozambique tilapia
and red tilapia, all consisted of 22 linkage groups. 282
mapped markers were derived from ESTs, and 125 of them
were annotated by known genes, including genes related to
immunity and growth. The potential inversion between
Mozambique tilapia and red tilapia found in LG14 in the
present study, along with the differences of karyotypes



Figure 4 (See legend on next page).
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Figure 4 A comparative map for LGs 1–12 between tilapia and stickleback. The consensus linkage groups of tilapia are presented on the
left side of each pairs of homologous linkage groups, and the linkage groups of stickleback are shown on the right side. The locations of markers
in tilapia are indicated in Kosambi centimorgans (cM), and the locations in stickleback are indicated in physical distances (Mb).
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among tilapias reported before [32], indicates that some
significant differences may exist in chromosomes between
different tilapia species. With an average inter-marker
distance of 3.3 cM, the present map provides a useful
resource for QTL mapping of important commercial traits,
comparative mapping and positional cloning of interesting
genes in saline tilapia. However, we have noticed that one
marker space on LG3 was still larger than 20 cM. There-
fore, it is essential to map more DNA markers in this space
to facilitate QTL mapping for important traits.
One hundred and nineteen microsatellite markers from

24 linkage groups of a previous map, along with 282
markers from ESTs were assigned to 22 linkage groups.
The marker order on each linkage group among the
present and the previous maps were almost identical (see
Additional file 5: Table S3). The LG21 and LG24 of the
previous map merged into LG16 and LG8, respectively.
These merges reduced the number of linkage groups from
24 to 22, equal to the chromosome pair number in
Mozambique tilapia and Nile tilapia [32], and resolved the
discrepancy between linkage group number and chromo-
some number in the latest linkage map of tilapia [19].
Comparing the linkage groups between Mozambique

tilapia and red tilapia revealed significant differences in the
recombination rate on LG2 and LG15. Similar results have
been reported in other species, such as fox and dog [33].
These results suggest that recombination rate is unequal in
different genome regions and species. Different ratios of
recombination rates between females and males have been
reported in a number of species. Females usually have a
higher recombination frequency than males. For example,
the female: male recombination ratios were 8.26:1 in
Atlantic salmon [34], 1.6:1 in channel catfish [7], 2.74:1 in
zebrafish [35] and 2:1 in grass carp [9]. However, the link-
age map of females was shorter than that of males in
striped bass [36]. Nearly identical recombination rates
between females and males have been referred in hybrid
tilapia previously [19]. In this study, the ratio of lengths of
common intervals in females and males was 1.08, indicating
that males had a similar recombination frequency of the
whole genome as females in tilapia.

Syntenies between different fish species
The sequences of 226, 188, 159, and 88 of the 401 mapped
markers had significant hits in the whole genome
sequences of stickleback, medaka, puffer fish, and zebrafish,
respectively, suggesting that stickleback is more closely
related to tilapia than the other three model fishes. All link-
age groups in tilapia mainly corresponded to one or two
linkage groups, or chromosomes in the four model fishes
(Table 3), implying the high evolutionary conservation of
chromosomes in these five fish species. Some conserved
syntenies of fish chromosomes also were reported in
medaka [37], pufferfish [38], seabream [39], catfish [7],
grass carp [9] and striped bass [36].
Among all 22 linkage groups in tilapia, LG7 corre-

sponded to two chromosomes in all four model fishes, and
LG22 corresponded to two chromosomes in stickleback
and medaka, implying that these two groups may be
formed by two independent fusion events. It is believed that
the ancestral karyotype of cichlids consisted of 24 chromo-
some pairs [40]. However, how the haploid chromosome
number of most tilapiines reduced to 22 remains unclear.
One hypothesis is that the largest chromosome in tilapiines
came from the fusion of three chromosomes [41]. However,
our results suggested that the modern karyotype of
tilapiines may be formed by two separate fusions of two sets
of two independent chromosomes. These two fusions may
have lead to the reduction of the 24 chromosome pairs to
22 pairs in most tilapiines.
Among all four model fishes compared, only medaka

from superorder Acanthopterygii has a haploid chromo-
some number of 24, which conforms to the presumed
ancestral karyotype of cichlids. In addition, each linkage
group in tilapia correlates to one homologous chromosome
in medaka except LG7 and LG22, each of which coincides
with two chromosomes. The syntenies between proto-
chromosomes in vertebrates and chromosomes in medaka
have been previously speculated [37]. In the present study,
the simple and clear correspondences between 22 linkage
groups of tilapia and 24 chromosomes of medaka indicate
that medaka may possess the most possible ancestral karyo-
type of cichlids in four model fishes.
A potential inversion on LG 14 was found between

Mozambique tilapia and red tilapia. Differences of karyo-
type between Nile tilapia and Mozambique tilapia have
been reported previously. Mozambique tilapia had four
metacentric or submetacentric chromosomes and 40 acro-
centric or subtelocentric ones, while Nile tilapia only had
two metacentric or submetacentric chromosomes [32]. Our
red tilapia originated from the hybrid of Mozambique
tilapia and Nile tilapia. The difference of marker order on
LG14 between the two tilapias may be caused by the hybrid
origination of red tilapia.

Mapping of sex determination loci
Two sex determination systems, XY and WZ have been
identified in tilapias [26,28,29,42,43]. Three sex determining



Figure 5 A comparative map for LGs 13–22 between tilapia and stickleback. The consensus linkage groups of tilapia are presented on the
left side of each pairs of homologous linkage groups, and the linkage groups of stickleback are shown on the right side. The locations of markers
in tilapia are indicated in Kosambi centimorgans (cM), and the locations in stickleback are indicated in physical distances (Mb).
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loci have been identified on LG1, LG3 and LG22 of tilapias
[26,27], respectively, indicating the complexity of the sex
determination in tilapia,. A sex-determining locus on LG3
was reported in female heterogametic (WZ-ZZ) tilapias
including T. mariae, O. karongae, O. tanganicae and Israeli
stain of O. aureus. A sex determining locus on LG1 was
found in male heterogametic (XX-XY) Nile tilapia and T.
zillii [26], and the sex determining locus on LG22 was only
found in Nile tilapia [27]. In the present study, only one sex
determination locus on LG1 was found in our reference
families produced by Mozambique tilapia males, which
were identified as male heterogametic. However, Cnaani



Table 3 Sex-linked markers on linkage group 1 of tilapia

Marker Position
(cM)

K* Degrees
of

freedom

P-value

OMO376 6.4 21.04 3 <0.0005

GM314 7.0 21.05 3 <0.0005

OMO165 7.0 21.05 3 <0.0005

OMO061 7.8 21.05 3 <0.0005

GM041 9.2 23.62 3 <0.0001

OMO432 11.4 26.86 3 <0.0001

OMO086 15.9 32.55 1 <0.0001

OMO287 31.4 36.59 1 <0.0001

OMO293 46.7 15.79 1 <0.0001

* Kruskal-Wallis test statistic.
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et al. found that markers on both LG1 and LG3 were asso-
ciated with sex in three families of Mozambique tilapia and
two families of the Egyptian strain of blue tilapia, and the
sex determination of these reference families could not be
defined as male or female heterogametic [26]. Mozambique
tilapia and blue tilapia were known as male heterogametic
and female heterogametic, respectively [28,29]. Our results
are identical to the traditional view and differ from the
results of Cnaani et al. [26]. This divergence may be caused
by the different genetic backgrounds of reference families
and strains. Interspecies crosses were prevalent in the
tilapias, and most of the hybrids were fertile and could
reproduce offspring as purebred fish [44,45]. These hybrids
may spread in the farmed strains as well as in wild popula-
tions, and lead to the complex pattern of sex determination
in some tilapia strains.
Since the sex-determining locus on LG1 was identified

mainly in tilapias with the XY sex determination system,
and the sex-determining locus on LG3 was identified
mainly in tilapias with the WZ system [26], we may con-
clude that the sex determining locus on LG1 determined
the male heterogamete and the sex determining locus on
LG3 determined the female heterogamete in tilapiine
species. As these sex determining loci existed in closed
species from the genus of both Oreochromis and Tilapia
[26], it seems that the two sex-determining loci may both
emerge prior to the differentiation of Oreochromis and
Tilapia, and underwent independent evolution in different
species. Alternatively, the tilapiine species may only have
one ancestral sex determination locus, which more likely to
be the sex-determining locus on LG3 as predicted by some
researchers [26]. After the differentiation of Oreochromis
and Tilapia, another sex-determining locus appeared and
spread to specific species by interspecific hybridization.
We have also identified a XY sex-determining locus on

LG22 in red tilapia. This sex-determining locus was
reported only in Nile tilapia [27]. Our local red tilapia strain
in Malaysia and Singapore originating from the hybrid
between Nile tilapia and Mozambique tilapia [4]. The sex-
determining locus on LG22 in red tilapia may originate
Table 2 Sex-linked markers on linkage group 22 of tilapia

Marker Position
(cM)

K* Degrees
of

freedom

P-value

OMO244 0 8.29 1 <0.005

OMO278 21.9 10.36 1 <0.005

OMO106 26.9 15.20 1 <0.0001

GM212 27.3 15.20 1 <0.0001

GM047 28.1 13.40 1 <0.0005

OMO049 39.3 7.95 1 <0.005

* Kruskal-Wallis test statistic.
from Nile tilapia instead of Mozambique tilapia. As it only
was found in Nile tilapia and red tilapia, the sex-
determining locus on LG22 may have a later origination
than the sex-determining loci on LG1 and LG3. In this
study, the sex-determining loci on LG1 and LG22 were
identified in different types of families, which were
produced by Mozambique tilapia males or red tilapia males,
respectively. There was no family found to have these two
sex-determining loci at the same time. Further research is
needed to understand the interactions between the sex-
determining loci on LG1 and LG22.
About 30% of individuals from two families produced by

the red tilapia males showed no association between sex
and genotypes of LG1 or LG22, indicating that there are
more genetic or environment factors which may be
involved in the sex determination in red tilapia. Due to its
hybrid origination, red tilapia may have more complex
mechanisms of sex determination than Mozambique
tilapia.
Conclusions
We constructed a first consensus linkage map of
Mozambique tilapia and red tilapia. The map consisted
of 22 linkage groups, spanning 1067.6 cM and contain-
ing 401 microsatellite markers derived mainly from
ESTs. Comparative mapping between tilapia and four
model fishes indicates that high evolutionary conserva-
tion of chromosomes existed in these fish species. Two
separate fusions of two sets of two independent chro-
mosomes may lead to a reduction of 24 chromosome
pairs in their ancestor to 22 pairs in tilapias. Sex-
determining loci in Mozambique tilapia and red tilapia
were mapped on LG1 and LG22, respectively. Our link-
age map and markers linked to the sex-determining loci
provide a useful resource for genetic improvement of
salt tolerance tilapia and future genomics study in fish.



Figure 6 Genotypes of DNA markers linked to the sex-determination loci on LG1 (A) and LG22 (B). “A” and “a” represent the alleles which
come from father and mainly existed in males and females of the families, respectively. The shade indicates the recombination regions. The
arrows indicate the potential positions of sex determination loci.
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Methods
Mapping families and DNA isolation
Two mapping families, MR-Cross 1 and MR-Cross 2, were
established by crossing Mozambique tilapia and red tilapia.
MR-Cross 1’s parents were a Mozambique tilapia female
and a red tilapia male, and MR-Cross 2’s parents were a
Mozambique tilapia male and a red tilapia female. The
Mozambique tilapias were F1 offspring of wild population
coming from South Africa, and the red tilapias were from a
local red tilapia strain in Malaysia and Singapore, which
originated from a hybrid between Mozambique tilapia and
Nile tilapia. Fish were raised in the marine fish facility of
Temasek Life Sciences Laboratory. The mapping popula-
tion consisted of 470 individuals, 142 from MR-Cross 1
and 328 from MR-Cross 2. All markers were genotyped in
95 individuals, 47 from MR-Cross 1 and 48 from MR-Cross
2. The markers associated with sex were further genotyped
in the remaining 375 individuals.
For verifying the sex determination loci in tilapia,

additional five families containing 354 individuals have
been established. These reference families included
four Mozambique tilapia families and one hybrid family
(Mozambique tilapia♀x red tilapia♂). Fin clips were
sampled from each parent and offspring, and stored in
75% ethanol for subsequent DNA extraction with the
method described by Yue and Orban [46].

Markers and primers
ESTs of tilapia were downloaded from NCBI database, and
assembled using SeqMan NGen 2.0 software [47] with
default setting. SiRoKo software [30] was used to screen the
unisequences containing microsatellites. Primers were
designed and used to amplify these microsatellite sequences
in the genomic DNA of 3 unrelated Mozambique tilapias.
The primers which amplified specific productions in all 3
fishes were further labeled at 50 end of the forward primer
with either a Fam or Hex fluorescent dye. For comparison
with the previous linkage map of Oreochromis spp [19], 142
markers were selected from it, and their primers were
synthesized and tested in Mozambique tilapias as described
above. All labeled primers were used to genotype the
parents, two Mozambique tilapias and two red tilapias, and
the informative primers were further used in the genotyp-
ing of mapping families (Additional file 1: Table S1).

Genotyping
PCR amplification was carried out for each sample in a 25
μL volume containing 10 ng genomic DNA, 1 × PCR buffer,
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100 μM of each dNTPs, 0.2 μM forward and reverse
primers, 1 unit Taq DNA polymerase (FINNZYMES,
Espoo, Finland). The reactions were performed in thermal
cycler (MJ Research, CA, USA) using the following profile:
one cycle of 3 min at 94°C, 38 cycles of 30 sec at 94°C,
30 sec at 50°C , 55°C or 60°C and 45 sec at 72°C , followed
by a prolonged extension of 5 min at 72°C . PCR products
were resolved on an ABI3730xl Genetic Analyzer (Applied
Biosystems, CA, USA) and genotyped against the internal
size standard of GeneScan-500 ROX using software
GeneMapper 4.1 (Applied Biosystems, CA, USA).

Map construction
JoinMap 4.0 software was used for linkage analysis and
map construction [7]. The Kosambi mapping function was
applied in the analysis. The grouping of makers was
performed with a LOD threshold of 4.0. When the map
was calculated, “ripple” was performed after adding each
marker. The best-fitting position of each marker was exam-
ined based on the goodness-of-fit test (chi-square). Three-
round mapping was performed for each linkage group. At
first, grouping of markers was performed for mapping fam-
ilies MR-Cross 1 and MR-Cross 2, respectively, then the
homologue linkage groups from each family were com-
bined, and the consensus map was constructed.
For comparing maps of different tilapias and sexes,

maternal and paternal population nodes were created from
the dataset of each family, respectively. Grouping of was
performed for the population nodes of each parent of the
mapping families. The homologous groups from the same
gender or same strain were combined, and the consensus
maps of Mozambique tilapia, red tilapia, female and male
were calculated, respectively.

Annotation of mapped unisequences
All mapped unisequences were used to do BLAST against
nt and nr databases in NCBI. The cutoff E-values were e <
10-5 for BLASTX and BLASTN. The best hits were
regarded as the annotations of unisequences.

Comparative mapping
The whole genome sequences of stickleback, medaka, puf-
ferfish and zebrafish were downloaded from Ensembl
(www.ensembl.org/info/data/ftp/index.html). These se-
quences were formatted as databases in a local com-
puter, and the DNA sequences of the mapped markers
were used to do similarity searches against the data-
bases by using BLAST software. Hits with e < 10-5 were
considered as significant. In cases where the search of
one sequence hits two or more loci with less than 100
fold difference of the E-value, the sequence was consid-
ered to be duplicated in the genome, and the marker
located in it wasn’t used in the further comparative
analysis. The comparative map was drawn using Map-
Disto software (ver. 1.7) [48].

Mapping of sex-determining loci
The sex of each individual was identified by the appearance
of gonopore combined with dissection. Mapping of sex-
determining loci was performed using the nonparametric
mapping (Kruskal-Wallis analysis), interval mapping and
MQM mapping in MapQTL 4.0. According to the recom-
mendation of the manual for MapQTL software, the statis-
tical significant level in nonparametric mapping was set as
P < 0.005. Permutation Test was used to determine the
significance threshold of the LOD score for interval
mapping and MQMmapping.
A total of 824 individuals from seven families were geno-

typed to verify the sex-determining loci in different families.
Five markers from LG1, including GM041, OMO432,
OMO086, OMO287 and OMO293, were used to genotype
549 individuals from 4 Mozambique tilapia families and
one hybrid family (red tilapia♀x Mozambique tilapia♂),
and OMO278, OMO106, GM212, GM047 and OMO49
from LG22 were genotyped in 275 individuals from two
hybrid families (Mozambique tilapia♀x red tilapia♂).
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