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Malassezia includes yeasts belong to the subphylum Ustilaginomycotina within the

Basidiomycota. Malassezia yeasts are commonly found as commensals on human and

animal skin. Nevertheless, Malassezia species are also associated with several skin

disorders, such as dandruff/seborrheic dermatitis, atopic eczema, pityriasis versicolor,

and folliculitis. More recently, associations ofMalasseziawith Crohn’s disease, pancreatic

ductal adenocarcinoma, and cystic fibrosis pulmonary exacerbation have been reported.

The increasing availability of genomic and molecular tools have played a crucial role

in understanding the genetic basis of Malassezia commensalism and pathogenicity.

In the present review we report genomics advances in Malassezia highlighting unique

features that potentially impacted Malassezia biology and host adaptation. Furthermore,

we describe the recently developed protocols for Agrobacterium tumefaciens-mediated

transformation in Malassezia, and their applications for random insertional mutagenesis

or targeted gene replacement strategies.

Keywords: Malassezia, genomics, Agrobacterium tumefaciens-mediated transformation (AMT), insertional

mutagenesis, targeted gene replacement

MALASSEZIA YEASTS AS COMMENSALS AND PATHOGENS

Malassezia includes a monophyletic genus of yeasts that are the main fungal species resident
on human skin and hair, representing more than 90% of the eukaryotic components of the
skin microbiome (Findley et al., 2013). To date, 18 species of Malassezia have been identified
(Theelen et al., 2018). The limited number of species isolated so far most likely reflects the
difficulties in cultivating Malassezia under laboratory conditions, given their ability to grow
in vitro only in the presence of exogenous lipids, and at a narrow range of temperatures.
As commensal organisms living on the skin, Malassezia globosa, Malassezia restricta, and
Malassezia sympodialis are the most common species found in humans, followed by Malassezia
furfur, Malassezia yamatoensis, Malassezia dermatis, Malassezia obtusa, Malassezia japonica,
and Malassezia arunalokei. Malassezia pachydermatis is mainly found in dogs and cats,
Malassezia slooffiae in pigs and cats, Malassezia nana in cats and horses, Malassezia caprae
in goats, Malassezia equina in horses, Malassezia cuniculi in rabbits, Malassezia brasiliensis
and Malassezia psittaci in parrots, and Malassezia vespertiliones in hibernating bats (Theelen
et al., 2018; Guillot and Bond, 2020). Aside from their commensal lifestyle, Malassezia
yeasts are associated with a number of skin disorders, the most common of which are
dandruff/seborrheic dermatitis, atopic eczema, pityriasis versicolor, and folliculitis. Occasionally,
in immunocompromized hosts or patients receiving total parenteral nutrition, M. furfur, M.
sympodialis, and M. pachydermatis can also cause systemic disease (Gaitanis et al., 2012; Saunders
et al., 2012; Velegraki et al., 2015; Theelen et al., 2018; Guillot and Bond, 2020). Moreover, novel
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studies have linked Malassezia yeasts with Crohn’s disease in
patients with an S12N polymorphism in the gene encoding
CARD9, a signaling adaptor critical for innate antifungal
immunity (Limon et al., 2019), with pathogenesis of pancreatic
ductal adenocarcinoma through activation of the MBL pathway
(Aykut et al., 2019), and with cystic fibrosis pulmonary
exacerbation (Soret et al., 2020).

EVOLUTIONARY TRAJECTORY OF
MALASSEZIA GENOMES CORRELATES
WITH PATHOGENICITY AND NICHE
ADAPTATION

In the last decade several groups contributed to generate
genomics data for the majority of species within the Malassezia
genus. A GenBank search (last accessed on March 7th, 2020)
finds 45 genome assemblies that include 15 known Malassezia
species (Xu et al., 2007; Gioti et al., 2013; Triana et al., 2015;
Wu et al., 2015; Park et al., 2017; Zhu et al., 2017; Lorch et al.,
2018; Cho et al., 2019; Morand et al., 2019; Sankaranarayanan
et al., 2020). Analysis of the genomes available contributed to
resolveMalassezia taxonomy, and shed light on the evolutionary
trajectory of pathogenesis and niche adaptation of this unusual
fungal genus.

Taxonomically Malassezia are included in the subdivision
Ustilaginomycotina within the Basidiomycota phylum, which
also includes human and plant pathogens (Wang et al., 2014;
Wu et al., 2015). Surprisingly, from a phylogenetic viewpoint
Malassezia fungi are more closely related to the basidiomycete
plant pathogen Ustilago maydis than the human pathogen
Cryptococcus neoformans, and are very divergent from other
fungi that are found on the skin, such as the dermatophytes
and Candida albicans (Xu et al., 2007; Saunders et al., 2012; Wu
et al., 2015). Within the Malassezia genus we found three clades
that include two sister clades, clade A and clade B, with clade A
including subclades A1 and A2, and clade C that includes early-
divergent species (Figure 1A). Phylogenetic relationships of the
tree of Figure 1A based on D1D2 domains of LSU rDNA agree
with the previous phylogenomics data (Wu et al., 2015; de Hoog
et al., 2017; Lorch et al., 2018; Theelen et al., 2018).

All haploid Malassezia species have small and compact
genomes compared to other phylogenetically related fungi
(7–9Mb compared to ∼20Mb) (Figure 1B), with genes being
arranged very close to each other, and containing very short
introns. At the karyotype level, haploid Malassezia species
have from 6 to 9 chromosomes, based on pulsed-field gel
electrophoresis (PFGE) and telomere-to-telomere genome
assemblies generated with PacBio long-read sequencing
technology (Boekhout and Bosboom, 1994; Boekhout et al.,
1998; Sankaranarayanan et al., 2020). Using a combination of
genomics, biochemical, cell biology, and molecular genetics
techniques (described later in the text), Sankaranarayanan
and colleagues elucidated the mechanisms of karyotype
evolution within the Malassezia genus. In particular, the authors
proposed an ancestral state of 9 chromosomes and two distinct
mechanisms of chromosome number reduction that involve

newly-identified AT-rich, fragile, centromeres: a chromosome
breakage followed by loss of centromere that gave rise to 8
chromosomes in M. sympodialis and closely related species;
and centromere inactivation accompanied by changes in DNA
sequence following chromosome-chromosome fusion that gave
rise to 7 chromosomes in M. furfur (Sankaranarayanan et al.,
2020). It is intriguing to note that species with 9 chromosomes,
such as M. globosa and M. restricta, are difficult to isolate and
replicate in axenic conditions, while M. sympodialis and M.
furfur are more readily cultivated.

At the gene level, comparative genomics revealed extensive
turnover events, with significant gene loss and gene gain. Some
Malassezia species have lost nearly 800 genes and have <4,000
predicted genes. All species have lost genes for lipid metabolism,
including fatty acid synthase, 19-desaturase, and 1

2,3 -enoyl-
CoA isomerase, hence explaining Malassezia lipid dependency
(Figure 2); M. pachydermatis has also lost the genes for lipid
metabolism but is the only known Malassezia species that
is able to grow in vitro without the addition of exogenous
lipids (Figure 2); however, a recent study identified some M.
pachydermatis isolates that are unable to grow in synthetic
medium without lipids (Puig et al., 2017). Other major groups
of lost genes include those encoding glycosyl hydrolases and
enzymes involved in carbohydrate metabolism, concordant with
the evolution of a skin-adapted fungus that uses lipids as carbon
sources. Moreover, the Malassezia genomes have a low density
of transposable elements, and they lack core genes of the RNA
interference (RNAi) pathway, such as dicer, argonaute, and RNA-
dependent RNA polymerase.

Because the lack of the RNAi pathway in other fungi such
as Saccharomyces cerevisiae and U. maydis is associated with
the presence of dsRNA viruses (Drinnenberg et al., 2011), it
was hypothesized that Malassezia species could also harbor
mycoviruses. Corroborating this hypothesis, dsRNAmycoviruses
of the Totiviridae family were found in M. sympodialis, M.
globosa, M. obtusa, M. pachydermatis, M. yamatoensis, and
M. restricta (Clancey et al., 2019; Park et al., 2019). In M.
sympodialis, the viral genome includes two dsRNA elements,
one of 4.6 kb that encodes an RNA-dependent RNA polymerase
and a capsid protein, and one of 1.4 kb that encodes a novel
unknown protein predicted to be secreted from the fungal cells
and involved in host-pathogen and/or microbial interactions.
Fungal cells can be cured of the mycovirus upon exposure to
high temperature. Transcriptomic analysis of infected and cured
strain pairs revealed that the presence of the mycovirus strongly
enhances the expression of ribosomal genes, suggesting that
the virus conscripts the Malassezia transcription and protein
synthesis machineries. Lastly, the presence of the Malassezia
mycovirus correlated with higher pathogenicity in ex vivomodels
(Clancey et al., 2019; Park et al., 2019).

With respect to gene gain, several unique events found
in Malassezia genomes warrant consideration. First, a set
of 44 Malassezia-specific gene clusters was identified, but
unfortunately most of them have unknown functions that could
not be predicted through bioinformatics analyses (Wu et al.,
2015). One gene gain event that Wu and colleagues described
regarded a gene with a PF06742 domain of unknown function.
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FIGURE 1 | Phylogeny of Malassezia yeasts. (A) Topology of the type strains of the eighteen recognized Malassezia species. The evolutionary history using

sequences of the D1D2 domains of the LSU rRNA gene was inferred by using the Maximum Likelihood method based on the Kimura 2-parameter model. The tree

with the highest log likelihood (−3126.28) is shown. The percentage of trees in which the associated taxa clustered together is shown next to the branches. Initial

tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using the

Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. A discrete Gamma distribution was used to model

evolutionary rate differences among sites [5 categories (+G, parameter = 0.1690)]. The rate variation model allowed for some sites to be evolutionarily invariable [(+I),

27.23% sites]. The analysis involved 19 nucleotide sequences. There were a total of 718 positions in the final dataset. (B) Karyotypes of representative Malassezia

species with 9, 8, and 7 chromosomes compared to the Basidiomycete human pathogen C. neoformans.

This gene is conserved in all Malassezia species and is absent
in all Basidiomycota, suggesting its acquisition by a Malassezia
ancestor and an important role in Malassezia evolution
(Wu et al., 2015).

Second,Malassezia genomes are characterized by a significant
expansion of lipase, phospholipase, peptidase, and protease gene
family-encoding products predicted to break down lipids and
proteins for growth, and to play roles in host and microbial
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FIGURE 2 | Malassezia yeasts are lipid dependent. Ten-fold serial dilution of representative Malassezia species on medium without exogenous lipids (YPD, yeast

extract 10 g/L, peptone 20 g/L, dextrose 20 g/L, agar 20 g/L), and on lipid-rich medium mDixon (36 g/L malt extract, 10 g/L desiccated ox-bile, 10 g/L mycological

peptone, 2 ml/L glycerol, 10 ml/L Tween 60, agar 20 g/L).

interactions (Wu et al., 2015). Intriguingly, a similar set of
enzymes is found in the genome of C. albicans, a phylogenetically
distant fungus that also lives on the skin, suggesting an important
role in skin colonization and niche adaptation. Moreover,
analysis of theM. sympodialis andM. globosa genomes identified
89 and 169 predicted secreted proteins, most of them without
any domain (Schuster et al., 2018). These predicted secreted
proteins include several MalaS allergens, such as MalaS1, a β-
propeller-folded protein that has fungal orthologs/homologs in
some basidiomycetes and ascomycetes (Vilhelmsson et al., 2007;
Gioti et al., 2013), MalaS12 that is similar to other fungal GMC
oxidoreductases (Zargari et al., 2007) that play diverse roles in
fungi, such as mycotoxin biosynthesis in species of Aspergillus
and Penicillium (Tannous et al., 2017), and MalaS7 (in 3 copies)
and MalaS8, both of which are Malassezia-specific and have
unknown predicted roles (Gioti et al., 2013). Besides these, M.
sympodialis has genes encoding six additional MalaS allergens
that are conserved proteins that share high similarity with the
corresponding mammalian homologs, and hence can potentially
cross-react with T cells and induce skin inflammation (Glatz
et al., 2015).

Another characteristic of Malassezia genomes is the presence
of bacterial genes acquired through horizontal gene transfer
(HGT) events. While the number of these events is usually
limited, in Malassezia more than 30 HGT have been identified
(Wu et al., 2015; Ianiri et al., 2020). HGT candidates found in
the majority of the Malassezia species include genes involved in
broad stress resistance, such as flavohemoglobin, catalase, and
oxidoreductases, found in some cases in multiple copies. An
interesting HGT candidate is the gene encoding a septicolysin-
like protein, which is known as a pore-forming bacterial toxin
that might play a role as virulence factor (Beceiro et al., 2013;
Mosqueda et al., 2014). This gene is absent in all Malassezia
species phylogenetically related toM. sympodialis, and is present
in five copies in M. globosa. Other acquired genes encode a
variety of proteins with different functions, such as hydrolysis,

protein transport and folding, and detoxification of xenobiotics
(Ianiri et al., 2020).

Using molecular techniques described in the section
Agrobacterium tumefaciens-Mediated Transformation Enables
Insertional Mutagenesis and Targeted Gene Deletion in
Malassezia, we demonstrated that the HGT of the bacterial
flavohemoglobin in Malassezia resulted in a gain of function
critical for resistance to nitrosative stress and nitric oxide
(NO) detoxification (Ianiri et al., 2020). Analysis of the
available Malassezia genomes revealed additional HGT of
another flavohemoglobin-encoding gene that originated from
different donor bacteria. Endogenous accumulation of NO
in the flavohemoglobin mutant results in downregulation
of the allergen-encoding genes, and accordingly, we found
that flavohemoglobin has a dispensable role for Malassezia
pathogenesis. This study represents the first functional analysis
of an HGT-acquired gene in Malassezia, and the first evaluation
of a Malassezia mutant in a novel murine skin model (Sparber
and LeibundGut-Landmann, 2019; Sparber et al., 2019) to assess
the involvement of aMalassezia gene in pathogenesis.

AGROBACTERIUM

TUMEFACIENS-MEDIATED
TRANSFORMATION ENABLES
INSERTIONAL MUTAGENESIS AND
TARGETED GENE DELETION IN
MALASSEZIA

Although the availability of sequenced genomes revealed insights
about Malassezia evolution, adaptation, and gene turnover,
the function of specific genes could not be studied because
of the lack of transformation systems. Genetic transformation
in fungi can be carried out through the combined use of
lithium acetate (LiAc) and polyethylene glycol (PEG), biolistic

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4 August 2020 | Volume 10 | Article 393

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Ianiri and Heitman Malassezia Genomics and Genetics

bombardment, electroporation of intact cells or protoplasts,
or A. tumefaciens-mediated transformation (AMT). We tested
the effectiveness of these four techniques to successfully
transform Malassezia, but despite several attempts, AMT was
the only technique that allowed the generation of stable
transformants ofM. furfur, M. sympodialis, andM. pachydermatis
(Ianiri et al., 2016; Celis et al., 2017).

A. tumefaciens is a soil-borne bacterium that has the ability to
infect plants to cause a crown gall disease. The infective process
is unique and relies on the natural ability of A. tumefaciens to
genetically engineer host plants by introducing a short DNA
fragment into their genome. The DNA fragment is called T-
DNA (transfer DNA) and its excision is enabled by virulence
proteins induced by acetosyringone, a chemical compound
that is produced by wounded plant roots and that attracts A.
tumefaciens. The T-DNA contains genes that encode products
that mimic plant hormones, and once integrated in the host
genome, causes an undifferentiated growth of the plant tissues
forming a tumor or gall. Researchers have exploited this natural
genetic ability of A. tumefaciens to transfer a desired DNA
molecule, usually a gene marker, into a variety of eukaryotic
organisms, such as plants, animal cells, oomycetes, and fungi.

The most common use of AMT in fungal research is
based on a binary vector system: one A. tumefaciens plasmid
contains vir genes required for virulence (i.e., transfer of DNA
into the host), and another plasmid, the Ti (tumor inducing)
plasmid—usually it is a binary vector and is the most commonly
manipulated by researchers—contains the marker gene between
two 25-bp direct repeats (right and left borders, RB and LB,
respectively) that define the T-DNA. The vir proteins are induced
by acetosyringone and act on the T-DNA borders enabling
the production of single-stranded DNA. The T-DNA is coated
with proteins forming the T-complex, which is transferred
into the fungal cell. The T-complex is then disassembled, and
nuclear localization signals drive the translocation of the T-DNA
within the fungal nucleus where integration into the genome
occurs (Michielse et al., 2005) (Figure 3A). Compared to other
transformation methods, AMT requires basic reagents that are
common in most microbiology laboratories, and therefore it has
been largely utilized for transformation of yeasts and fungi since
its first use in S. cerevisiae in 1995 (Bundock et al., 1995). For
more information about the method and its use in fungal biology
research, there are several reviews available (Michielse et al., 2005;
Frandsen, 2011; Idnurm et al., 2017).

In general, the method is straightforward: after growing the
A. tumefaciens with the binary vector of interest and the fungal
strain to be transformed, these two organisms are co-cultured on
induction medium (IM) for a few days depending on the growth
of the fungus, and subsequently transferred to a selective medium
that differs based on the gene marker used (usually a dominant
gene that confers resistance to an antifungal drug). A key role in
the transformation process is played by the induction medium
(IM), which contains acetosyringone to induce the vir genes,
and it physically supports the A. tumefaciens-fungus co-culture
ensuring the tight contact between the cells, which is a critical
requirement for the success of the trans-kingdom conjugation
process (Michielse et al., 2005).

While AMT is relatively simple in the majority of fungi, its
use in Malassezia turned out to be more difficult because of the
unique biology of this fungus. The first successful application
of AMT was carried out in M. furfur, one of the species that
displays more robust growth compared to others within the
Malassezia genus (Ianiri et al., 2016). The method employed
followed a previously published protocol (Ianiri et al., 2011),
with the only difference being the use of a modified IM (mIM)
that also included exogenous lipids (i.e., Tween and ox-bile)
to favor growth of Malassezia. Stable Malassezia transformants
could be generated for the first time, although the efficiency of
the ATM was very low (<5 transformants per transformation
plate). The AMT method was then improved using a higher
density of Malassezia cells, a longer co-incubation period of up
to 6 days, and by performing the co-incubation step on slightly
concave spots generated on nylon membranes placed on the
modified IM. The latter modification was critical to facilitate cell-
to-cell contact between bacterial andMalassezia cells, which was
otherwise hindered by the presence of Tween in the modified
IM. Subsequently, the AMT protocol was further optimized by
Celis et al. (2017) and Ianiri et al. (2019), as illustrated in detail
in the flow charts of Figures 3B–D. Examples of representative
steps of the AMT of Malassezia are shown in Figure 3E, and
representative NAT-resistant M. furfur transformant are shown
in Figure 3F. Lastly, we could never obtain transformants forM.
globosa, a species characterized by very slow growth at a limited
range of temperatures (30–34◦C) (unpublished data).

Several binary vectors proved to be effective for Malassezia
transformation. Plasmids pAIM2 and pAIM6 were generated
through fusing the ACT1 promoter and terminator of
M. sympodialis with the NAT and NEO genes to confer
resistance to nourseothricin (NAT) and neomycin sulfate
G418 (NEO), respectively (Figure 4A) (Ianiri et al., 2016).
Celis and colleagues successfully employed plasmid pBHg that
includes the Escherichia coli hpt gene under the control of the
Agaricus bisporus promoter of the glyceraldehyde-3-phosphate
dehydrogenase (gpd) gene to confer resistance to hygromycin B
(HYG) (Figure 4B). Vector pBH-GFP-ActsPT further includes
the eGFP gene from Aequorea victoria under the control of
the ACT1 promoter and terminator of A. bisporus (Figure 4C).
Another vector that encodes a fluorescent marker includes
a Malassezia codon-optimized mCherry gene fused with the
NAT marker, as in plasmid pAIM2, through a P2A sequence
(Goh et al., 2020); P2A is a 2A self-cleaving peptide derived
from the porcine teschovirus-1 that was used to guarantee
high expression of both the NAT and mCherry genes. These
gene markers were also modified and reassembled to perform
protein localization and chromatin immunoprecipitation (ChIP)
through the generation of both N-terminal and C-terminal GFP
fusion proteins, and 3xFLAG-tagged proteins (Ianiri et al., 2020;
Sankaranarayanan et al., 2020).

One of the greatest advantages of AMT for Malassezia
is its efficacy for approaches of both random insertional
mutagenesis and targeted mutagenesis, which is not common
for Basidiomycota fungi such as C. neoformans (McClelland
et al., 2005). Insertional mutagenesis is carried out through
AMT of a Malassezia species with one of the binary vectors
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FIGURE 3 | A. tumefaciens-mediated transformation of Malassezia. (A) Schematic overview of the transformation process; see text for details. (B–D) Main steps of

the protocols available for AMT of Malassezia according to Ianiri et al. (2016) (B), Ianiri et al. (2019) (C), and Celis et al. (2017) (D); the white numbers in the blue circle

(Continued)
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FIGURE 3 | reflect the corresponding step shown in images in (E). (E) Representative pictures of the Malassezia-A. tumefaciens co-incubation step (1) as described

in Ianiri et al. (2016), (note the non-homogenous spots due to the presence of Tween that altered the physical proprieties of the IM agar) and (2) in Celis et al. (2017),

and example of a highly efficient AMT of M. furfur with selection on NAT (3); the white numbers in the blue circles reflect the corresponding steps displayed in the

charts shown in (B–D). (F) Growth of 7 representatives NAT-resistant M. furfur transformants on NAT selective media compared to the M. furfur WT strain.

FIGURE 4 | Plasmids available for A. tumefaciens-mediated trasformation of Malassezia. (A) T-DNA of the plasmids pAIM2 and pAIM6 conferring resistance to NAT

and NEO, respectively, as reported by Ianiri et al. (2016). (B) T-DNA of plasmid pBHg conferring resistance to HYG, and in (C) the same T-DNA including also a

eGFP-expression cassette, as reported by Celis et al. (2017). (D) Strategy for in vivo recombination in S. cerevisiae developed to generate plasmids for targeted gene

replacement in Malassezia; the schematic representation is adapted from Ianiri et al. (2016). (E) M. furfur ade21 mutants generated through AMT in Ianiri et al. (2016);

note the different growth pigmentation of the ade21 mutant compared to the WT strain on mYNB supplemented or not with adenine (mYNB stands for “modified

YNB”, which includes Tween 60, Tween 20, and ox-bile). (F) T-DNA of the plasmid pGI40 used by Ianiri et al. (2019) for transient CRISPR/Cas9-mediated targeted

gene replacement in M. furfur.

described above, selection of stable drug-resistant transformants
to be screened for a phenotype of interest, and identification
of the genes that bear the random T-DNA insertion within

the Malassezia genome; PCR-based techniques (inverse PCR
and/or Splinkerette PCR) or whole-genome sequencing can be
used to identify the site of insertion of the T-DNA (Idnurm
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et al., 2004; Ianiri et al., 2011; Ianiri and Idnurm, 2015). The
random insertional mutagenesis approach was applied mainly
in M. furfur and allowed the identification of (i) transformants
unable to grow on minimal medium with T-DNA insertions
in the TYR1 and ARG1 genes, (ii) a temperature-sensitive
transformant with a T-DNA insertion in the promoter region of
the JEN1 gene, (iii) a UV-sensitive transformant with a T-DNA
insertion in theCDC55 gene, and (iv) several other transformants
sensitive to the antifungal drug fluconazole, heavymetals, and cell
wall stressing compounds (Ianiri et al., 2016, 2019). Insertional
mutagenesis has the advantage that it can be used to discover
novel genes and phenotypes; conversely, it has the disadvantage
that transformants selected might have irregular and/or multiple
T-DNA insertions and chromosomal rearrangements, factors
that hinder the correct association between the mutated genes
and the observed phenotypes. For such situations, in Malassezia
the mutant phenotype can be confirmed through the de novo
generation of a targeted deletion mutant for the identified gene,
as we recently described (Ianiri et al., 2019).

Gene disruption mutagenesis involves the generation of a
specific targeted mutant for a defined gene via homologous
recombination. The first step is the generation of a gene deletion
construct that includes ∼ 1–1.5 kb of sequence homologous
to the regions flanking the gene of interest fused with a gene
marker; when recipient organisms are transformed with this
allele, homology with the flanking regions allows homologous
recombination and the replacement of the target gene with the
gene marker. For the use of AMT for targeted gene replacement,
the gene deletion allele has to be assembled and cloned within the
T-DNA of a binary vector. Although this can be achieved using
several approaches, for gene deletion inMalassezia we developed
a high-throughput strategy based on in vivo recombination in
S. cerevisiae to simultaneously assemble and clone the gene
replacement cassette within the T-DNA of a shuffle plasmid
(Ianiri et al., 2017b). Briefly, three PCR fragments that include the
gene marker gene and the 1.5 kb upstream (5′) and downstream
(3′) regions flanking the target genes, and the KpnI-BamHI
digested pGI3 plasmid, are transformed in S. cerevisiae wherein
endogenous recombination is enabled by homologous regions
between the PCR fragments and the digested plasmid (Ianiri
et al., 2016), (Figure 4D).

In our first attempt, we tested the feasibility of AMT to
generate M. furfur targeted mutants for the ADE2 gene, which
was chosen because mutations in this gene result in a differential
pigmentation compared to the WT hence allowing rapid
evaluation of the results. We obtained several M. furfur ade21
mutants that displayed adenine auxotrophy and a pigmentation
that varied from light pink on rich media to yellow on minimal
medium supplemented with adenine (Figure 4E), which is
different from other yeasts such as S. cerevisiae (Zonneveld and
van der Zanden, 1995). Subsequently, we applied this approach
to study the function of the M. furfur laccase-encoding gene
LAC1 expected to play a role in pathogenesis (Ianiri et al., 2016),
to elucidate the mechanisms of resistance of M. sympodialis to
calcineurin inhibitors through mutations of the FKB1 andMSH2
genes (Ianiri et al., 2017a), and to demonstrate that the HGT-
mediated acquisition of the flavohemoglobin gene YHB1 in M.
sympodialis resulted in a gain of function as described above

(Ianiri et al., 2020). Other mutated genes under investigation
were the allergen-encoding gene MalaS8 in M. sympodialis, and
the Rim101-alkaline pathway genes RIM101 and RRA1 in M.
sympodialis and inM. furfur (unpublished data).

During the generation of these deletion mutants, we observed
a lower rate of homologous recombination (HR) in M.
furfur, about ∼50%, compared to M. sympodialis, which had
homologous recombination rates ranging between 90 and 100%.
While the mechanisms that control the rate of HR in these
fungi are unknown and worthly of further investigation, in some
cases we were unable to generate targeted mutants in M. furfur,
especially for large genes. For these reasons, a novel CRISPR/Cas9
system to increase the rate of HR and efficiently generate targeted
mutants in M. furfur was developed. The system is based on
co-transformation of M. furfur mediated by two A. tumefaciens
strains to deliver both a CAS9-gRNA construct that induces
double-strand DNA breaks, and a gene replacement allele that
serves as a homology-directed repair template. The binary vector
for Cas9 expression, pGI40, consists of the CAS9 gene fused
with the histone H3 promoter and terminator ofM. sympodialis,
followed by the M. sympodialis 5S rRNA promoter fused with a
gene-specific guide RNA, and a guide RNA scaffold (Ianiri et al.,
2019), (Figure 4F). Using our AMT protocol, targeted deletion
mutants for theM. furfur genes CDC55 and PDR10 were readily
obtained with a HR rate of 100 and 83%, respectively; note that
PDR10 is large gene (∼5 kb) and such a high rate of HR was
achieved using shorter flanking regions of 800 bp.

CONCLUDING REMARKS

Malassezia yeasts are attracting the interest of both basic
and applied scientists because of their unique biological
features, and importance in clinical and cosmetic settings.
The availability of genome assemblies and robust tools for
genetic manipulation allows both insertional mutagenesis and
targeted gene replacement to be conducted. Results from these
experiments can be combined with the increasing availability
of transcriptomic data, with the possibility to focus further
studies on novel key genes that characterize theMalassezia fungi.
Moreover, from a more clinical perspective, tools for genetic
manipulation can be combined with the use of host-pathogen
interaction models, such as the easy-to-use wax moth larvae
of Galleria mellonella (Torres et al., 2020), or a more complex
murine skin model (Sparber and LeibundGut-Landmann,
2019; Sparber et al., 2019), enabling the characterization
of both the fungal components that trigger skin damage
and inflammation, and the inflammatory and antifungal
response of the host to prevent fungal infection through
immunological and molecular analyses of experimentally
infected tissue.
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