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Abstract: With the continuous increase in the production of electronic devices, large amounts of
electronic waste (E-waste) are routinely being discarded into the environment. This causes serious
environmental and ecological problems because of the non-degradable polymers, released hazardous
chemicals, and toxic heavy metals. The appearance of biodegradable polymers, which can be degraded
or dissolved into the surrounding environment with no pollution, is promising for effectively relieving
the environmental burden. Additionally, biodegradable polymers are usually biocompatible, which
enables electronics to be used in implantable biomedical applications. However, for some specific
application requirements, such as flexibility, electric conductivity, dielectric property, gas and water
vapor barrier, most biodegradable polymers are inadequate. Recent research has focused on the
preparation of nanocomposites by incorporating nanofillers into biopolymers, so as to endow
them with functional characteristics, while simultaneously maintaining effective biodegradability
and biocompatibility. As such, bionanocomposites have broad application prospects in electronic
devices. In this paper, emergent biodegradable and biocompatible polymers used as insulators or
(semi)conductors are first reviewed, followed by biodegradable and biocompatible nanocomposites
applied in electronics as substrates, (semi)conductors and dielectrics, as well as electronic packaging,
which is highlighted with specific examples. To finish, future directions of the biodegradable and
biocompatible nanocomposites, as well as the challenges, that must be overcome are discussed.

Keywords: biodegradable; biocompatible; electronics; nanocomposites

1. Introduction

Electronic products have enhanced our lives and brought about changes in almost all areas,
including communications, manufacturing, entertainment, and health care [1]. With the rapid renewal
of electronic products, such as smartphones and tablets, the life of electronic products is becoming
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shorter. As a result, an increasing amount of electronic waste (E-waste) is routinely discarded [2,3].
The fastest growing type of E-waste is solid waste. Not only is solid E-waste comprised of a large
amount of non-degradable polymers, but it also releases hazardous chemicals and toxic heavy metals,
both of which are damaging to the environment and ecology [4,5]. For certain electronic products,
this damage would start with raw material procurement and continue throughout the whole life
cycle [2].

Biodegradable electronics may be an effective solution for E-waste management, since they can
be degraded or dissolved into the surrounding environment with no pollution. This endows the
electronics with environmental safety and disposability [6–8], by simultaneously decreasing the cost
for recycling operations and the health risks associated with harmful emissions [9–12].

Additionally, biodegradable materials are usually biocompatible, which enables electronics to be
used in implantable biomedical applications. Biocompatibility allows the materials to directly contact
tissues or skin without generating adverse effects [13–17]. Furthermore, electronics which are both
biodegradable and biocompatible can be dissolved or resorbed safely by human body at controlled
rates after treatment or diagnosis is completed. Eliminating the need for a second surgery to retrieve
the device simultaneously decreases the associated infection risks [18].

Besides biodegradability and biocompatibility, some other characteristics, including flexibility,
mechanical properties, electric conductivity, and gas and vapor barrier properties, are also essential
for specific applications in electronics. However, many polymers cannot completely meet these
performance requirements. Therefore, recent research has focused on incorporating nanofillers with
excellent properties into polymers so as to improve their performance capabilities [19–22].

This paper aims to carefully demonstrate the development and potential of the biodegradable and
biocompatible nanocomposites in electronic applications. It will first review emergent biodegradable
and biocompatible polymers used as insulators or (semi)conductors, and then highlight specific
examples of nanocomposites used in electronics as substrates, conductors, semiconductors, and
dielectrics, as well as electronic packaging [23].

2. Biodegradable and Biocompatible Polymers

Biopolymers are the basis of biodegradable and biocompatible nanocomposites. They can be
classified as natural-based polymers and synthetic polymers [13]. Natural-based polymers refer to
those which come from nature. Table 1 shows an overview of biodegradable and biocompatible
polymers used to fabricate electronics. In this section, biodegradable and biocompatible polymers will
be introduced according to their conductivity, since the electrical property directly determines their
application directions.

Table 1. Summary of biopolymers mentioned in this review.

Category Polymer Material Electrical Property Biodegradable/
Biocompatible Applications

Natural Polymers

Cellulose Insulator Both Substrate [24,25]; Dielectric [26]
Silk Insulator Both Substrate [27,28]; Dielectric [29]

Shellac Insulator Both Substrate [30]; Dielectric [30,31]
Gelatin Insulator Both Substrate [32,33]; Dielectric [34–36]

Synthetic Polymer

Poly(vinyl alcohol) (PVA) Insulator Biocompatible Substrate [37,38]; Dielectric [39,40]
Polydimethylsiloxane (PDMS) Insulator Biocompatible Substrate [41]; Dielectric [42–45]

Polylactide (PLA) Insulator Both Substrate [46–48]; Dielectric [49]
Polycaprolactone (PCL) Insulator Both Dielectric [49]

Poly(glycerol-co-sebacate) (PGS) Insulator Both Dielectric [50]
Poly(lactic-co-glycolic acid)

(PLGA) Insulator Both Substrate [51]; Dielectric [52]

Polyaniline (PANI) Conductor (doped) Biocompatible Conductor [53]
Polypyrrole (PPy) Conductor (doped) Biocompatible Conductor [54]

Poly(3,4-ethylenedioxythiophene)
(PEDOT) Conductor (doped) Biocompatible Conductor [55]
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2.1. Insulated Polymers

Cellulose, as a macromolecule polysaccharide composed of glucose, is the oldest and cheapest
biodegradable natural source polymer. It is inexpensive, biodegradable, abundant, easily available,
and lightweight, and thus is considered to be a potential substitute for the substrate materials of various
electronic devices, including organic field-effect transistors (OFETs), organic light-emitting diodes
(OLEDs), and solar cells [56–60]. For example, Zhang et al. [61] introduced a MoS2 phototransistor
with a flexible and transparent paper substrate (fabricated from cellulose), as shown in Figure 1.
The phototransistor has a high transparency with an average transmittance of 82%. Aside from its use
as a substrate, cellulose can also be used to fabricate dielectrics [26,62,63]. Dai et al. [64] fabricated
a class of all solid-state ionic dielectrics using cellulose nanopaper. These dielectrics show high
transparency, low surface roughness, good thermal durability, and excellent mechanical properties.
The successful applications of cellulose as substrates and dielectric materials demonstrate its potential
for use in flexible, environmentally friendly and biodegradable electronic devices.
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Figure 1. Three-dimensional schematic and cross-sectional view of the MoS2 phototransistor, fabricated
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Silk is a polypeptide polymer mainly composed of fibroin and sericin [65]. Because of its
outstanding mechanical properties, flexibility, processability, and chemical stability, silk is an ideal
backbone for flexible and stretchable electronics [66]. Moreover, silk is non-toxic, completely
biodegradable and bioresorbable. It can also be safely implanted into the human body with no
immune response, which allows it to be used for implantable electronic therapeutic devices. Kim
et al. [67] successfully fabricated an ultrathin electronic sensor array on silk, and tested its performance
in vivo by placing it onto exposed brain tissue. The silk was safely dissolved and resorbed, forming a
conformal coating on folded brain tissue with the sensor array. Other studies have also demonstrated
the successful application of silk as a substrate in implantable electronics [28,68] and food sensors [69].
Applications of silk in dielectrics were also reported [29,70–77]. Liang et al. [70] fabricated organic
thin-film transistors (OTFTs) with silk as their dielectric layer. The silk dielectric layer annealed at
40 ◦C, and had the smallest particles and least aggregation. The mobility of the OTFTs was 2.06 × 10−3

cm2 V−1 s−1, and the highest on/off ratio was 103.
Shellac is a natural resin collected from the secretion of the female lac bug after they ingest the sap

of their host trees. Shellac can not only be extracted through a variety of polar organic solutions, but it
can also be synthesized from a multitude of compositional grades and shades [78,79]. Similar to the
aforementioned biopolymers, shellac is biodegradable and can be used as an electronic substrate and a
dielectric [30]. Irimia-Vladu et al. [80] reported an organic thin-film transistor (OTFT), which is built on
a smooth and uniform shellac film substrate prepared by drop-casting. The OTFT exhibits a mobility
of 10−2 cm2 V−1 s−1, partially attributed to the outstanding barrier and insulation properties of the
shellac film substrate. In addition, shellac also shows excellent dielectric properties. Baek et al. [31]
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fabricated semiconducting copolymer-based OFETs with shellac and poly(4-vinylphenol) (PVP) as
the dielectric materials. The shellac dielectric layer facilitated electron transport at the interface with
copolymer channels, endowing the OFETs with superior performances.

Gelatin is another protein-based material, derived from the degradation of collagen in connective
tissues, such as animal skin, bone, sarcolemma, and muscle. It is fully biocompatible and biodegradable
and most commonly used for oral drug capsules [81]. Nowadays, gelatin is also the basis of many
substrates and dielectrics of high-performance electronics [32–35]. Electronics mounted on hard gelatin
substrates can be easily ingested for specific biomedical applications. When used as the gate dielectric
in oxide FETs, gelatin could yield a specific capacitance over 0.93 µF cm−2 as a result of the formation
of electric-double-layers [35].

In addition to natural-based polymers, some synthetic polymers also possess excellent
biodegradability and biocompatibility. Poly(vinyl alcohol) (PVA) is one such synthetic polymer and has
been widely used in the substrates and dielectrics of electronics [37,38,82,83]. Kim et al. [84] reported
an integrated device on the surface of a thin polydimethylsiloxane (PDMS) foil with a water-soluble
PVA substrate designed to measure the electrical signals produced by human body. The integrated
device includes a set of multifunctional sensors, transistors, capacitors, photo-detectors, oscillators,
light-emitting diodes, radio-frequency inductors, and wireless power transmitter coils [85–89]. After
the integrated device is mounted on skin, the PVA substrate can easily be washed away. The device also
can be peeled off. Furthermore, Afsharimani and Nysten [39] prepared PVA thin films by spin-coating
and utilized them as polymer gate dielectrics to fabricate transistors. The transistors show ambipolar
behavior with hole and electron mobilities in a low voltage range, indicating a promising potential
future in dielectrics.

PDMS is a transparent elastic polymer with excellent biocompatibility [90–92]. It has been
approved by the US National Heart, Lung, and Blood Institute to be a discriminatory tool for validating
the evaluation of biomaterials [38]. Because of its elasticity and biocompatibility, PDMS has been
widely used in flexible electronics, and it shows great potential in implantable electronics [93–97].
Delivopoulos et al. [41] developed an implantable monitoring device to record and distinguish two
types of bladder afferent activity. The device could survive under immersion in warm saline for
three months, exhibiting excellent stability. Disappointingly, PDMS cannot biodegrade easily, greatly
limiting its applications.

In addition to the abovementioned polymers, there are some other insulated biodegradable or
biocompatible polymers that can be used in electronics, such as starch [98,99], chitosan [100,101],
albumen [102], and poly (glycerol-co-sebacate) (PGS) [103], which will not be introduced in detail.

Generally, almost all the insulated biopolymers can be used to fabricate both substrates and
dielectrics. When used as substrates, biopolymers should be flexible, lightweight, and processable.
However, incorporating nanofillers into substrate materials would seriously decrease the flexibility of
the substrate, which is the developing direction for stretchable electronics. Thus, nanofillers are not
usually added.

When used as dielectrics, biopolymers must exhibit a significant dielectric property. However,
biopolymers cannot always satisfy the requirements of a standard dielectric layer in electronics. Adding
certain nanofillers into the biopolymer matrix would significantly improve the dielectric properties.
This application will be carefully reviewed in the following section.

2.2. Conductive and Semiconductive Polymers

The active materials in electronic devices are usually semiconducting to achieve a certain degree
of controllable conductivity, which is the basic principle of most electronics. A conductive or
semiconductive polymer is a kind of polymer material with a conjugated π-bond, which can change
the polymer from an insulator to a conductor by chemical or electrochemical doping. The basis
of the electrical conductivity in conjugated polymers is the delocalization of electrons along the
polymer backbone, through the overlap of π-orbitals as well as π-π stacking between polymer
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chains. Compared with inorganic (semi)conductors, the main advantages of conjugated polymers are
mechanical flexibility and lower cost in processing, which allows for inexpensive manufacturing [104].
Many highly conjugated polymers have been developed and applied for (semi)conductive components
in various electronics [105].

In addition to electronic conductivity, ionic conductivity also exists in certain polymers, such as
melanin and chitosan. Ionic-conducting materials, extensively researched for fuel cell applications,
have recently been recognized as having great potential in biocompatible electronics. Additionally,
many conducting polymers which can conduct both ionic and electronic currents are extremely well
suited to be bioelectronic interface materials. A demonstration of a proton-conducting chitosan
thin-film transistor device controlled by the electronic field effect of a gate is a functional realization of
the electronic/protonic interface [106].

Melanin is a bio-pigment in animals, plants, and protozoa, formed by a series of chemical
reactions of tyrosine or 3,4-dihydroxyphenylalanine. It is a biodegradable and biocompatible natural
polymer exhibiting charge transport properties [107–110], which are believed to possess a mixed
protonic/electronic property. The protonic/electronic property is influenced by redox reactions, which
can be manipulated by changing the hydration state of the material [111]. When prepared into films,
the conductivity of melanin reaches the order of 10−8 S cm−1 in a dehydrated state, and up to 10−3 S
cm−1 in a fully hydrated state. Bettinger et al. [107] demonstrated a tissue engineering application
with melanin as the biodegradable semiconducting material. The melanin film in its fully hydrated
state possesses a conductivity of 7 × 10−5 S cm−1. The fabricated melanin implant exhibits a similar
inflammatory response compared with the silicone implant, and it can be completely degraded in vivo
after eight weeks, which makes it more promising.

At present, while the application of (semi)conductive natural polymers is still limited, that of
synthetic (semi)conductive polymers is relatively mature, such as polyaniline (PANI), polypyrrole (PPy),
poly(3,4-ethylenedioxythiophene) (PEDOT). These conjugated polymers exhibit good biocompatibility
in biological applications, but their biodegradability is relatively poor. One strategy to combat
this is to blend conjugated polymers with biodegradable, insulating polymers to fabricate partially
biodegradable composites. The relative composition can be varied to maximize electric conductivity
and minimize the proportion of the non-degradable conjugated component.

PANI has attracted great attention because of its high electric conductivity. Beyond that it also has
other beneficial characteristics, including facile synthesis, excellent thermal and environmental stability,
controllable electric conductivity, appealing electrochemical properties, and reversible doping/dedoping
characteristics [112]. PANI has promising future applications in flexible electronics, such as elastic
electrodes and strain-sensors [113–115]. For example, Huang et al. [116] developed a smart pH
self-adjusting switching system using a layer-structured silver nanowire/PANI nanocomposite film,
which was fabricated via an easy vertical spinning method. The as-prepared nanocomposite film
shows a high electric conductivity of 1.03 × 104 S cm−1 at the silver nanowire areal density of 0.84 mg
cm−2. In addition to electric conductivity, PANI also shows good biocompatibility to cells and tissues,
which has been demonstrated in vitro [53] and in vivo [117].

PPy is among the first-studied conductive polymers and has been used widely in bioelectronics
and biosensors. It is usually prepared by the oxidation of pyrrole, which can be achieved using ferric
chloride or electrochemical polymerization. In the oxidation process, the conductivity of PPy can
be greatly affected by the conditions and reagents because dopants could offer additional properties.
For example, introducing poly(glutamic acid) as a dopant into PPy would provide pendant carboxylic
acid groups, which would further improve electrical conductivity [118]. Similar to PANI, PPy also
shows good biocompatibility both in vitro and in vivo [119], but suffers from poor biodegradability.

PEDOT is a conductive polymer based on 3,4-ethylenedioxythiophene (EDOT) monomer. It is
produced by oxidation, starting with the preparation of the radical cation of EDOT monomer,
which attacks a neutral EDOT, followed by deprotonation. It has optical transparency in its
conducting state, high stability, and moderate band gap and low redox potential [120,121]. PEDOT
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nanotubes with interfacial conducting properties were successfully utilized for neural recording [122].
Richardson-Burns et al. [123] demonstrated the electrochemical polymerization of PEDOT around
living neuronal cells with no toxic effects. Furthermore, PEDOT combined with poly(styrene-sulfonate)
(PSS) (PEDOT:PSS) has proven to be an excellent system with good conductivity, good stability, high
optical transparency, and low toxicity. Thus, it is widely used in electronic circuits, electrostatic
packaging, OLEDs, sensing, and photovoltaic devices [124–126]. Yang et al. [127] prepared silver
nanowire (AgNW)-PEDOT:PSS composite transparent flexible electrodes (FTEs) through a Mayer rod
coating method. The AgNW-PEDOT:PSS composite FTEs exhibited high optoelectrical properties,
with a sheet resistance of 12 Omega sq−1 and a transmittance of 96% at 550 nm. Unfortunately, the
biodegradability of PEDOT is also low.

In general, melanin is the only conductive polymer that exhibits both biodegradability and
biocompatibility, but its availability and mechanical properties are not sufficient, which limits its
broad application. Synthesized polymers with electric properties, including PANI, PPy, and PEDOT,
are biocompatible but not biodegradable. Thus, the application of bare (semi)conductive biopolymers
in electronic devices is greatly limited. To obtain (semi)conductive biomaterials with excellent
biodegradability, incorporating conductive nanofillers into biodegradable biopolymers is an efficient
solution. This field of research will be carefully reviewed in the following section.

3. Applications of Nanocomposites for Electronics

3.1. Substrates

Electronic devices usually consist of a solid substrate and several functional components, such as
semiconducting layers, dielectric layers, electrodes, and capsulations. All of these components can
be fabricated with biopolymers, replacing the traditional polymers, which are not environmentally
friendly. The substrate’s role is to support other layers. As such, it is thicker and larger, and generates
more E-waste. It also commonly electrically isolates the electronics to prevent undesirable crosstalk,
and thus the substrate material is usually insulated. Figure 2 shows some electronic devices whose
substrates were fabricated with different insulated biodegradable or biocompatible polymers.
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Figure 2. (a) Organic photovoltaic circuits fabricated on various paper substrates. Reproduced with
permission from [60], Wiley-VCH, 2011. (b) split ring resonators fabricated on the silk substrate,
wrapped on an apple. Reproduced with permission from [69], Wiley-VCH, 2012. (c) biodegradable
transistors fabricated on shellac substrate. Reproduced with permission from [80], Wiley-VCH,
2012. (d) pressure sensor with polydimethylsiloxane (PDMS) substrate, mounted on rat spinal cord.
Reproduced with permission from [41], RSC, 2012. (e) schematic device structure and optical image of
the transient organic solar cells with poly(vinyl alcohol) (PVA) substrates. Reproduced with permission
from [82], RSC, 2017.

Flexibility is of paramount importance for the substrates of stretchable electronics. Generally,
adding nanofillers into substrate materials would seriously decrease the flexibility of the substrate,
thus, substrate material is usually pure polymer without nanofillers. The most common biodegradable
nanomaterial applied in substrates is nanocellulose (NC). Depending on the preparation methods, NCs
can be classified as cellulose nanocrystals (CNCs) or cellulose nanofibrils (CNFs) [128–130]. NCs possess
a large variety of superior characteristics, such as biodegradability, environmental sustainability,
inherent renewability, simplified disposal, distinctive morphology, outstanding chemical-modification
capabilities, and extraordinary mechanical strength [128,131–135]. They have attracted great attention
in recent years [131,136–139]. Because of their diverse properties, morphologies, and forms, NCs have
great potential in a variety of applications, including biomaterial engineering, batteries and solar cells,
textiles and clothing, food, packaging industries, and electronic devices [140–144].

In the field of electronics, many devices with NCs as substrates have been reported. Park et al. [145]
displayed a flexible, transparent, and nontoxic phototransistor for detecting visible light, which was
fabricated on biodegradable CNF substrates. They carried out mechanical bending tests with radii
ranging from 100 to 5 mm and cyclic bending tests of up to 2000 cycles at a fixed radius of 5 mm.
The bending test proved excellent operational stability. Combined with the phototransistors’ flexibility,
transparency, and biodegradability, this report indicates the significant potential of NCs as low-cost and
environmentally friendly sensors. Cheng et al. [146] synthesized O-(2,3-Dihydroxypropyl) cellulose
(DHPC) by the homogeneous etherification of cellulose in 7 wt.% NaOH/12 wt.% urea aqueous solution,
and then introduced stiff tunicate cellulose nanocrystals (TCNCs) into the DHPC, in order to construct
tough nanocomposite papers. Owing to the excellent interfacial compatibility between TCNCs and
DHPC, the nanocomposite papers had smooth surfaces, high transparency, and excellent mechanical
properties, enabling them to be used as the substrates of biodegradable and wearable electronics.
A fabrication schematic of the cellulose-based nanocomposite papers and their properties is shown in
Figure 3.
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Figure 3. (a) The fabrication process of cellulose-based nanocomposite papers; (b) transmission
electron microscope (TEM) image of tunicate cellulose nanocrystals (TCNCs); (c) TEM image of P10;
(d) photograph of P10; (e) optical transmittance of neat O-(2,3-Dihydroxypropyl) cellulose (DHPC) and
nanocomposite papers under UV-vis light. Reproduced with permission from [146], ACS, 2018.

Jung et al. [147] utilized biodegradable and flexible CNF papers as substrates and constructed many
electronic devices, including flexible microwave and digital electronics, gallium arsenide microwave
devices, and consumer wireless workhorses. Figure 4 shows the fabrication process of GaAs devices
built on CNF papers.
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3.2. Conductors and Semiconductors

Many biodegradable or biocompatible polymers, including melanin, PANI, PPy, and PPDOT can
be used as conductors or semiconductors in electronic devices. Nevertheless, the conductivities of these
polymers are usually not sufficiently efficient. To address this problem, some functional nanofillers
have been incorporated into conductive polymers to improve their conductivities. Nanofillers have
even been added into insulated polymers to endow them with conductivities [148,149]. Among these
nanofillers, graphene and carbon nanotubes (CNTs) are most widely used [150–152].

Graphene is a single layer of hybridized carbon atoms arranged in a two-dimensional lattice, which
can be manufactured by peeling graphite nanosheets. It has outstanding thermal, optical, mechanical,
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and electrical properties, attributed to its special structure [153–156]. The carrier mobility of graphene
at room temperature is about 15,000 cm2 V−1 s−1, 10 times higher than that of silicon. The excellent
conductivity makes it an efficient nanofiller to improve the electrical conductivity of polymers.

Wang et al. [157] reported a healable and multifunctional E-tattoo based on a graphene/silk
fibroin (SF)/Ca2+ combination. The flexible E-tattoos are fabricated by printing or writing with a
graphene/SF/Ca2+ suspension. The graphene sheets are uniformly distributed in the matrix, forming
an electrically conductive path, which can sensitively respond to the changes of the surrounding
environment, including strain, temperature, and humidity. This property enables the E-tattoo to
be used as a sensor, monitoring these variables with high sensitivity, fast response, and excellent
stability. In addition, the E-tattoo exhibits excellent healable properties. After being damaged by water,
the E-tattoo can remarkably and completely heal in only 0.3 s, as a result of the effective reformation of
hydrogen and coordination bonds at the fractured interface. The fabrication process and applications
of E-tattoos as humidity and temperature sensors are shown in Figure 5.Nanomaterials 2019, 9, x FOR PEER REVIEW 9 of 28 
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Figure 5. (a) The fabrication illustration of a Gr/silk fibroin (SF)/Ca2+ E-tattoo; (b) E-tattoo mounted on
the forearm and its variations in stretched, compressed, and twisted states; (c) E-tattoo mounted on the
upper lip for monitoring respiration; (d) comparison of the relative resistance between unbroken and
healed humidity sensors; (e) E-tattoo mounted on the hand for monitoring temperature; (f) ccomparison
of relative resistance between unbroken and healed temperature sensors. Reproduced with permission
from [157], Wiley-VCH, 2019.

Ling et al. [158] also utilized graphene to develop novel conductive nanocomposites and to
fabricate sensors. They used SF as a matrix and prepared graphene/SF nanocomposites through a
uniformly dispersed and highly stable graphene/SF suspension system. The prepared graphene/SF
nanocomposites maintain not only the electronic advantages of graphene but also the mechanical
properties of SF. Their electrical resistances are sensitive to deformation, body movement, humidity,
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and changes in the chemical environment, showing a promising future for effective applications as
wearable sensors, intelligent skins, and human–machine interfaces.

Similarly, Scaffaro et al. [159] prepared a piezoresistive sensor by exploiting amphiphilic graphene
oxide (GO) to endow the polylactide (PLA)-poly (ethylene-glycol) (PEG) blends with electrical
properties sensitive to changes in pressure and strain. The responsivity of the biodegradable pressure
sensor is 35µA MPa−1 from 0.6 to 8.5 MPa, and 19µA MPa−1 from 8.5 to 25 MPa, while in lower pressure
ranges (around 0.16–0.45 MPa) the responsivity reaches 220 µA MPa−1. Additionally, the presence of
GO acts as a compatibilizer, providing stiffness and strength without any negative impact on toughness.
It provides the stability of mechanical properties for up to 40 days.

CNTs, as one-dimensional nanomaterials, have abnormal mechanical, electrical, and chemical
properties. Recently, in an in-depth study, CNTs revealed broad prospective applications. CNTs
are formed by crimping graphene sheets, and can be classified into single-walled CNTs (SWCNTs)
and multi-walled CNTs (MWCNTs), according to the number of layers of the graphene sheets [160].
The P-electrons of the carbon atoms on CNTs form a wide system of delocalized π bonds, endowing
CNTs with special electrical properties due to the significant conjugation effect. According to theoretical
prediction, the conductivity of CNTs depends on their diameter and the helical angle of the wall. When
the diameter of CNTs is greater than 6 nm, their conductivity is relatively lower; when less than 6 nm,
CNTs can be regarded as one-dimensional quantum wires with good conductivity. Their excellent
properties make CNTs desirable for high-strength, conductive nanocomposites based on sustainable
resources and polymer materials [161,162]. Many efforts have been made to utilize CNTs by preparing
conductive nanocomposites and then using them in biodegradable electronic devices [163–168].

Dionigi et al. [169] prepared a conductive nanocomposite with SF and SWCNTs using a novel wet
templating method, which combines the excellent mechanical properties and biocompatibility of SF
with the electric conductivity and stiffness of SWCNTs. The prepared SF-SWCNT nanocomposites
exhibit a periodic structure in which SWCNTs are regularly and uniformly distributed in the SF
matrix. The film based on the SF-SWCNT nanocomposites possesses a conductivity only one order of
magnitude lower than the bare SWCNTs. Remarkably, the SF-SWCNT nanocomposite enables the
growth of primary rat Dorsal Root Ganglion neurons. Figure 6 displays the fabrication process of the
nSF-SWCNT film and its electrical properties.

Sivanjineyulu et al. [170] prepared poly(butylene succinate) (PBS)/PLA blend-based
nanocomposites with CNTs as reinforcing nanofillers. The electrical resistivity values of PBS, PLA,
or their blends are all higher than 1013 Ω square−1, illustrating that they are electrically insulated. When
CNT is added into the PBS/PLA blend, the electrical resistivity is greatly decreased. Even with only a 3
phr CNT loading, the electrical resistivity of the blend decreased by up to 11 orders of magnitude as a
result of the formation of a semi-conductive network structure in the nanocomposite system.

Valentini et al. [168] reported a photo-responsive device with a semiconducting polymer film built
on semitransparent and conductive biodegradable poly(3-hydroxybutyrate) (PHB)/CNT substrates.
The biodegradable PHB/CNT nanocomposite can be prepared using SWCNTs or MWCNTs through a
simple solvent-casting approach. The electrical resistance value measured on the PHB-SWCNT sample
is around 3 × 107 Ohm, while that on the PHB-MWCNT sample is around 2 × 108 Ohm.
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In addition to adding graphene or CNTs as nanofillers into polymer matrices independently, some
researchers also added both graphene and CNTs simultaneously into a polymer’s matrix. For example,
Miao et al. [55] reported a biodegradable and flexible transparent electrode, in which the prepared
conductive nanocomposites had a 3D interconnected SWCNT-pristine graphene (PG)-PEDOT network
architecture and was structured using Nacre-inspired interface designs. The one-dimensional SWCNT
and the two-dimensional PG sheets were tightly cross-linked at the junction interface by PEDOT
chains. The fabrication process of the transparent electrode is shown in Figure 7. The formation of
the SWCNT-PG-PEDOT continuously conductive network results in a low electrical resistance, as
well as excellent flexibility. Even after hundreds of bending cycles, the electrical resistance of the
electrode only increases by less than 3%. Moreover, the fabricated electrode exhibits an outstanding
optoelectronic property: typically, a sheet resistance of 46 Ω square−1 with a transmittance of 83.5% at
a typical wavelength of 550 nm. More importantly, the conductive nanocomposites are incorporated
with an edible starch-chitosan substrate, which leads to perfect biodegradability: it could be rapidly
degraded in a lysozyme solution at room temperature, with no toxic residues produced.

Chen et al. [171] prepared Polycaprolactone (PCL)/MWCNT nanocomposites by blending GO
sheets and MWCNTs into PCL, where GO acts as an adjuvant for regulating the dispersion state of
MWCNTs and thus balances the electrical and mechanical properties of the nanocomposites. Strong
π-π interactions between MWCNTs and GO nanosheets make it easy for MWCNTs to be adsorbed onto
the surfaces of GO nanosheets, thereby forming GO/MWCNT hybrids, which hinder the aggregation
of MWCNTs in PCL. Based on this mechanism, the dispersion of GO/MWCNT hybrids in PCL is
greatly affected by the GO/MWCNT ratio. The dispersion states of MWCNTs in PCL were divided into
PCL/MWCNT, PCL/GO/MWCNT (1/4), and PCL/GO/MWCNT (2/1) in their research, representing
severe, low, and almost no aggregation of MWCNTs, respectively. Among the three dispersion states,
the PCL/GO/MWCNT nanocomposites with a GO/MWCNT ratio of 2/1 showed the best MWCNT
dispersion in PCL matrix, and thus the highest tensile strength and elongation at break. However,
the PCL/GO/MWCNT (1/4) nanocomposites achieved the best electrical conductivity. This is attributed
to the relatively low MWCNT aggregation.
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carbon nanotubes-pristine graphene-poly(3,4-ethylenedioxythiophene) (SWCNT-PG-PEDOT) based
transparent electrode. Reproduced with permission from [55], ACS, 2018.

Other nanofillers. Aside from carbon nanotubes and graphene, metal nanowires can also improve
the conductivity of the nanocomposites. Li et al. [172] reported biodegradable poly(citrates-siloxane)
(PCS) elastomers reinforced by ultralong copper sulfide nanowires (CSNWs). The CSNWs were
uniformly distributed throughout the PCS matrix because of the hydrophobic-hydrophobic interaction
between them. The content of the CSNWs directly influences the electric conductivity of the
nanocomposites, which could reach a high value of 5 × 10−4 S cm−1 when the addition content
of CSNWs is 30%. PCS-CSNW also exhibits a high degree of biocompatibility, which decreases
the inflammatory reaction of cells. Additionally, it possesses a unique photo-luminescent property
and strong near-infrared (NIR) photo-thermal capacity, which allows in vivo thermal imaging and
biodegradation tracking with high resolution. PCS-CSNW could assist in the effective killing of
cancer cells via a selective NIR-induced photo-thermal therapy [173]. Therefore, PCS-CSNW is
a promising material in the area of next-generation implanted electronics, tissue engineering or
regenerative medicine for biomedical applications. A processing illustration and physicochemical
structure characterizations of the PCS-CSNW nanocomposites are shown in Figure 8.
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electric conductivity (up to 8.95 × 10−1 S m−1). Then, the elastomer was used to fabricate a strain sensor 
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Figure 8. A processing illustration and physicochemical structure characterizations of the
poly(citrates-siloxane)-copper sulfide nanowires (PCS-CSNW) nanocomposites: (a) processing
illustration and potential applications for biomedicine; (b) scanning electron microscope (SEM)
images; (c) energy dispersion spectrum (EDS) spectrum; (d) X-ray diffraction (XRD) patterns; (e) Fourier
transform infrared (FTIR) spectra between 4000 and 650 cm−1. Reproduced with permission from [172],
Elsevier, 2019.

Not all nanofillers in conductive nanocomposites are designed to improve electrical properties.
They may also be used only to strengthen materials, and electrical conductivity is instead achieved
by conductive polymers. Han et al. [112] reported conductive hybrid elastomers fabricated with
a natural rubber (NR) matrix and nanostructured CNF-PANI complexes, in which PANI provides
the conductivity, while CNFs strengthen the material. The CNF-PANI complexes were prepared via
oxidative polymerization of aniline monomers on CNF surface, and then evenly dispersed into NR
latex to fabricate CNF-PANI/NR elastomers using latex co-coagulation. The presence of CNFs in the
nanocomposites constructs a reinforcing network and simultaneously supports the 3D conductive
network in NR matrix. The fabricated bio-based elastomers with homogeneous structures showed
inherent flexibility, improved mechanical properties, decent stretchability, low density, and desired
electric conductivity (up to 8.95 × 10−1 S m−1). Then, the elastomer was used to fabricate a strain
sensor with high sensitivity and repeatability, which could monitor the motion of the human body
in real time. The elastomer-based electrode with 20 phr of PANI presented superior electrochemical
properties. Its specific capacitance could reach a maximum of 110 F g−1 with a relatively low capacitance
degradation of 22% after 1200 cycles at a current density of 0.3 A g−1. The processing illustration of the
conductive CNF-PANI/NR elastomers and their properties are shown in Figure 9.
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Aside from the nanocomposites previously discussed, there are many other biodegradable and
biocompatible nanocomposites used to enhance electronic conductors, which will not be carefully
discussed here [174–180].

3.3. Dielectrics

Dielectric materials are usually electrically insulated and can be polarized when an electric field is
applied. Under the action of an electric field, the electric charges in dielectric materials will slightly
deviate from their equilibrium positions, rather than flowing and forming current as in conductive
materials. The slight movement of positive and negative charges produces an internal electric field
opposite to the direction of the applied eternal electric field, thereby reducing the total electric field
in the dielectric material. For example, the dielectric layer in OFETs produces induced electric
charges in the semiconducting channel when the gate voltage is applied. The dielectric constant and
breakdown voltage of the dielectric layer are two crucial parameters that must be carefully considered
for low-voltage operation and long-time stability [1].

Many naturally-based and synthesized substrate materials can be used to make dielectrics,
such as cellulose, silk, shellac, gelatin, PVA, PDMS, PGS, Poly(lactic-co-glycolic acid) (PLGA), PCL,
and PLA. Regarding dielectric polymers, adding a small amount of nanofillers into them to prepare
nanocomposites would further enhance their dielectric performance. The chemical structure, surface
morphology, and preparation method, as well as the additives, all have an effect on the dielectric
properties of the nanocomposites [39,181–183]. Conductive and high dielectric constant nanofillers,
such as CNTs, GO, Al2O3, and SiO2, all have the potential to improve dielectric performance.
Kashi et al. [184] investigated the effect of graphene nanosheets on the dielectric performance of
biodegradable nanocomposites and found that the presence of graphene nanosheets could heighten
the dielectric constant of polymers to a large extent.
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Deshmukh et al. [185] prepared bio-based nanocomposites by blending cellulose acetate (CA)
with Al2O3 nanoparticles (Al2O3 NPs) and investigated the microstructure, morphology, thermal, and
dielectric properties of the CA/Al2O3 nanocomposites. In the solution blending process, the Al2O3

NPs were uniformly dispersed in the CA matrix and showed good intermolecular interaction.
The incorporation of Al2O3 NPs significantly enhanced the dielectric properties of CA. For instance,
in the condition of 50 Hz and 30 ◦C, when loaded with 25 wt.% Al2O3, the dielectric constant increased
from 8.63 to 27.57 and the dielectric loss increased from 0.26 to 0.64. However, the values of tan δ for
all the samples were all very low (below 1).

Zeng et al. [186] reported flexible dielectric papers based on biodegradable CNFs and CNTs for
dielectric energy storage. They successfully prepared highly ordered, homogeneous CNF/CNT papers
through a simple vacuum-assisted self-assembly technique. When the CNT loading was 4.5 wt.%, the
dielectric constant of the CNF/CNT paper was 3198 at a frequency of 1.0 kHz, which is far higher than
15 for the neat CNF paper. The significant enhancement resulted from the formation of microcapacitor
networks in the papers by neighboring conductive CNTs and insulating CNFs. The excellent dielectric
constant also improved the dielectric energy storage capability (0.81 ± 0.1 J cm−3). In addition,
the CNF/CNT papers showed a high degree of flexibility and enhanced mechanical strength. The
preparation process and dielectric properties of the CNF/CNT papers are shown in Figure 10.
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Choudhary [187] prepared polymer nanocomposite films with a biodegradable polymer blend
matrix of PVA and poly(vinyl pyrrolidone) (PVP) and dispersed amorphous silica (SiO2) nanoparticles
using the aqueous solution-cast method. It was found that the presence of the dispersed SiO2

nanoparticles in the PVA–PVP blend matrix decreased the size of PVA crystallites, and forced the
surface morphology of the nanocomposite films to turn from smooth to relatively rough. The dielectric
constant of the nanocomposite films decreased as the SiO2 content increased to 3 wt.%. However,
when the SiO2 content was 5 wt.%, the dielectric constant was close to that of the pure polymer blend
matrix. Additionally, temperature had an effect on the dielectric constant. The dielectric constant of
the nanocomposite film increased non-linearly with the increase of temperature.

Deshmukh et al. [188] also prepared SiO2 nanoparticle-reinforced PVA and PVP blend
nanocomposite films. SiO2 nanoparticles were homogeneously dispersed in the PVA/PVP blend
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matrix in a solution-blending process. The dielectric constant and dielectric loss of the PVA/PVP/SiO2

nanocomposite films were tested under a frequency range of 10−2 Hz to 20 MHz and temperature
range of 40–150 ◦C. In the testing conditions, the dielectric constants of the prepared nanocomposites
were higher than those of PVA/PVP blends. With 25 wt.% SiO2 content, the dielectric constant reached
a maximum of 125 (10−2 Hz, 150 ◦C) and the dielectric loss was 1.1 (10−2 Hz, 70 ◦C). Deshmukh et al.
obtained better dielectric properties compared to Choudhary [187], with the same PVA/PVP/SiO2

system. The results reported by Deshmukh et al. show that SiO2 could significantly improve the
dielectric properties of polymers, and the solution-casting method they utilized has great potential for
flexible organic electronics.

Deshmukh et al. [183] fabricated flexible dielectric nanocomposites, which are composed of water
soluble PPy (WPPy), PVA, and GO, and then characterized them at different GO contents (0.5–3 wt.%).
Because of the presence of GO and its uniform dispersion in the polymer matrix, the nanocomposites
show a significant improvement in the dielectric constant with low dielectric loss. With a GO loading
of 3 wt.%, frequency of 50 Hz, and temperature of 150 ◦C, the dielectric constant increased from 27.93
for WPPy/PVA blend to 155.18 for nanocomposites, and the dielectric loss increased from 2.01 for
WPPy/PVA blend to 4.71 for nanocomposites.

As can be seen from the above references in this section, adding nanofillers, such as CNTs,
GO, Al2O3, and SiO2, into polymers can enhance the dielectric properties of those polymers.
With biocompatible and biodegradable polymer matricies, the newly developed nanocomposites
would enable the feasible fabrication of dielectrics with high-performance capabilities, flexibility,
and environmental friendliness.

4. Electronics Packaging

Unlike substrates, (semi)conductors, or dielectrics, materials for electronics packaging require
different functions for various operational environments, such as cyclical mechanical bending, aqueous
solutions, elevated temperatures, electromagnetic shielding, electrostatic prevention. Most polymeric
substrate materials, such as PLGA, PCL, parylene-c, and poly(vinyl acetate) PVAc, can be used to form
strain-resistant packaging layers to prevent the rapid degradation of devices [52,189–192].

One particular concern is to ensure that the packaging materials are able to repel gas and
water vapor over a period of several months, because many conjugated organic compounds used as
(semi)conductors are easy to oxidize and lose their function in ambient and aqueous environments.
Therefore, the gas and water vapor barrier property is the most important consideration in the
packaging of electronics. Biodegradable polymers are likely be used to meet this demand due to their
high crystallinity, high hydrophobicity, and facile processing [193]. An adequate packaging polymer is
poly(L-lactide) (PLLA), which satisfies the aforementioned demand and can be easily prepared by melt
casting or using ordinary organic solvents. Adding nanofillers into polymers is an efficient method
to enhance gas and vapor barrier properties, and many nanofillers, including organophilic layered
double hydroxides (OLDH) nanosheets [194–196], montmorillonite [197], and GO [198], have been
used for this purpose.

Xie et al. [194] incorporated OLDH nanosheets into a biodegradable PVA matrix via a solution
casting method and prepared PVA/OLDH films. The OLDH nanosheets, which were intercalated with
aliphatic long-chain molecules as reinforcing agents, were homogeneously dispersed in PVA matrix
and formed strong interfacial interactions with the PVA chains, resulting in significant enhancements
of optical property, mechanical performance, thermal stability, and water vapor barrier property. Even
when only 0.5 wt.% OLDH was loaded in PVA, water vapor permeability could decrease by 24.22%.
The significant improvement of the water vapor barrier property results from the homogeneous
dispersion of OLDH nanosheets, which causes the paths for water vapor diffusion to be tortuous and
thus decreases the water vapor permeability. The experiments demonstrated that the PVA/OLDH
nanocomposite films have a wide variety of potential applications in the field of electronics packaging.
A schematic illustration for the preparation of PVA/OLDH films is shown in Figure 11.
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Xie et al. [195] synthesized a series of biodegradable nanocomposite films based on poly(butylene
adipate-co-terephthalate) (PBAT), and reinforced them with OLDH nanosheets. The OLDH nanosheets
were pre-synthesized by solvent-free high-energy ball milling and dispersed uniformly in the PBAT
matrix. Compared with pure PBAT films, PBAT/OLDH films with 1 wt.% OLDH loading exhibited
improved thermal, optical, mechanical, and water vapor barrier properties, including a 37% reduction
in haze and a 41.9% increase in nominal tensile strain at break. The feasibility of scale-up production,
outstanding processability, manufacturing scalability, mechanical property, optical transparency,
and water vapor barrier properties indicate a promising future application of the PBAT/OLDH
nanocomposite films as biodegradable packaging films. Figure 12 shows the schematic illustration of
the fabrication process for the PBAT/OLDH nanocomposite films.
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Aside from the OLDH nanosheets, montmorillonite is another commonly used nanofiller
for the improvement of barrier performance. Wang and Jing [197] prepared biodegradable
montmorillonite/chitosan nanocomposites and coated them onto the traditional package paper so as to
expand the potential application of the paper. They found that montmorillonite/chitosan nanocomposite
showed superior water vapor barrier properties, especially with a high montmorillonite and dispersant
content, dispersion rate, and coating weight. In addition, the montmorillonite/chitosan nanocomposite
coated with a lower content of montmorillonite or with a higher dispersion speed and dispersant
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content had better smoothness and elongation. However, the addition of OLDH nanosheets had a bad
impact on the formation process.

GOs can also be used as nanofillers for enhancing the gas and water vapor barrier performance
of polymer systems. Ren et al. [198] introduced an extremely low amount of GO nanosheets into
biodegradable poly(butylene adipate-co-terephthalate) (PBAT) and the barrier performance was
significantly improved. The permeability coefficients of oxygen and water vapor decreased, exceeding
70% and 36% with a GO nanosheet loading of 0.35 vol.%. The enhanced barrier performance was
attributed to the excellent impermeability and homogeneous dispersion of GO nanosheets, as well as
the strong interfacial adhesion between the GO nanosheets and PBAT matrix.

In addition to having a gas and water barrier, some special electronic devices need be packaged
with materials having electromagnetic shielding and antistatic functions. In the electromagnetic
shielding field of electronics packaging, nanocomposites have great advantages compared with
pure polymers because of the addition of conductive nanofillers [199–202]. For example, Kuang
et al. [201] developed lightweight high-strength PLLA/MWCNT nanocomposites foams with an
efficient, environmentally friendly, and inexpensive method, using a pressure-induced flow technique
and solid-state supercritical CO2 foaming. The nanocomposite foams have a density as low as 0.3 g
cm−3, possess an electric conductivity of 3.4 S m−1, and an electromagnetic interference (EMI) shielding
efficiency (SE) of around 23 dB in the range of 8.00–12.48 GHz. The corresponding average specific
EMI SE reaches 77 dB g−1 cm3, far exceeding those of metals and many carbon-based composites
with similar densities and thickness. Absorption was proven to be the major mechanism of EMI
shielding for the PLLA/MWCNT nanocomposite foams, which is shown in Figure 13. In addition,
the nanocomposite foams also show superior compressive stress. The prepared biodegradable
PLLA/MWCNT nanocomposites foams are suitable for EMI shielding in electronics packaging.
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Figure 13. (a) Fabrication process of the lightweight poly(L-lactide)/single-walled carbon nanotubes
(PLLA/MWCNT) nanocomposite foams using a combinatorial technology of pressure induced flow
processing and Sc-CO2 foaming; (b) electromagnetic interference (EMI), shielding efficiency (SE)
of PLLA/MWCNT nanocomposite foams in the frequency ranges of 8.00–12.48 GHz; (c) schematic
illustration of electromagnetic microwave dissipation in the PLLA/MWCNT nanocomposite foams.
Reproduced with permission from [201], Elsevier, 2016.

In antistatic aspects of packaging, nanocomposites also have great advantages compared with
pure polymers. Shih et al. [203] prepared PBS/MWCNT nanocomposites through a melt–blending
method. The MWCNTs were firstly modified with N,N’-dicyclohexylcarbodiimide (DCC) dehydrating
agents, and then uniformly dispersed in organic solvents. The PBS/MWCNT nanocomposites
were subsequently prepared via the facile melt–blending process. The prepared PBS/MWCNT
nanocomposites exhibit a surface resistivity of 7.30 × 106 Ω, 109 folds lower in value compared with
the neat PBS sample. At an MWCNTs loading of 3 wt.%, the PBS/MWCNT nanocomposites showed an
excellent anti-static capacity, indicating a promising potential in electronic packaging materials for
anti-static function. Figure 14 shows the results of anti-static test.
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5. Summary and Outlook

Biodegradable nanocomposites have been widely investigated and used for fabricating components
of green electronics, and provide an efficient solution for E-waste management and environment
protection. Furthermore, green electronics also exhibit promising potential for biomedical applications
of transient electronic devices. Although functional nanomaterials have significantly enhanced
the overall performances of biodegradable polymers, some particular characteristics, including
electric conductivity and flexibility, as well as biodegradability and biocompatibility, still need be
further improved.

Flexibility mainly depends on the properties of the polymer matrix. Synthetic polymers display
superiority in flexibility, as well as better conformal contact between the implantable electronics and
dynamic tissue surface, but they generally suffer from worse biodegradability or biocompatibility.
To achieve an excellent performance for all the requirements still remains an arduous challenge.
Developing novel polymers derived from natural materials with enhanced mechanical properties or
blending the natural-based polymers and synthetic polymers together may be feasible methods for
future improvement.

Electric conductivity is affected by both the polymer matrix and nanofillers. Synthetic conjugated
polymers are usually not biodegradable, and thus a conjugation-breaking degradation strategy through
mechanisms such as oxidation, ultraviolet (UV) exposure, or enzymes, without affecting conductivities
is crucial. However, the trade-off between material degradability and device stability is difficult to
balance. Natural-based conductive polymers can be easily biodegradable, but they suffer unsatisfied
conductivity and bad mechanical properties, which seriously limits their applications. Adding
functional nanofillers, such as graphene and CNTs, into a polymer matrix can significantly enhance the
electric conductivity. The electric conductivity is deeply affected by the dispersion state of nanofillers in
the polymer matrix as well as the interfacial morphology, which has been studied by many researchers
and will still be an important research direction.
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