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Abstract

BACKGROUND AND AIMS: Chronic liver injury that results in cirrhosis and end-stage liver 

disease (ESLD) causes more than 1 million deaths annually worldwide. Although the impact 

of genetic factors on the severity of metabolic dysfunction-associated steatotic liver disease 

(MASLD) and alcohol-related liver disease (ALD) has been previously studied, their contribution 

to the development of ESLD remains largely unexplored.

METHODS: We genotyped 6 MASLD-associated polymorphisms in healthy (n = 123), metabolic 

dysfunction-associated steatohepatitis (MASH) (n = 145), MASLD-associated ESLD (n = 72), 

and ALD-associated ESLD (n = 57) cohorts and performed multinomial logistic regression 

to determine the combined contribution of genetic, demographic, and clinical factors to the 

progression of ESLD.

RESULTS: Distinct sets of factors are associated with the progression to ESLD. The PNPLA3 
rs738409:G and TM6SF2 rs58542926:T alleles, body mass index (BMI), age, and female sex were 

positively associated with progression from a healthy state to MASH. The PNPLA3 rs738409:G 

allele, age, male sex, and having type 2 diabetes mellitus were positively associated, while 

BMI was negatively associated with progression from MASH to MASLD-associated ESLD. The 

PNPLA3 rs738409:G and GCKR rs780094:T alleles, age, and male sex were positively associated, 

while BMI was negatively associated with progression from a healthy state to ALD-associated 

ESLD. The findings indicate that the PNPLA3 rs738409:G allele increases susceptibility to ESLD 

regardless of etiology, the TM6SF2 rs58542926:T allele increases susceptibility to MASH, and the 

GCKR rs780094:T allele increases susceptibility to ALD-associated ESLD.

CONCLUSION: The PNPLA3, TM6SF2, and GCKR minor alleles influence the progression 

of MASLD-associated or ALD-associated ESLD. Genotyping for these variants in MASLD and 

ALD patients can enhance risk assessment, prompting early interventions to prevent ESLD.

Graphical Abstract
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Introduction

Chronic hepatic injury that leads to cirrhosis and end-stage liver disease (ESLD) represents 

a prominent cause of mortality around the world.1,2 Furthermore, the global prevalence of 

ESLD is consistently rising due to steady increases in the frequency of individuals affected 

by the 2 leading nonviral etiologies for ESLD, metabolic dysfunction-associated steatotic 

liver disease (MASLD), previously known as nonalcoholic fatty liver disease (NAFLD),3–5 

and alcohol-related liver disease (ALD).6

Despite having distinct pathogenesis and timelines, MASLD and ALD share similar 

pathological progression. Both diseases typically begin with hepatic steatosis (fatty liver) 

that advance to steatohepatitis (fatty liver with inflammation), liver fibrosis (scarring), liver 

cirrhosis (severe scarring with hepatocyte dysfunction), and ultimately ESLD (liver failure) 

and/or hepatocellular carcinoma (HCC).7

Historically, the prevailing belief is that MASLD is predominantly caused by excessive 

caloric intake and a sedentary lifestyle, while ALD is entirely due to excessive alcohol 

consumption. However, it is now evident that while most individuals with such behaviors 

develop simple hepatic steatosis, only a small fraction progresses to more severe stages of 

liver disease.8 Indeed, numerous studies have now recognized the complex pathophysiology 

of these disorders in which a combination of lifestyle, environmental, and genetic factors 

altogether induce or modify disease progression and survival of affected patients.9–16

Technological advancements in genomic research have revolutionized approaches for 

identifying the genetic factors involved in the development of MASLD and ALD. Genome-

wide association studies and exome-wide association studies have identified several single 

nucleotide polymorphisms (SNPs) associated with the development of MASLD. Some 

of these MASLD-associated SNPs were subsequently found to be associated with the 

development of ALD.17–19 Among these MASLD-associated variants, the patatin-like 
phospholipase domain-containing 3 (PNPLA3) rs738409:G variant,20 the membrane-bound 
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O-acyltransferasedomain-containing7 (MBOAT7) rs641738:T variant,21 the glucokinase 
regulator (GCKR) rs780094:T variant,22,23 and the transmembrane 6 superfamily member 
2 (TM6SF2) rs58542926:T variant24,25 have been shown to be associated with increased 

risk for disease. In contrast, the hydroxysteroid 17-β dehydrogenase 13 (HSD17B13) 
rs72613567:TA variant26,27 and the mitochondrial amidoxime reducing component 1 
(MTARC1) rs2642438:A variant28–30 have been found to be associated with reduced risk for 

disease.

Although the impact of MASLD-associated SNPs on the development and severity of 

MASLD and ALD has been analyzed in previous studies,17–22,24–30 their contribution to 

the development of ESLD has been little explored.31 ESLD, the most severe manifestation 

of chronic liver disease, necessitates orthotopic liver transplantation (OLT) as a vital 

intervention, as without it, mortality becomes an imminent inevitability.1,32 Only one study 

has analyzed the impact of a MASLD-associated SNP on ESLD and found that the PNPLA3 
rs738409:G variant is associated with progression to HCC and reduced transplantation-free 

survival in ALD patients waitlisted for OLT.31 In this study, the combined contribution 

of multiple MASLD-associated SNPs to the development of ESLD due to MASLD or 

ALD was investigated using genetic, demographic, and clinical data obtained from cohorts 

of healthy individuals and patients with metabolic dysfunction-associated steatohepatitis 

(MASH), previously known as nonalcoholic steatohepatitis (NASH),3–5 MASLD-associated 

ESLD, and ALD-associated ESLD. Multinomial logistic regression (MLR) analysis 

uncovered distinct sets of genetic, demographic, and clinical risk factors associated with 

the progression from a healthy state to MASH, from MASH to MASLD-associated ESLD, 

and from a healthy state to ALD-associated ESLD. The findings indicate that when all other 

parameters are held constant, the presence of PNPLA3 minor allele (rs738409:G) increases 

the overall risk for developing ESLD, the TM6SF2 minor allele (rs58542926:T) enhances 

the risk for developing MASH, and the GCKR minor allele (rs780094:T) heightens the 

risk for developing ALD-associated ESLD. Taken together, MASLD-associated SNPs, in 

combination with demographic and clinical risk factors, have an impact on the progression 

of MASLD-associated and ALD-associated ESLD. Genotyping for these genetic variants in 

patients with MASLD or ALD can provide a more precise evaluation of their susceptibility 

to ESLD and might encourage early lifestyle modifications and/or clinical interventions 

before the disease progresses to liver failure.

Methods

Collection of Samples From Healthy Liver Donors

Cryopreserved primary hepatocytes from 123 healthy individuals were obtained from In 

Vitro ADMET Laboratories Inc (IVAL, Columbia, MD). These hepatocytes were isolated 

from liver specimens of donors who were negative for Hepatitis C virus, Hepatitis B virus, 

and human immunodeficiency virus. Vials of cryopreserved cells were stored in liquid 

nitrogen until DNA extraction and analysis.
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Collection of Samples From MASH Patients

Patients with NASH/NAFLD were enrolled in the study between 2019 and 2022, prior to the 

adoption of the multisociety consensus definition of steatotic liver disease in June 2023.3–5 

Under the new nomenclature, NASH has been renamed as MASH, while NAFLD has been 

renamed as MASLD. All patients were enrolled from a tertiary care referral hepatology 

clinic after evaluation by a hepatologist.

The criteria for a diagnosis of NAFLD at the University of Pittsburgh Medical Center 

Fatty Liver, Obesity, and Wellness clinic, which is closely aligned with the 2023 consensus 

MASLD definition, required (1) evidence of steatosis after imaging by either ultrasound, 

computed tomography, or magnetic resonance imaging; (2) the absence of significant 

alcohol intake (<2 drinks per day for men or <1 drink per day for women) and the 

absence of a history of binge alcohol use (>5 drinks per day for men or >4 drinks per 

day for women); and (3) the presence of one or more NAFLD/MASLD-associated metabolic 

dysfunction (prediabetes or type 2 diabetes mellitus (T2DM), hypertension, dyslipidemia, 

or body mass index [BMI] >25 kg/m2 [overweight to obese]). A few patients already had 

an established diagnosis of NASH/MASH prior to referral through a previous liver biopsy 

showing steatohepatitis. The most common reasons for a pre-existing diagnosis of NASH/

MASH were an intraoperative liver biopsy performed during cholecystectomy or gastric 

bypass surgery, or a historic liver biopsy at another clinic prior to referral to the tertiary care 

center.

All patients diagnosed with NAFLD/MASLD were further risk-stratified using noninvasive 

tests (NITs) for liver fibrosis including (1) fibrosis-4 (FIB-4) index and (2) elastography-

based imaging through either transient elastography or 2-dimensional shear wave 

elastography. Patients were offered a liver biopsy when (1) they had persistently elevated 

liver injury tests, (2) their NITs were suggestive of significant liver fibrosis (a FIB-4 

index of ≥F2 or a liver stiffness measurement of >8 kPa by transient elastography or 

2-dimensional shear wave elastography), (3) there is a concern for concurrent liver disease 

such as autoimmune hepatitis with positive AIH serology, or (4) their NITs were discordant, 

with one modality showing high risk of advanced fibrosis and the other showing low risk, 

and where magnetic resonance elastography was not covered by the patient’s insurance or 

contraindicated for medical reasons.

Patient blood sample collection was performed in accordance with the Declaration of 

Helsinki with prior approval from the University of Pittsburgh Institutional Review Board 

Office of Research Protection (STUDY19080193). A total of 145 patients diagnosed with 

MASH at the University of Pittsburgh Medical Center Fatty Liver, Obesity, and Wellness 

clinic were included in the study. After obtaining informed written consent, peripheral blood 

samples were drawn from participants and stored at −80 °C until DNA extraction and 

analysis.

Collection of Samples From ESLD Patients

Human hepatocytes were obtained from liver explants in accordance with the Declaration 

of Helsinki with the approval of the University of Pittsburgh Institutional Review Board 
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Office of Research Protection (STUDY20090069). Primary hepatocytes were isolated from 

explanted liver specimens of 78 ESLD patients who received OLT for decompensated 

liver cirrhosis and were negative for Hepatitis C virus, Hepatitis B virus, and human 

immunodeficiency virus. Among these ESLD patients, 50 had decompensation due to 

MASLD and 28 were due to ALD. Liver tissue specimens were protected from ischemic 

injury by flushing with ice-cold University of Wisconsin solution immediately after vascular 

clamping and resection in the operating room, keeping the samples on ice, and transporting 

the specimens directly to the laboratory. Hepatocytes were isolated from encapsulated 

human liver segments (left lateral segment whenever possible) by a modified 3-step 

perfusion technique.33 Briefly, the livers were flushed under a sterile biosafety hood through 

the portal vein, and hepatic vessels (recirculation technique) with 1 L of calcium-free Hank’s 

balanced salt solution (Sigma, St. Louis, MO) supplemented with 0.5 mM ethylene glycol 

tetraacetic acid (ThermoFisher Scientific, Waltham, MA) prewarmed to 37 °C and then with 

collagenase/protease solution (VitaCyte, Indianapolis, IN) prewarmed to 37 °C until the 

tissue was fully digested. The digestion time for each preparation was 45–60 minutes. The 

digested liver was removed and immediately cooled with ice-cold Leibovitz’s L-15 Medium 

(Invitrogen, Waltham, MA) supplemented with 10% fetal bovine serum (Sigma, St. Louis, 

MO). The final cell suspension was centrifuged twice at 65 × g for 3 minutes at 4 °C, 

and the medium was aspirated. The yield and viability of freshly isolated hepatocytes were 

estimated by trypan blue staining. Flash-frozen hepatocyte pellets were stored at −80 °C 

until DNA extraction and analysis.

In accordance with the Declaration of Helsinki and with prior approval from the Kyushu 

University Institutional Review Board (IRB 792–00), DNA samples were also collected 

from 51 ESLD patients who underwent living-donor liver transplantation at the Department 

of Surgery and Science, Kyushu University Hospital in Japan. Among these ESLD patients, 

22 had decompensation due to MASLD and 29 were due to ALD.

DNA Isolation and Genotyping

Genomic DNA was isolated from hepatocyte or blood samples using the DNeasy Blood 

& Tissue Kit (QIAGEN, Hilden, Germany) following the manufacturer’s instructions. 

DNA sample quantity and quality were measured using a NanoDrop Lite spectrometer 

(ThermoFisher Scientific, Waltham, MA). Genotyping reactions containing 1X TaqMan 

Genotyping Master Mix (Applied Biosystems, Foster City, CA), 1X TaqMan Genotyping 

Assays (Applied Biosystems, Foster City, CA), and 4.5 pg of genomic DNA were 

prepared in MicroAmp Fast Optical 96-well plates (Applied Biosystems, Foster City, CA). 

Genotyping polymerase chain reaction for PNPLA3 rs738409, MBOAT7 rs641738, GCKR 
rs780094, TM6SF2 rs58542926, HSD17B13 rs72613567, and MTARC1 rs2642438 was 

performed using the StepOnePlus system (Applied Biosystems, Foster City, CA). Details of 

the TaqMan Genotyping Assays are listed in Table A1.

Statistical Analysis

Statistical analysis was performed using Stata SE version 18.0 (StataCorp LLC, College 

Station, TX). Data for continuous variables are presented as mean ± standard deviation, 

while data for categorical variables are presented as count (percentage). For continuous 
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variables, the dataset in each cohort were tested for normality based on skewness and 

kurtosis. For univariate analysis, differences across groups were determined using Kruskal-

Wallis test for continuous variables and Fisher’s exact test for categorical variables. Pairwise 

correlations between variables were measured using Spearman’s rank correlation coefficient 

(ρ) with Bonferroni-adjusted P values (P). For multivariate analysis, MLR was used to 

model the log odds of the clinical outcomes (healthy, MASH, MASLD-associated ESLD, 

or ALD-associated ESLD) as a function of the combination of all available genetic, 

demographic, and clinical variables (number of minor alleles for the 6 gene polymorphisms, 

age, sex, BMI, and T2DM status). For comparisons between cohorts, the less severe 

condition was selected as the base outcome for calculating the relative risk ratios (RRRs) 

and 95% confidence intervals (95% CIs). Variance inflation factor (VIF) and tolerance were 

determined using the collinearity diagnostics command (collin) written by Philip B. Ender 

of the Statistical Computing and Consulting of the UCLA Office of Academic Computing. 

RRR, 95% CI, and P were exported to GraphPad Prism version 9.5.1 (GraphPad Software 

Inc, San Diego, CA, USA) for the generation of Forest plots. For all analyses, a P ≤ .05 was 

considered statistically significant.

Results

Study Design

In this retrospective study, we collected DNA samples as well as demographic and clinical 

information from a total of 411 individuals. From this group, we excluded 3 healthy liver 

donors because of missing BMI data. We also excluded 11 patients with ESLD who had 

mixed etiology, cryptogenic liver disease, or HCC to avoid misclassification. A total of 397 

individuals, categorized into cohorts of healthy liver donors (n = 123), patients with MASH 

(n = 145), patients with ESLD due to MASLD (n = 72), and patients with ESLD due to ALD 

(n = 57), were ultimately analyzed. The demographic, clinical, and genetic data have been 

summarized for each cohort (Tables 1 and 2).

Development of Multinomial Logistic Regression (MLR) Models

Due to the lack of ethnicity data for 1 healthy individual, 50 MASLD-associated ESLD 

patients, and 28 ALD-associated ESLD patients (Table 1 and Table A2), we were unable 

to include ethnicity as a variable in the final MLR analysis. The influence of ethnicity 

on the development and progression of ALD and MASLD is worth considering given 

the disparities in genetics, diet, exercise, and environment among various ethnic groups. 

However, in the context of chronic liver disease, we assumed that the combination of BMI 

and genetics could effectively serve as a proxy for ethnicity. Due to the absence of T2DM 

data for the healthy cohort (Table 1), we were only able to include T2DM as a variable in 

the generation of the MLR model for the progression from MASH to MASLD-associated 

ESLD.

Before MLR analysis, we performed correlation analysis to assess multicollinearity among 

variables. Multicollinearity occurs when variables are highly correlated with each other, 

reducing the precision of estimated coefficients and weakening the power of the MLR 

models. We employed Spearman’s rank correlation test with Bonferroni adjustment to 
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determine pairwise correlations between independent variables. We determined that the 

majority of pairwise comparisons showed no significant correlations with only 3 pairs of 

variables having significant but minimal correlation (ρ < 0.2900) (Tables A3 and A4).

We performed MLR to model the log odds of the clinical outcomes (healthy, MASH, 

MASLD-associated ESLD, or ALD-associated ESLD) as a function of the combination of 

all available genetic, demographic, and clinical variables. For simplicity, we assumed that 

MASH does not lead to ALD-associated ESLD and MASLD-associated ESLD does not lead 

to ALD-associated ESLD and vice versa (Figure A1A) and the risk for developing disease is 

proportional to the number of risk alleles carried by an individual (additive genetic model) 

(Figure A1B). We then computed the VIFs and tolerance to assess the multicollinearity 

of variables included in the final MLR models. The largest VIF was 1.16 and the lowest 

tolerance was 0.8600 suggesting that there was no significant multicollinearity in the 

MLR models (Tables A5 and A6). For comparison, we also generated MLR models for 

the recessive and dominant genetic models (Tables A7–A9). We ultimately selected the 

MLR models for the additive genetic model because these generated the largest pseudo R2 

indicating that these models had the greatest likelihood.

Progression From Healthy to MASH

We identified significant associations between some of the factors and the progression from 

a healthy state to MASH using the MLR model where the healthy state was selected as 

the base/reference outcome (Figure 1). Positive associations were observed for the PNPLA3 
(P = .004) and TM6SF2 (P = .004) minor alleles, BMI (P = .000), and age (P = .012), 

indicating that individuals who carry these alleles, have higher BMI, or are older were more 

likely to develop MASH. Conversely, a negative association was detected for the male sex 

(P = .039), indicating that males had a lower likelihood for MASH progression compared to 

females.

We then analyzed the RRRs and 95% CIs to determine the magnitude and precision of 

these effects. The PNPLA3 minor allele had an RRR of 1.875 (CI 1.217–2.887), indicating 

a 1.875-fold increased risk for MASH in individuals carrying this allele. Similarly, the 

TM6SF2 minor allele showed an RRR of 2.959 (CI 1.402–6.245), corresponding to a 

2.959-fold increased risk for MASH in individuals carrying this allele. The male sex 

had a protective effect, with an RRR of 0.554 (CI 0.316–0.971), indicating a 0.554-fold 

decreased risk for MASH in males compared to females. These factors exhibited relatively 

large magnitudes indicating strong effects on clinical outcome, but also showed wide 

intervals, denoting uncertainty in the estimates. BMI had an RRR of 1.105 (CI 1.065–1.147), 

indicating a modest increase in MASH risk per unit increase in BMI. Age had an RRR of 

1.025 (CI 1.006–1.046), indicating a small increase in risk with advancing age. These factors 

exhibited relatively small magnitudes suggesting weak effects on clinical outcome, but also 

exhibited narrow intervals, indicating more precise estimates.

Progression From MASH to MASLD-associated ESLD

We likewise identified significant associations between some of the factors and the 

progression from MASH to MASLD-associated ESLD using the MLR model where MASH 
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was selected as the base/reference outcome (Figure 2). Positive associations were found 

for the PNPLA3 minor allele (P = .000), age (P = .000), male sex (P = .041), and T2DM 

(P = .006) indicating that individuals who carry the PNPLA3 minor allele, are older, are 

male, or are diabetic were more likely to progress from MASH to MASLD-associated 

ESLD. Conversely, BMI (P = .001) showed a negative association with the progression to 

MASLD-associated ESLD.

We then examined the RRRs and 95% CIs to determine the magnitude and precision of 

these effects. The PNPLA3 minor allele had an RRR of 2.558 (CI 1.521–4.304), indicating 

a 2.558-fold increased risk for MASLD-associated ESLD among individuals carrying this 

allele. The male sex had an RRR of 2.164 (CI 1.033–4.534) corresponding to a 2.164-fold 

increased risk for males compared to females, while T2DM had an RRR of 2.883 (CI 1.361–

6.107) indicating a 2.883-fold increased risk for diabetics compared to nondiabetics. These 

factors displayed relatively large magnitudes indicating strong effects on clinical outcome, 

but also showed wide intervals, indicating uncertainty in the estimates. Age had an RRR of 

1.076 (CI 1.037–1.116), indicating a small increase in risk with aging. This factor showed a 

relatively small magnitude suggesting a weak effect on clinical outcome, but also exhibited a 

narrow interval denoting a more precise estimate.

Progression From Healthy to ALD-associated ESLD

We also identified significant associations between some of the factors and the progression 

from a healthy state to ALD-associated ESLD using the MLR model where the healthy state 

was selected as the base/reference outcome (Figure 3). Positive associations were found for 

the PNPLA3 (P = .000) and GCKR (P = .025) minor alleles, age (P = .002), and male sex (P 
= .003) indicating that individuals who carry these minor alleles, are older, or are male were 

more likely to progress from a healthy state to ALD-associated ESLD. Conversely, BMI (P = 

.001) showed a negative association with the progression to ALD-associated ESLD.

We then analyzed the RRRs and 95% CIs to determine the magnitude and precision of these 

effects. The PNPLA3 minor allele had an RRR of 3.479 (CI 1.969–6.149), indicating a 

3.479-fold increased risk for ALD-associated ESLD among individuals carrying this allele. 

Similarly, the GCKR minor allele had an RRR of 1.976 (CI 1.084–3.247), indicating a 

1.976-fold increased risk for ALD-associated ESLD among individuals carrying this allele. 

The male sex had an RRR of 3.277 (CI 1.480–7.258), indicating a 3.277-fold increased risk 

in males compared to females. These factors displayed relatively large magnitudes indicating 

strong effects on clinical outcome, but also showed wide intervals, indicating uncertainty in 

the estimates. Age had an RRR of 1.043 (CI 1.015–1.071), indicating a small increase in risk 

with advancing age. This factor exhibited a relatively small magnitude suggesting a weak 

effect on clinical outcome, but also exhibited a narrow interval indicating a more precise 

estimate.

Discussion

In this study, we investigated the impact of multiple MASLD-associated SNPs in 

conjunction with demographic and clinical factors on the progression of ESLD. To achieve 

this, we conducted an extensive analysis that involved genotyping for 6 MASLD-associated 
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variants in cohorts comprised of 123 healthy donors, 145 patients with MASH, 72 patients 

with MASLD-associated ESLD, and 57 patients with ALD-associated ESLD. Integrating 

this genetic data with age, sex, BMI, and T2DM status, we employed MLR, treating patient 

outcome as the dependent variable, to assess the collective impact of these factors on the 

progression of ESLD. We identified distinct sets of genetic, demographic, and clinical 

risk factors associated with the transition from a healthy state to MASH, from MASH to 

MASLD-associated ESLD, and from a healthy state to ALD-associated ESLD. Below, we 

provide a detailed discussion of the genetic, demographic, and clinical factors that exhibited 

significant associations with patient outcomes.

One of the genetic factors that showed significant associations was PNPLA3, which 

encodes for a lipase that converts lysophosphatidic acid into phosphatidic acid thereby 

promoting cellular lipid synthesis in hepatocytes.34 The PNPLA3 rs738409:G variant was 

initially discovered to be strongly associated with heightened hepatic fat levels and hepatic 

inflammation in the Dallas Heart Study.20 Subsequent investigations further linked this 

variant to an increased risk of MASH,22,28 MASH-associated fibrosis/cirrhosis,28 MASH-

associated HCC,35,36 alcoholic steatosis,17 and alcoholic cirrhosis.18,19 Additionally, a study 

of ALD patients awaiting OLT revealed that the PNPLA3 rs738409:G variant heightened 

the risk of HCC and diminished transplantation-free survival.31 In line with previous 

findings, we confirmed a significant association between the PNPLA3 minor allele and 

the progression from a healthy state to MASH. More importantly, we uncovered a significant 

association between the PNPLA3 minor allele and the progression from MASH to MASLD-

associated ESLD, as well as from a healthy state to ALD-associated ESLD. This novel 

finding suggests that the PNPLA3 minor allele is associated with the progression to ESLD in 

patients with MASLD or ALD. All in all, these results underscore the strong involvement of 

this specific variant in both early and advanced stages of chronic liver disease regardless of 

etiology.

Another genetic factor that displayed a significant association was TM6SF2, which encodes 

for a protein with an undetermined function but is believed to be involved in the efflux of 

triglycerides from the liver into circulation.37 The TM6SF2 rs58542926:T variant has been 

linked to impaired hepatic secretion of large triglyceride-rich very-low-density lipoprotein, 

leading to intrahepatic triglyceride accumulation.38 The variant has been associated with 

increased risk for MASH28,39 and MASH-associated fibrosis/cirrhosis.37,40 Consistent with 

previous reports, we identified a significant association between the TM6SF2 minor allele 

and the progression from a healthy state to MASH. However, we did not observe a 

significant association between the TM6SF2 minor allele and the progression from MASH 

to MASLD-associated ESLD nor did we identify a significant association between the 

TM6SF2 minor allele and the progression from a healthy state to ALD-associated ESLD. 

This indicates that this particular variant is primarily involved in the earlier phases of 

MASLD rather than its progression to ESLD.

The last genetic factor that exhibited a significant association was GCKR, which encodes 

for a regulatory protein that modulates glucose storage and disposal and de novo lipogenesis 

by controlling glucokinase activity.41 The GCKR rs780094:T variant has been associated 

with increased liver fibrosis and serum triglyceride levels in MASLD patients.22,23 However, 
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in contrast to previous studies, we did not detect a significant association between the 

GCKR minor allele and the progression from a healthy state to MASH or from MASH to 

MASLD-associated ESLD. Interestingly, we identified a significant association between the 

GCKR minor allele and the progression from a healthy state to ALD-associated ESLD. This 

new finding suggests that this variant plays a role in the development of ALD-associated 

ESLD.

All available demographic and clinical factors analyzed in this study showed significant 

associations with the progression of MASLD and ALD. Age,42 T2DM,43–46 BMI,47,48 

and sex49–51 have been known to affect predisposition to various liver diseases, including 

MASLD and ALD. Like previous studies, we determined that aging increases the risk of 

progressing from a healthy state to MASH, from MASH to MASLD-associated ESLD, and 

from a healthy state to ALD-associated ESLD. Similarly, we identified that T2DM increases 

the risk of progressing from MASH to MASH-associated ESLD.

The association between BMI and various stages of chronic liver disease is more complex 

and warrants careful interpretation because, unlike age and T2DM status, BMI is affected by 

physiological changes that occur during liver disease progression. Consistent with previous 

studies,47,48 we observed a positive association between BMI and the progression from a 

healthy state to MASH. However, this relationship was reversed for the transition from 

MASH to MASLD-associated ESLD and from a healthy state to ALD-associated ESLD. 

We believe that this paradox can be explained by sarcopenia, the loss of muscle mass 

experienced by many patients during advanced stages of liver disease,52 which leads to 

a decline in BMI. Our interpretation of these findings is that BMI contributes to disease 

progression during the initial phases of chronic liver disease, but as the disease advances, 

BMI itself becomes influenced by the condition.

Prior studies have also reported sex-based disparities in the susceptibility and progression of 

chronic liver disease. Specifically, males have been shown to exhibit reduced susceptibility 

to MASH,50 yet have an elevated risk of progressing toward MASH-associated fibrosis51 

and, presumably, toward more advanced stages of MASLD. Moreover, males have an 

increased susceptibility for the development of ALD.49 In line with previous findings, 

we determined that, compared to females, males had a reduced risk for progressing from 

a healthy state to MASH, but had an increased risk for progressing from MASH to 

MASLD-associated ESLD and from a healthy state to ALD-associated ESLD. Collectively, 

these findings suggest that females have a greater propensity for developing MASH, while 

males have an increased likelihood for progressing toward the development of fibrosis, 

cirrhosis, and hepatic dysfunction, processes that occur during advanced stages of chronic 

liver disease.

Conclusion

This study represents the first of its kind to comprehensively analyze the combined 

contribution of multiple MASLD-associated SNPs to the development of ESLD. Our 

findings provide compelling evidence of the significant role that genetic variants (PNPLA3, 
TM6SF2, and GCKR), demographic factors (age, sex), and clinical factors (T2DM, BMI) 
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play in the progression of chronic liver disease due to MASLD and ALD. Further 

research is warranted to explore the complex interplay between these factors and their 

potential implications for disease progression and treatment outcomes. Understanding 

the mechanisms by which these factors influence disease can contribute to better risk 

assessment, targeted interventions, and personalized management strategies for patients with 

MASLD and ALD.
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Figure 1. 
Forest plot for the MLR model for the progression from a healthy state to MASH showing 

the genetic, demographic, and clinical factors on the y-axis and the relative risk ratio on the 

x-axis. Factors with significant associations are either in red (positive association) or blue 

(negative association). Values for the 95% CI and P are listed on the right side of the plot. 

MLR model pseudo R2 = 0.2500.
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Figure 2. 
Forest plot for the MLR model for the progression from MASH to MASLD-associated 

ESLD showing the genetic, demographic, and clinical factors on the y-axis and the relative 

risk ratio on the x-axis. Factors with significant associations are either in red (positive 

association) or blue (negative association). Values for the 95% CI and P are listed on the 

right side of the plot. MLR model pseudo R2 = 0.3059.
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Figure 3. 
Forest plot for the MLR model for the progression from a healthy state to ALD-associated 

ESLD showing the genetic, demographic, and clinical factors on the y-axis and the relative 

risk ratio on the x-axis. Factors with significant associations are either in red (positive 

association) or blue (negative association). Values for the 95% CI and P are listed on the 

right side of the plot. MLR model pseudo R2 = 0.2500.
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