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Objectives. Various elastography techniques have been proffered based on linear or nonlinear constitutive models with the aim of
detecting and classifying pathologies in soft tissues accurately and noninvasively. Biological soft tissues demonstrate behaviors
which conform to nonlinear constitutive models, in particular the hyperelastic ones. In this paper, we represent the results of our
steps towards implementing ultrasound elastography to extract hyperelastic constants of a tumor inside soft tissue. Methods.
Hyperelastic parameters of the unknown tissue have been estimated by applying the iterative method founded on the relation
between stress, strain, and the parameters of a hyperelastic model after (a) simulating the medium’s response to a sinusoidal load
and extracting the tissue displacement fields in some instants and (b) estimating the tissue displacement fields from the
recorded/simulated ultrasound radio frequency signals and images using the cross correlation-based technique. Results. Our
results indicate that hyperelastic parameters of an unidentified tissue could be precisely estimated even in the conditions where
there is no prior knowledge of the tissue, or the displacement fields have been approximately calculated using the data recorded by
a clinical ultrasound system. Conclusions.,e accurate estimation of nonlinear elastic constants yields to the correct cognizance of
pathologies in soft tissues.

1. Introduction

According to the World Health Organization report, cancer
is one of the principal morbidity and mortality agents
throughout the world, with approximately 8.8 million deaths
(nearly 1 in 6 deaths) in 2015 and 70% increase in the
number of new cases over the next two decades. ,e cancer
statistics imply the requisite to extend medical scrutiny to
improve cancer prevention, early correct diagnosis, metic-
ulous screening, and effective treatment and reduce the
invasiveness and costs of applied techniques.

Since the first introduction of ultrasound (US) imaging
in clinical practice in the 1970s, ultrasonography and other
US modalities, for example, Doppler imaging and state-of-
the-art elastography imaging methods, which provide the

information related to the tissue acoustic impedance, vas-
cular flow, and tissue mechanical characteristics or variables
such as its stiffness or strain, respectively, have been ex-
tensively utilized for medical diagnoses [1]. ,e US imaging
is recognized a noninvasive, safe, easy-to-use, low-cost, and
widely accessible imaging modality for visualizing in vivo
tissues. Elastography approach has currently been regarded
a promising alternative to invasive medical procedures, for
example, the biopsy, to characterize tissue abnormalities.

,e wide variety of strategies that are being employed to
quantify and image mechanical properties of biological
tissues are recognized as elastography or elasticity imaging
techniques with reference to their similar premise [2]:

(1) ,e in vivo tissue is being deformed by a specified
external or internal load or motion.
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(2) ,e response of tissue is being recorded by the use of
a standard clinical imaging system, such as the US or
magnetic resonance imaging (MRI) system.

(3) ,e mechanical characteristics of tissue are esti-
mated through the assessment of tissue displacement
fields.

,e alterations in the microstructure of tissue as a conse-
quence of pathophysiological phenomena would change the
mechanical properties of tissue; for instance, the increase in the
stromal density of cancerous tissue would cause the increment
in its Young’s modulus [3, 4]. ,e outcomes of numerous
experimental research studies carried out by Krouskop et al.
[5], Samani et al. [6, 7], Lyshchik et al. [8], Soza et al. [9], Hoyt
et al. [10], Schiavone et al. [11], O’Hagan et al. [12], and Moran
et al. [13], to mention but a few, have confirmed the relation
between tissue structures andmacroscopic mechanical features
which are being evaluated, quantified, and/or imaged by
employing the palpation, elastography, digital rectal exami-
nation, and such like methods.

,e precise determination ofmechanical characteristics of
understudy tissue by the use of an elastography technique
would undoubtedly necessitate realistically appraising or
modeling the tissue manners, specifically its nonlinear re-
sponse to the stimulation. Hyperelasticity theory is one of the
constitutive theories that have beenmanipulated to model the
nonlinear constitutive demeanor demonstrated by biological
soft tissues. A variety of hyperelastic models, for instance the
well-known Neo-Hookean, Mooney–Rivlin, Yeoh, and
Polynomial models, have been recommended for this purpose
[14–17]. In comparison with the studies involving the linear
elasticity imaging, the number of research studies conducted
to image the nonlinear features of tissues is limited [2].

With the aim of diagnosing a tumor inside the un-
derstudy tissue correctly, we have utilized an iterative
method, as explicated in the next section, to accurately
estimate the Mooney–Rivlin hyperelastic parameters of the
tumor inside the tissue. ,e displacement fields inside the
tumor have been analyzed to extract its hyperelastic pa-
rameters. An iterative technique has been employed since it
has been assumed that no initial knowledge of the tumor
was accessible except the displacement fields inside the
tumor. ,e displacement fields inside the tumor have been
extracted from the simulated/recorded radio frequency
(RF) signals using the cross correlation-based method. ,e
response of an abnormal tissue to a sinusoidal load (with
low frequency to negate the inertia) has been simulated by
applying the finite element (FEM) software package
ABAQUS.,e RF signals have been simulated by the use of
the Field II US Simulation Program. In brief, in this paper,
we scrutinize the diagnosis of tumor through its hypere-
lastic parameters in the conditions where there is no pri-
mary perception of the tumor and the displacement fields
inside the tumor are estimated imprecisely.

2. Materials and Methods

2.1. Hyperelasticity 3eory. Constitutive theories take the
improvement of mathematical models, also known as

constitutive equations, into consideration in order to provide
the possibility to minutely describe the behavioral charac-
teristics of materials. Constitutive theories in continuum
mechanics deal with formulating material models that are
[18, 19]

(a) on the basis of some mechanical universal principles
(b) in accordance with experimental observations

,oughtful consideration of soft tissue’s model would result
in the realistic prediction of its behavior such that it could be
verified by experimental observations. Nonlinear constitu-
tive manners that have been observed from soft tissues in
numerous in vivo and ex vivo experimental research studies
could be modeled by the use of hyperelastic models
[15, 16, 20].

,e hyperelastic constitutive laws deal with modeling
materials with nonlinear elastic behaviors in reaction to large
strains. ,e nonlinearities that are the consequences of (a)
the material behavior and (b) the significant change in the
shape of material are both regarded in the constitutive
theory of hyperelastic materials. Hyperelastic materials are
generally described by specific forms of strain energy density
(stored energy) functions. While characterizing the homo-
geneous material’s absorbed energy due to its deformation,
the strain energy function, W, is defined as a function of
deformation gradient, F [21, 22]

W � W(F). (1)

It is considered that Br and B represent, respectively, the
reference or undeformed configuration, which refers to the
situations where no load is exerted to the material and the
deformed configuration, which is relevant to the situations
where the material is under load and therefore it may alter
with time, t. In addition, it is assumed that X and x, re-
spectively, correspond to the position vectors of a material
point in the reference and deformed configurations, Br and
B. ,e time-dependent deformation of material, that is, the
motion of material point, from Br to B could be described by
the function χ, which, for each t, (a) is an invertible function
and (b) satisfies proper regularity conditions as follows [23]:

x � χ(X, t). (2)

,e deformation gradient tensor, F, is defined as

F � Gradx, (3)

with Cartesian components

Fiα �
zxi

zXα
i, α ∈ 1, 2, 3{ }, (4)

where Grad, xi, and Xα refer to the gradient operator in the
configuration Br and components of x and X, respectively,
while the general convention,

J ≡ detF> 0, (5)

is satisfied. Due to the local invertibility of deformation, F
should be nonsingular.,e unique polar decomposition of F
is defined as
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F � RU � VR, (6)

where the tensor R is an appropriate orthogonal tensor and
the tensors U and V are symmetric positive-definite tensors
known as the right and left stretch tensors, respectively.
Equation (7) represents the spectral decompositions of
tensors U and V:

U � 
3

i�1
λiu

(i) ⊗ u(i)
, λi > 0, i ∈ 1, 2, 3{ },

V � 
3

i�1
λiv

(i) ⊗ v(i)
, λi > 0, i ∈ 1, 2, 3{ },

(7)

where each λi refers to one of the principal stretches, u(i) and
v(i) are the unit eigenvectors of U and V known as the
Lagrangian and Eulerian principal axes, and ⊗ is the sign of
tensor product [23, 24].

,e tensor function H is regarded as the function of
material response in the configuration Br with respect
to the nominal stress, S, that is, the transpose of the
first Piola-Kirchhoff stress. ,e following equation for the
nominal stress, S,

S � H(F) �
zW

zF
, (8)

is validated for an unconstrained homogeneous hyperelastic
material. While the material is incompressible, the arbitrary
hydrostatic pressure, p, which is the Lagrange multiplier
associated with the material incompressibility, modifies the
relation for the nominal stress, S, as

S �
zW

zF
−pF−1, det F � 1. (9)

With regard to the relation between the nominal stress
tensor, S, and Cauchy stress tensor, σ,

S � JF−1σ, (10)

the Cauchy stress tensor, σ, could be calculated through (11)
in which the symmetric tensor function G denotes the
function of material response in the configuration Br as-
sociated with the Cauchy stress tensor, σ,

σ � G(F) � J
−1F

zW

zF
. (11)

With respect to the arbitrary hydrostatic pressure, p,
defined previously, for an incompressible material, the re-
lation for the Cauchy stress tensor, σ, modifies as [23–25]

σ � F
zW

zF
−pI, det F � 1. (12)

First, second, and third invariants of F, known as the
strain invariants of deformation, which make provision for
mapping the area and volume between the deformed con-
figuration, B, and reference configuration, Br, are computed
through

I1 � tr(F) � F11 + F22 + F33,

I2 �
1
2

FijFij −FiiFjj ,

I3 � det(F) � J,

(13)

for an unconstrained isotropic elastic material. ,e left
Cauchy-Green deformation tensor, B, and its principal
invariants are calculated as follows:

B � FFT
,

I
B
1 � tr(B),

I
B
2 �

1
2

I
B
1 

2
− tr B2

  ,

I
B
3 � det(B) ≡ (det F)

2
.

(14)

For incompressible materials, a slightly different set of
principal invariants of B, as represented, is generally
employed:

I
B
1 �

IB1
J2/3

,

I
B
2 �

IB2
J4/3

,

Jel �
������
det(B)


.

(15)

,e right Cauchy–Green deformation tensor, C, and its
principal invariants are computed similarly.

,e Cauchy stress tensor for an unconstrained isotropic
elastic material is computed in terms of strain invariants, I1,
I2, and I3, as follows:

σ � α0I + α1B + α2B
2
,

α0 � 2I
1/2
3

zW

zI3
,

α1 � 2I
−1/2
3

zW

zI1
+ I1

zW

zI2
 ,

α2 � −2I
−1/2
3

zW

zI2
,

(16)

as the result of the absence of α0 (because I3 �1) and the
presence of p for incompressible materials, the Cauchy stress
tensor changes to

σ � −pI + α1B + α2B
2
, (17)

for the forenamed materials [21–24], which simplifies to

σ � −pI + 2
zW

zI1
B + 2

zW

zI2
I1B−B

2
 . (18)

A variety of stored energy functions have been in-
troduced in the literature that could be employed to model
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the nonlinear elastic behavior of soft tissues precisely
[26, 27], from the popular long-standing Neo-Hookean
model (originated by Treloar in 1943 [28]) and Mooney–
Rivlin model (proposed by Rivlin et al. in 1951 [29, 30]) to
the state-of-the-art models, for instance, the ones introduced
by Limbert in 2011 [31], Nolan et al. in 2014 [32], and
Shearer in 2015 (for modeling ligaments and tendons) [33],
although this is hitherto an active field of study in the
material and biomedical sciences.

Being pertinent to model the behavior of a wide range of
materials, for instance the soft tissues and polymers, the
Mooney–Rivlin model is one of the conventional hypere-
lastic models in the literature [34–39]. Two historical at-
tributes have made this model a distinguished one: (1) it is
one of the primarily introduced hyperelastic models; (2) it
could meticulously predict the nonlinear demeanor ob-
served from some materials, specifically the isotropic
rubber-likematerials.,emost general version of this model
has been defined based on (the linear combination of) the
first and second strain invariants of deformation, I1 and I2.
,e Mooney–Rivlin strain energy function is expressed as

W � C10 I1 − 3(  + C01 I2 − 3(  +
1
D

(J− 1)
2
, (19)

where C10 and C01 are the material hyperelastic constants, D

is the constant related to the material volumetric response
(i.e., the material bulk modulus), and J is the determinant of
deformation gradient tensor, F. In addition, regarding the
initial shear modulus of material, μ0, the relation

C10 + C01 �
1
2
μ0, (20)

links the two hyperelastic parameters [26, 36]. For in-
compressible materials, the Mooney–Rivlin strain energy
function simplifies to (since J� 1)

W � C10 I1 − 3(  + C01 I2 − 3( . (21)

2.2. Soft Tissue Simulation. To estimate nonlinear elastic
parameters of an unidentified tumor using the proposed
technique, we have simulated a simplified 3D breast tissue
geometry utilizing the FEM software ABAQUS (Dassault
Systèmes Simulia Corp., Johnston, RI, USA). ,e breast
tissue is comprised of three partial tissues, fat, fibro-
glandular, and tumor, located consecutively from outside to
inside. We have applied the Mooney–Rivlin hyperelastic
model to evaluate the deformation of simulated breast tissue
induced by the external excitation.

For estimating hyperelastic parameters of the tumor, we
applied a sinusoidal load with frequency of 0.1Hz (the very
low frequency to ignore the inertia effects) to the simulated
tissue and registered its response to extract the displacement
fields inside the tumor. It is feasible to estimate displacement
quantities inside the in vivo tissue by the use of some
conventional medical imaging systems such as the US im-
aging or MRI system. We discuss the methods of calculating
the displacements inside the tissue from RF signals or images
recorded by the US imaging system in Section 2.4. In order

to provide the accessibility to displacement values at some
sequential moments, the US images or RF signals should be
continuously saved for a period of time.

2.3. Simulation ofUSRFSignals and Images. When a tissue is
inspected with the US imaging system, the tissue is scanned
with respect to the probe; in other words, when the tissue is
compressed with the probe, the presented features of the
tissue in the image seemingly move upward, although in
point of fact they would move downward. In furtherance of
simulating the postcompression RF signals and B-mode
images in the probe coordinate system, instead of the
phantom’s surface in contact with the probe, the surface in
front of the probe was assigned to be moving [40–42].

,e RF signals and B-mode images of the simulated
phantom while responding to the sinusoidal load have been
simulated using the Field II US Simulation Program (A
MATLAB® toolbox for US field simulation) [43]. ,e nodal
displacement measurements of the phantom in response to
the sinusoidal load have been applied to simulate the
postdeformation RF signals and B-mode images in varied
deformation states. With the view to simulating the RF
signals and B-mode image correlated with a particular de-
formation state, the correspondent nodal displacement
values achieved by the finite deformation analysis have been
linearly interpolated to compute the positions of scatterers
corresponding to the specified deformation state.

2.4. Estimation of Displacement Field. In addition to the US
elastography imaging techniques, motion tracking algo-
rithms have been applied in various US-based methods, for
example, blood flow imaging, thermal strain imaging, phase-
aberration correction, strain compounding, and tempera-
ture imaging, to name a few. ,e prominence of clinical
applications of motion tracking methods has contributed to
the significant accrual in the number of relevant in-
vestigations and the proposal of a multitude of techniques
including phase-domain tactics, time-domain (1D) or space-
domain (2D) procedures, and spline-based methods [44].

Among the propounded techniques, the cross-correlation
algorithm is known as the gold standard of motion estima-
tion. In this technique, the displacement quantities are
computed through searching the locations of the maximums
of cross-correlation values between corresponding axial-
lateral grids of small windows (with high overlap) in the
pre- and postdeformation frames recorded from the medium.
,e shifts between the pre- and postdeformation windows
quantify the displacement field in the medium [44, 45].

,e cross-correlation algorithm with guided search has
been applied to initially estimate the displacement quantities
in the tumor at the selected step times from the simulated
pre- and postdeformation RF signals and B-mode images,
and afterwards evaluate the errors of displacement estimates.
,e calculated displacement values of proximate regions
(i.e., previous samples and lines) have been exploited to
reduce the search area and therefore significantly decrease
the computational expense of the cross-correlation algo-
rithm. By the use of simulated RF signals, although we
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devoted more time to calculate the displacement values
(because of their higher sampling rate) compared with the
US images, we achieved more accurate displacement esti-
mates with higher spatial resolution.

2.5. Estimation of Hyperelastic Parameters. Regarding the
aforementioned explanation related to the finite strain
theory (also known as large deformation theory), when
a uniaxial stress, σ, is applied to the material, the de-
formation gradient tensor, F, could be computed as

F �

λ1 0 0

0 λ2 0

0 0 λ3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (22)

where λ1, λ2, and λ3 are the principal stretches with respect to
the set of coordinate axes (corresponding with xi � λiXi,
i� 1,2,3). ,e principal invariants, I1, I2, and I3, could be
stated further in terms of principal stretches as follows:

I1 � λ21 + λ22 + λ23,

I2 � λ21 · λ22 + λ22 · λ23 + λ23 · λ21,

I3 � λ21 · λ22 · λ23.

(23)

If λ symbolizes the stretch parallel to the stress applied to
the medium in line with the first coordinate axis (that is
equal to the λ1 set), two assumptions, (1) the equality of
deformations in the two other coordinate axes and (2) the
incompressibility of the medium (I3 �1), result in simpli-
fying the relation of the Cauchy stress tensor (18), to [35, 46]

σ � 2 λ2 − λ−1 
zW

zI1
+
1
λ

zW

zI2
 . (24)

As explicated in the previous sections, the displacement
field inside the in vivo tumor could be measured in a non-
invasive way. With the purpose of estimating Mooney–
Rivlin hyperelastic parameters of the tumor just by using the
displacement quantities, we manipulate (25), that is, the
stress-stretch relation of the hyperelastic model,

σ � 2 λ2 − λ−1  C10 + λ−1C01 . (25)

,e uniaxial load applied to the medium in alignment
with the first coordinate axis practically generates the axial
strain in the same direction; therefore, the strain and relation
between the stress and strain could be expressed as [47, 48]

ε � λ− 1,

σ � 2 (ε + 1)
2 −(ε + 1)

−1
  C10 +(ε + 1)

−1
C01 .

(26)

With respect to the stress-strain relation, (26), the iterative
algorithm propounded for estimating Mooney–Rivlin
hyperelastic parameters of a completely unknown interior
tissue (i.e., tumor) could be described in the following steps:

(1) Image the tissue and its adjacent mediums by the
use of clinical US imaging system before/while
applying a sinusoidal load with low frequency (to
annul the inertia) to the exterior medium. In other
words, record the relevant US RF signals or images.

(2) Extract the displacement fields inside the tissue at
some sequential step times (i.e., eight consecutive
instants) from the recorded US RF signals or images.

(3) Simulate the tissue and its neighboring mediums by
making use of one of the FEM softwares corre-
sponding to

(a) the recorded predeformation US images
(b) the loading specifications
(c) the boundary conditions

It is assumed that just the tumor and its mechanical
characteristics are unidentified. ,e mechanical
parameters of almost all healthy soft tissues have
been reported in the literature. ,e parameters have
been predominantly estimated by performing me-
ticulous in vivo or ex vivo experiments.

(4) Consider the elastic modulus, E, and Poisson’s ratio,
υ, of the simulated tumor, named elastic tumor,
equal 1 Pa and 0.5, respectively.

(5) Compute the displacement fields inside the par-
ticular elastic tumor at the same consecutive step
times by dint of the selected FEM software.

(6) Calculate the real elastic modulus of the understudy
tumor, Erealt, with the help of the MATLAB® soft-
ware (,e MathWorks, Inc., Natick, Massachusetts,
USA) using

(a) the axial displacement quantities of several
points of the tumor at some consecutive instants
(based on the achieved outcomes, the axial
displacement values of twelve points of the tu-
mor at eight step times), Yrealt

(b) the axial displacement values of the identical points
of the elastic tumor at the same moments, D

(c) the relation [47–49]

Erealt �
DTD

DTYrealt
. (27)

(7) Specify a set of strains, ε, and compute the corre-
spondent stresses, σ, using (28) in accordance with
(in the first iteration):

(a) ,e strain field in the tumor could be roughly
approximated from the displacement estimates.

(b) ,e achieved results imply the selection of a set
of high strains in the first iteration since the
strain values are beingmodified in some steps of
the proposed iterative algorithm; therefore, the
strain values could be reduced uniformly.

(c) Slight changes in the stress values, for instance
by the use of the normal distribution function,
might cause the stress and strain values to
conform more effectively to the Mooney–Rivlin
hyperelastic model assigned to the tumor,

σ � Erealtε. (28)

(8) Compute hyperelastic parameters of the Mooney–
Rivlin model, C10 and C01, using the stress and
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strain sets and the relation between stress and
strain, as represented,
σ � 2 (ε + 1)

2 −(ε + 1)
−1

  C10 +(ε + 1)
−1

C01 ,

(29)

with the help of MATLAB algorithms, for instance,
the regression algorithms.

(9) Assign the estimated hyperelastic parameters to the
simulated tumor and compute the displacement
fields inside the tumor at the determinate step times
by means of the FEM software.

(10) Calculate the elastic constant of the simulated tu-
mor, Eestt, as explained previously in step 6, using
the axial displacement quantities (of the appointed
points at the selected step times) of the simulated
tumor, Yestt, and the elastic tumor, D (determined
in step 6), by applying the relation

Eestt �
DTD
DTYestt

. (30)

(11) Appraise the estimated hyperelastic parameters for
the tumor through considering the following:

(a) ,e error of the computed axial displacement
values of the selected points at the specified
moments, Yestt, by comparing them with the
correspondent displacement quantities esti-
mated from the recorded US RF signals or
images, Yrealt

(b) ,e error of the elastic constant calculated for
the tumor, Eestt, by comparing it with the real
elastic modulus of the understudy tumor, Erealt,
estimated in step 6

,e errors of the hyperelastic parameters estimated
for the tumor, by comparing them with the real
hyperelastic parameters of the tumor, could not be
considered because it has been assumed that the
tumor is entirely obscure.

(12) Alter the set of strains specified in step 7 (based on
the above explanation, decrease them regularly)
and repeat steps 7 to 12. By reducing the strain
values steadily, the error of the estimated elastic
parameter for the tumor and the error of the
calculated displacement quantities in the tumor
are decreasing below the defined tolerance values,
as illustrated,

Yk
estt −Yrealt

�����

�����≤ edisplacement,

E
k
estt −Erealt

�����

�����≤ eelastic,
(31)

where eelastic and edisplacement are the tolerance values
and k represents the number of iterations of the
algorithm. By decreasing the strain values chosen
with regard to the mentioned conditions, the strain
and stress values successively adjust more to the
Mooney–Rivlin stress-strain relationship of the
tumor.

3. Results

3.1. Soft Tissue Simulation. ,e breast tissue (with the di-
mensions of 100× 60× 20mm3), simulated using the FEM
software ABAQUS, has been depicted in Figure 1. ,e breast
tissue consists of three partitions, namely, fat, fibroglandular,
and tumor. ,e Mooney–Rivlin hyperelastic model has been
applied to obtain the response of simulated breast tissue to the
external sinusoidal load.,eMooney–Rivlin material constants
of the named breast tissues have been presented in Table 1. Since
we have utilized the elastic parameter of the tumor for esti-
mating its hyperelastic parameters, we have additionally re-
ported the elastic parameters of the named breast tissues in
Table 1. ,e linear and nonlinear elastic parameters have been
supposed to be constant throughout each tissue partition. ,is
set of hyperelastic parameters has been broadly utilized in the
literature to simulate the breast tissue [38, 50–54].

,e mesh considered for the simulated phantom consists
of 183783 second-order (quadratic) tetrahedral hybrid ele-
ments (C3D10H) with 259813 nodes. ,e convergence ana-
lyses have warranted the accuracy of the simulation results.
With reference to the explanations in Section 2.3, the number
of nodes in the simulated medium should significantly be
increased to precisely calculate the positions of scatterers after
applying the load to themedium.With regard to the boundary
conditions and the load applied to the tissue (represented in
Figure 1), the postcompression RF signals and B-mode images
have been simulated in the probe coordinate system. Two
snapshots of the response of the simulated breast tissue to the
sinusoidal load have been demonstrated in Figure 2.

3.2. Simulation of US RF Signals and Images. ,e RF signals
and B-mode images of part (with the dimensions of
50× 60×10mm3) of the simulated breast tissue which en-
circles the tumor, as illustrated in Figure 3, have been
simulated using the Field II US Simulation Program. In the
Field II US Simulation Program,

(a) ,e properties considered to model the probe array
and simulate the US RF signals and images are as
follows:

(1) Linear array (with 64 active elements)
(2) Transducer center frequency of 3.5×106Hz
(3) Sampling frequency of 100×106Hz
(4) Transmit focus of 70mm (in depth)
(5) Element’s width (the distance between the ele-

ments or the pitch of the probe array) of 0.44mm
(equal to the wavelength)

(6) Element’s height of 5mm
(7) Element’s kerf of 0.05mm
(8) Lateral spatial spacing of 0.08mm (512 scan lines

in the image)

(b) With regard to the elastic and hyperelastic param-
eters of the tumor, for scatterers which have resided
within the tumor, the amplitudes are set to zero.

,e postdeformation RF signals and B-mode images in
eight deformation states of the phantom (corresponding to
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eight sequential step times: 7.75 s, 8.00 s, 8.25 s, 8.50 s, 8.75 s,
9.00 s, 9.25 s, and 9.50 s, while responding to the sinusoidal
load) have been simulated using the displacements of the
phantom’s nodes computed by the finite deformation anal-
ysis. ,e nodal displacement values correlated with a partic-
ular deformation state have been linearly interpolated to
compute the positions of scatterers and simulate the corre-
spondent RF signals and B-mode images thereafter. Two
simulated postdeformation B-mode images (pre- and post-
deformation images) associated with the step times of 8.00 s
and 9.00 s have been represented in Figure 3.

3.3. Estimation of Hyperelastic Parameters. After simulating
the pre- and postdeformation RF signals and B-mode images
correlated with the defined deformation states, the cross-
correlation algorithm with guided search, as briefly de-
scribed in Section 2.4, has been employed to initially esti-
mate displacement quantities inside the tumor at the
selected step times and afterwards evaluate the errors of
displacement estimates.

,e suggested iterative algorithm, comprehensively ex-
plicated in Section 2.5, has been applied to extract the
Mooney–Rivlin hyperelastic parameters of the tumor from
the axial displacement values of some points of tumor at the
specified step times. As represented in Table 2, precise es-
timates of hyperelastic parameters of the tumor have been
achieved. ,e automatic iteration of the algorithm would be
feasible through bilaterally connecting the MATLAB and
FEM softwares.

4. Discussion

In the majority of diversified approaches proffered for esti-
mating elastic parameters of soft tissues, particularly the
nonlinear ones, for instance, the techniques proposed by
MacManus et al. [55], Esmaeili et al. [56], Omidi et al. [57],
Roy and Desai [58], Liu et al. [59], Boonvisut and Çavuşoğlu
[60], and Wang et al. [61], to mention but a few, the alter-
ations (of precise values) of at least two deformation variables,
which are associated with the mechanical characteristics of
soft tissues, have been exploited. ,e assessment of recom-
mended techniques would reveal that the direct dependencies
of methodologies to deformation variables except the dis-
placement (and strain) have impelled the researchers to carry
out experiments on ex vivo tissues, or perform invasive
procedures to precisely measure the variables; consequently,
the emphasis of recent investigations should be on advancing
noninvasive methods with the capability to accurately esti-
mate nonlinear elastic parameters of tissues.

,e hyperelastic constitutive theory takes two types of
nonlinearities perceived in responses of soft tissues, into
consideration [62, 63]:

(a) ,e material nonlinearity of the stress-strain re-
lation, known as the physical nonlinearity

(b) ,e nonlinearity of the strain-displacement relation,
called the geometrical nonlinearity

consequently, it has been regarded as one of the best
practical theories for formulating mechanical behaviors of
soft tissues. To the best of our knowledge, amongst the
strategies proposed for quantifying hyperelastic parameters
of materials, two methods founded on the displacement
fields inside and on the boundary of the medium (i.e.,
phantoms) which have been introduced by Mehrabian and
Samani [26, 27, 64] and Hajhashemkhani and Hematiyan
[47, 48], respectively, could be utilized to noninvasively
reconstruct hyperelastic parameters of in vivo tissues. ,e
displacement field inside the understudy medium could be
extracted from RF signals or images recorded by a clinical

Y

XZ

(a)

Y

XZ

(b)

Figure 1: ,e simulated breast tissue comprises three parts, namely, fat, fibroglandular, and tumor (from outside to inside).

Table 1: ,e elastic and Mooney–Rivlin hyperelastic constants of
breast tissues [38].

Hyperelastic and
elastic parameters Fat Fibroglandular Tumor

C10 (Pa) 2000 3500 10000
C01 (Pa) 1333 2333.3 6667
E (kPa) 20 35 100
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US imaging system, for instance, by using the conventional
cross-correlation method.

In the technique recommended by Mehrabian and
Samani [26, 27, 64], the displacement quantities of a large
number of contiguous points inside the medium should be
utilized to calculate the defined coefficient matrix which

correlates the stress distribution computed for the tissue (with
the help of a finite elementmodel of the tissue deformation) to
its hyperelastic parameters. ,e displacement values at some
boundary points of the understudy medium have been ma-
nipulated by Hajhashemkhani and Hematiyan [47, 48] for
characterizing its nonlinear material constants.

On account of the explanations provided by Mehrabian
and Samani [26, 27, 64] and Hajhashemkhani and Hema-
tiyan [47, 48] and the results achieved through the imple-
mentation of their methods (part of them published in our
paper [65]), it has been realized that precise estimates of
hyperelastic parameters of the understudy medium could be
attained through the following:

(a) Accurately calculating the displacement quantities,
respectively, in a multitude of adjacent points of the
medium and in several boundary points, which
might not be possible using registered US images or
RF signals

(b) Applying proper regularization techniques, for in-
stance, the Tikhonov regularization, Truncated
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Figure 3: ,e simulated pre- and postdeformation B-mode images of breast phantom, based on its states at (a) t� 8.00 s and (b) t� 9.00 s
after starting to apply the sinusoidal load.

Table 2: ,e elastic and hyperelastic parameters estimated for the
tumor.

Estimated elastic and hyperelastic parameters
2 estimates

Erealt (kPa) 88908.41
Error of Erealt (%) 11.09
C10 (Pa) 9426.98 10005.05
C01 (Pa) 6702.30 5992.82
Error of C10 (%) 5.73 0.05
Error of C01 (%) 0.53 10.11
Eestt (kPa) 88711.93 88658.27
Error of Eestt (%) 0.22 0.28
Error of Yestt (%) 0.28 0.35

Y

XZ

(a)

Y

XZ

(b)

Figure 2: ,e responses of the simulated breast tissue at (a) t� 4.00 s and (b) t� 8.00 s after starting to apply the sinusoidal load.
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Singular Value Decomposition (SVD), and Wiener
Filtering methods

(c) Even considering appropriate initial guesses of the
hyperelastic parameters, as indicated by Hajha-
shemkhani and Hematiyan [47, 48], Aghajani et al.
[66], and Kim and Srinivasan [67]

,e limitations of the techniques propounded with the
aim of reconstructing nonlinear elastic parameters of in vivo
soft tissues persuade us to concentrate on developing a more
practical method with consistent results. Our primary up-
shot represented in Section 3 confirms that accurate esti-
mates of hyperelastic parameters of the understudy tissue
(i.e., tumor) could be obtained on the basis of the dis-
placement values of some points inside the tissue, which has
been excited by a low frequency sinusoidal load, even when
there is no prior knowledge of the tissue.

,e displacement quantities of the selected points might
be computed approximately, for instance, by the use of the
cross-correlation technique as a consequence of recording
low-quality US images or RF signals or other attributes;
therefore, we have evaluated the consistency of calculated
values for the hyperelastic constants by applying errors with
normal distribution to the measured displacement fields in
the tissue stimulated by the sinusoidal load. At this point, the
average errors of the displacement values estimated for the
selected points from the simulated US RF signals and images
using the cross-correlation algorithms (without/with guided
search with respect to the calculated displacements of
previous lines or samples) have been regarded. ,e achieved
results have been demonstrated in Table 3.

It should be considered that the imprecise estimates of
displacement fields inside the tumor affect all the computed
parameters and errors, even the real elastic modulus of the
understudy tumor; therefore, the results presented in Table 3
could not be compared. Similar to the case where the dis-
placement values of the appointed points are exact,

(a) the error of calculated axial displacement values of
the selected points at the specified moments, Yestt

(b) the error of elastic constant computed for the tumor,
Eestt

(as explained in step 11 of the proposed algorithm in Section
2.5) have been considered except in the situations where the
displacement errors are significant.

,e convergence of the aforementioned errors to values,
which might not be small errors, specifies the best estimates
of hyperelastic parameters when the displacement values are
highly inaccurate, as represented,

Yk
estt −Y

k−1
estt

�����

�����≤ edisplacement′ ,

E
k
estt −E

k−1
estt

�����

�����≤ eelastic′ ,
(32)

where eelastic′ , edisplacement′ , and k are, respectively, the
specified tolerance values and the number of iterations of
the algorithm. Provided that the set of strains (required
in step 7 of the algorithm described in Section 2.5) is
selected properly based on the displacement fields

calculated for the tumor, precise estimates of tumor’s
hyperelastic parameters could be obtained. With regard
to the outcomes summarized in Table 3, it is deduced that
the suggested method is strongly resistant to the dis-
placement errors.

,e US RF signals recorded by means of the Antares
Siemens system (Issaquah, WA) at the center frequency of
6.67MHz from an elastography phantom (CIRS elastog-
raphy phantom, Norfolk, VA) have been utilized to
evaluate the suggested method experimentally. ,e signals
were registered via a VF10-5 linear array at a sampling rate
of 40MHz by Rivaz et al. to assess the performance of the
proposed real-time static elastography techniques which
were based on the analytic minimization of regularized
cost functions. Young’s moduli of the lesion and sur-
rounding medium have been reported 56 kPa and 33 kPa,
respectively, while the phantom is under compression
[68, 69].

,e enhanced cross-correlation algorithm, in that the
search regions were minimized with respect to the estimated
displacements of previous lines or samples, has been
employed to compute the axial displacement field in the
compressed phantom. ,e Kalman filtering, introduced by
Rivaz et al. [68], has been applied to calculate the strain field
in the compressed phantom from the displacement mea-
surements. Minor differences between the displacement
fields estimated by the use of the enhanced cross-correlation
algorithm and analytic minimization method validate the
results of the former technique.

,e US images of the phantom constructed from the
recorded RF signals and the estimated displacement and
strain fields have been represented in Figure 4. Following the
instructions in Section 2.5, the elastic and hyperelastic pa-
rameters of the lesion could be calculated from the estimated
axial displacement and strain fields in the lesion. ,e percent
error of the elastic parameter computed for the lesion, on the
basis of the explanations in step 6 of the algorithm, is 15.06%;
in other words, Erealt has been estimated 47565.72 Pa. ,e
relation between stress, strain, and the parameters of the
Mooney–Rivlin hyperelastic model, C10 and C01, has been
manipulated to compute the hyperelastic parameters of the
lesion. ,e values of 6871.65 Pa and 1020.00 Pa have been
obtained for the mentioned parameters.

On the basis of the achieved results summarized in
Sections 3 and 4, it is concluded that the main objectives that
have been accomplished in this paper are as follows:

Table 3:,e hyperelastic parameters estimated for the tumor using
inaccurate displacement measurements.

Estimated
hyperelastic
parameters

Inaccurate displacement measurements
Error
2%

Error
5%

Error
8%

Error
10%

C10 (Pa) 9386.78 9484.46 9815.78 9858.99
C01 (Pa) 6889.50 6817.80 6437.30 6465.64
Error of C10 (%) 6.13 5.16 1.84 1.41
Error of C01 (%) 3.34 2.26 3.45 3.02
Error of Eestt (%) 0.53 0.39 1.89 2.29
Error of Yestt (%) 1.77 4.59 6.28 7.96
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(a) ,e identification of an entirely unknown tissue (i.e.,
tumor) in a soft tissue through its nonlinear elastic
parameters

(b) ,e feasibility to use imprecise measurements of
displacement in the tumor, which are extracted from
the signals or images recorded from the soft tissue
while responding to a sinusoidal stimulus (with low
frequency)

5. Conclusion

In this paper, the noninvasive diagnosis of tumors in soft
tissues, such as the breast, through their nonlinear elastic
parameters has been evaluated by the use of a novel iterative
algorithm founded on the principle of US elastography
technique. ,e achieved results could be undoubtedly
considered the validation of the precise estimation of
hyperelastic constants of an undiagnosed pathology which
has been accomplished:

(a) By manipulating the relation between stress, strain,
and the parameters of a hyperelastic model as ex-
plicated in the paper

(b) Based on the response of tissue to the sinusoidal load
with low frequency, indeed the displacement quan-
tities of a few points of tissue at certain step times

,e displacement fields inside the tissue could be
noninvasively computed from the data recorded by the
employment of conventional medical imaging modalities,
for instance, the RF signals or images registered by the US
imaging system. Even by processing approximate dis-
placement measurements, accurate estimates of the material
constants could be obtained. ,e competency of the pro-
posed method to estimate nonlinear elastic constants of
normal and abnormal in vivo tissues will be further ap-
praised in the future research.
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