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Abstract: (1) Background: in recent years, a lot of the research of statistical methods focused on the
classification problem in presence of imprecise data. A particular case of imprecise data is the interval-
valued data. Following this research line, in this work a new hierarchical classification technique for
multivariate interval-valued data is suggested for diagnosis of the breast cancer; (2) Methods: an
unsupervised hierarchical classification method for imprecise multivariate data (called HC-ID) is
performed for diagnosis of breast cancer (i.e., to discriminate between benign or malignant masses)
and the results have been compared with the conventional (unsupervised) hierarchical classification
approach (HC); (3) Results: the application on real data shows that the HC-ID procedure performs
better HC procedure in terms of accuracy (HC-ID = 0.80, HC = 0.66) and sensitivity (HC-ID = 0.61,
HC = 0.08). In the results obtained by the usual procedure, there is a high degree of false-negative
(i.e., benign cancer diagnosis in malignant status) affected by the high degree of variability (i.e.,
uncertainty) characterizing the worst data.

Keywords: unsupervised classification; hierarchical classification; interval-valued data; imprecise
data; cancer detection; cancer classification

1. Introduction

Among all types of cancers, breast cancer is one of the leading causes of death among
middle-aged and old women. According to the World Health Organization (WHO), after
two decades, lung cancer loses its sad record as the most widespread neoplasm. Breast
cancer is now the most common oncological pathology. About 2.3 million new cases of
breast cancer were diagnosed in 2020: 11.7% of all new cases of cancer [1,2].

Thus, prevention and an early diagnosis of breast tumors are immediate demands
from society. Primary prevention is difficult as the causes of the disease are not well
understood. However, if it can be detected at its early stage, the success rate of survival is
quite high [3]. Physical examination and mammography are the best ways to make an early
diagnosis of the disease. A precise detection, however, often depends on the visibility of
microcalcifications in the mammogram. It is still challenging for radiologists to differentiate
between benign and malignant cases. The existence of breast tumors is usually reflected in
the mammogram. Some of the important signs of malignancy are: clustered calcifications,
poorly defined masses, isolated dilated ducts, etc. However, all of these are not equally
reflected in the mammograms [4].

Doctors physically look at the mammograms to detect deformations that may be
taken as an indicator of cancerous changes and this could suffer from the human error
and error with a visual inspection, which may further be enhanced by the poor quality
of the mammogram images [5]. To try to solve these problems there is a demand for
intelligent systems (e.g., statistical approaches, machine learning techniques, mathematical
models, etc.) for early detection of tumors, assessment of their malignancy and monitoring
of the same on the basis of multivariate features. In this direction, even some aiding
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tools would be of immense help. The efficiency and effectiveness of this process can be
increased if tumors are detected and classified automatically through computers as benign
or malignant [6].

In the breast cancer detection field, many classification approaches have been applied
for diagnostic purposes, e.g., [6] use rank nearest neighbor (RNN) classification rules, in [7]
authors focus on association rules (AR) and artificial neural network (ANN), in [8] authors
propose a non-parametric statistical model, in [9] is shown a comparative study of machine
learning algorithms, in [10] a novel approach using data mining techniques is presented,
and in [11] authors use machine learning approaches as well as Naive Bayes (NB) classifier
and k-nearest neighbor (KNN). For a detailed review, the reader can refer to [12]. Notice
that all these proposals are based on supervised techniques. In the supervised learning
model, the algorithms learn from labeled data (i.e., the structure groups are known). After
understanding the data, the algorithm determines which label should be given to new
data by associating patterns to the unlabeled new data [13]. In medical and statistical
literature, little attention is paid to research works where unsupervised techniques for
cancer detection have been proposed. In unsupervised learning, the algorithms segregate
the data in a data set in which the data is unlabeled (i.e., the structure groups are unknown)
based on some hidden features in the data. This function can be useful for discovering the
hidden structure of data and for tasks like anomaly detection [14]. In [15], authors tried to
predict the disease based on relevant features in the data through the use of unsupervised
algorithms; in [16] authors used the K-means (KM) algorithm to evaluate the impact of
clustering for the early detection of breast cancer, using centroid initialization, distance
measures, and split methods; in [17] authors proposed a review based on several ultrasound
image segmentation techniques, mainly focus on eight clustering methods over the last
10 years, and they showed the advantages and disadvantages of these approaches; in [18]
authors proposed a comparative study where three different unsupervised learning models
have been used for breast cancer detection.

However, in real-life applications, the results of measurements are never precise
(i.e., some degree of uncertainty that characterizes them there is). The uncertainty of a
measurement can be defined as the interval on the measurement scale within which the
true value lies with a specified probability when all sources of error have been taken into
account [19,20]. From a statistical point of view, in recent years the research of statistical
methodologies to analyze complex structures of data has increased. In particular, a lot of
attention has been focused on the imprecise data [21]. For example, the concentration of
toxic substances in different environmental media are imprecise quantities and then, their
measurements are not precise. In this work, an unsupervised hierarchical classification
method for imprecise multivariate data (called HC-ID) is performed for the diagnosis of
breast cancer (i.e., to discriminate between benign or malignant masses) and the results have
been compared with the conventional (unsupervised) hierarchical classification approach
(HC). Notice that both HC approaches are performed by the complete linkage [22] method
and then, in agglomerative way. For other examples of HC application in breast cancer
detection, the reader can refer to [23–25]. In recent years, the research of statistical methods
to analyze complex structures of data has increased. In particular, a lot of attention has been
focused on the unsupervised and supervised classification problem in presence of imprecise
data [26–29]. The simplest case of imprecise data is the interval-valued data [26,30]. In the
literature on data analysis, a great deal of attention is paid to statistical methods to treat
interval-valued data, in different research areas [26,30–34]. The novelty of this work is to
consider the variability (i.e., the uncertainty) of the data in the classification procedure. In
many medical research areas, such as in cancer detection studies, the results can be affected
by measurement uncertainty, and this, in turn, could affect the statistical analysis reliability.
In these cases, researchers should be interested to consider the uncertainty as a crucial part
of the information rather than a simple noise factor.
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2. Materials and Methods
2.1. Methodology of the Proposed Approach

We can formalize an interval-valued data as xij = [xij, x̄ij], i = 1, . . . , n and j = 1, . . . , J;
where xij is the j-th interval valued variable observed on the i-th observation, xij and x̄ij
denote the lower and upper bounds of the interval, respectively, (i.e., the minimum and
maximum values registered for the j-th interval-valued variable with respect to the i-th
observation). Then, in an n× J interval-valued data matrix, each observation is represented
as a hyperrectangle (in RJ) having 2J vertices. However, a simpler notation of interval-
valued data consists to consider centers and radii, separately. In particular, we can indicate
C the n× J centers matrix (or midpoints matrix) whose generic element cij = 2−1(xij + x̄ij)
is the center (midpoint) of the associated interval. Furthermore, we can define R the n× J
radii matrix whose generic element rij = 2−1(x̄ij− xij) is the radius of the associated interval.
Then, by considering this reformulation of the interval-valued data, the interval-valued
matrix can be formalized as follows:

X ≡
{

xij = [cij, rij] : i = 1, . . . , n; j = 1, . . . , J
}

(1)

In the left plot of Figure 1 is represented a bi-dimensional dataset in ordinary form
(i.e., with a radius equal to zero), while in the right one is represented a bi-dimensional
interval-valued dataset.
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Figure 1. Artificial data generated by three bi-variate Normal distributions. To the left we have
dataset in ordinary form; to the right we have interval-valued dataset

We can note that a structure of three groups characterizes our datasets. In particular,
300 observations by three different bi-variate normal distributions (i.e., 100 for each group)
have been generated in order to obtain the left plots. Subsequently, other three bi-variate
normal distributions have been used to obtain random radii for the right plot.

The generic interval-valued data pertaining to the i-th observation with respect to the
j-th interval-valued feature can be shown as the pair (cij,rij), i = 1, . . . , n and j = 1, . . . , J,
where cij denotes the center and rij the radius of the interval (i.e., xij = cij ± rij). In the
literature, several metrics have been suggested for interval-valued.

Let Īij be the i-th interval with respect to the j-th feature, within an interval pair
{ Īij, Īi′ j}, OR between Īij and Īi′ j is defined as

OR( Īij, Īi′ j) =
| Īij ∩ Īi′ j|
| Īij|

, (2)
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where | Īij ∩ Īi′ j| is the size of the intersection between Īij and Īi′ j, while | Īij| is the size of
interval Īij. OR for an interval in a given pair will fall under one of the following cases:

• OR( Īij, Īi′ j) = 1, when Īij and Īi′ j are identical;
• OR( Īij, Īi′ j) = 0, when Īij and Īi′ j are disjointed;
• Otherwise, 0 ≤ OR( Īij, Īi′ j) ≤ 1.

Thus, the overlapping ratio-based similarity measure SOR takes into consideration the
reciprocal similarity of intervals within a pair in order to estimate their overall similarity.
Formally, SOR for a pair of intervals, Īij and Īi′ j, is the vectors sum (i.e., the norm) of their
overlapping ratios:

SOR( Īij, Īi′ j) =
∣∣∣OR( Īij, Īi′ j), OR( Īi′ j, Īij)

∣∣∣ = ∣∣∣∣∣ | Īij ∩ Īi′ j|
| Īij|

,
| Īij ∩ Īi′ j|
| Īi′ j|

∣∣∣∣∣. (3)

Then, the overlapping ratio-based similarity measure for a pair of intervals Īi and Īi′ in the
J-dimensional space, is defined as

SJ
OR( Īi, Īi′) =

J

√√√√ J

∑
j=1

[
| Īij ∩ Īi′ j|
| Īij|

+
| Īij ∩ Īi′ j|
| Īi′ j|

]2

. (4)

Note that in this work a distance measure D J
OR( Īi, Īi′) [35] has been used, which can easily

be derived as

D J
OR( Īi, Īi′) =

J

√√√√ J

∑
j=1

[(
1−
| Īij ∩ Īi′ j|
| Īij|

)
+

(
1−
| Īij ∩ Īi′ j|
| Īi′ j|

)]2

. (5)

The final result is a distance matrix characterized by intervals. In this work, we use this
particular distance matrix for the classification purpose of imprecise data. In particular, a
hierarchical classification method with an interval-valued distance matrix and a complete
linkage approach has been performed. This new model is called HC-ID.

2.2. Description of the Breast Cancer Example Data

In this work, an analysis of the Breast Cancer Wisconsin (Diagnostic) dataset is per-
formed (https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(diagnostic)
accessed on 27 June 2022). This data set was created by [36] and it has been very used for
training statistical methods (e.g., [37]). To create the dataset Dr. Wolberg used fluid sam-
ples, taken from patients with solid breast masses and an easy-to-use graphical computer
program called Xcyt, which is capable of performing the analysis of cytological features
based on a digital scan. The program uses a curve-fitting algorithm, to compute ten features
from each one of the cells in the sample, then it calculates the mean value, extreme value
and standard error of each feature for the image, returning a 30 real-valued vector. Dataset
consists of 569 patients, 357 with benign diagnosis and 212 with malignant status.
Attribute Information (response variable):
• Diagnosis (M = malignant, B = benign).

Ten real-valued features are computed for each cell nucleus:

1. Radius (mean of distances from center to points on the perimeter);
2. Texture (standard deviation of gray-scale values);
3. Perimeter;
4. Area;
5. Smoothness (local variation in radius lengths);
6. Compactness (perimeter2/area − 1.0);
7. Concavity (severity of concave portions of the contour);

https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(diagnostic)
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8. Concave points (number of concave portions of the contour);
9. Symmetry;
10. Fractal dimension (“coastline approximation” − 1).

The mean, standard error and “worst” or largest (mean of the three largest values) of these
features were computed for each image, resulting in 30 features. For instance, field 3 is
the mean radius, field 13 is radius se, and field 23 is the worst radius. For breast cancer
diagnosis we have compared the results obtained by the proposed HC-ID approach with
those one obtained by the conventional HC approach. In particular, to obtain the HC-ID
model the dissimilarity measure for interval-valued data based on the overlapping ratio
(OR) proposed by [35] has been applied to the interval-valued dataset. Then, we have
used the 10 worst features (i.e., the feature with greater uncertainty/variability) as the
centers of the interval data, while the standard deviations (i.e., the degree of uncertainty) are
the radii. In this way, the classification procedure includes also the degree of uncertainty
(i.e., variability) characterizing data and more homogeneous and separated groups are
guaranteed (for details on the imprecise data concept, the reader can refer to [26,28,38]).
Notice that for the classification we assume that the observed diagnosis groups is unknown
(i.e., unsupervised classification).

2.3. Statistical Analysis

For the hierarchical classification model the hclust R package was used, while to
obtain the interval-valued distance matrix based on D J

OR( Īi, Īi′), the reader can refer to
web page: https://github.com/mfordellone/Unsupervised-hierarchical-classification-
approach-for-imprecise-data-in-the-breast-cancer-detection.git accessed on 27 June 2022.
Notice that HC-ID is an unsupervised technique and then, it helps the analyst to identify
data-driven patterns that may warrant further investigation but the prediction is not pro-
vided. You can easily use HC-ID to perform clustering, and from there for every new data
point, you just find which cluster it matches most closely.

To evaluate the diagnostic performance of the HC-ID model sensitivity, specificity, pos-
itive predictive value, negative predictive value, positive likelihood ratio (LR+), negative
likelihood ratio (LR-), and the accuracy rate have been used.

3. Results

The dataset consists of 569 patients, where 212 (37.26%) have malignant breast cancer
and 357 (62.74%) have benign. Figure 2 shows all the variables distribution (worst) included
in the analysis with respect to the observed diagnosis groups of data (M: Malignant,
B: Benign).

By applying HC-ID (i.e., the use of the interval-valued distance matrix obtained via
OR approach) the automatic classification shown by the dendrogram in Figure 3 is obtained.
The predicted diagnosis group proportions are 28.82% for malignant breast cancer and
71.18% for benign breast cancer. By applying the conventional HC (i.e., the use of data
points to obtain the distance matrix of the worst data), the automatic classification shown by
dendrogram in Figure 4 is obtained. In this case, the predicted diagnosis group proportions
are 2.98% for malignant breast cancer and 97.02% for benign breast cancer.

The results show that the classification procedure based on interval-valued data
performs better than the usual procedure in terms of accuracy and sensitivity. In the results
obtained by the usual procedure, there is a high degree of false-negative (i.e., benign cancer
diagnosis in malignant status) affected by the high degree of variability (i.e., uncertainty)
characterizing the worst data. Additionally, the dendrograms represented in Figures 3 and 4
show a greater homogeneity in the partition obtained by the interval-valued approach.
Finally, Table 1 shows the summary of the performance obtained by the two approaches.

https://github.com/mfordellone/Unsupervised-hierarchical-classification-approach-for-imprecise-data-in-the-breast-cancer-detection.git
https://github.com/mfordellone/Unsupervised-hierarchical-classification-approach-for-imprecise-data-in-the-breast-cancer-detection.git
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Figure 2. Variables distribution with respect to the observed diagnosis groups of data.
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Figure 3. Dendrogram obtained by HC applied on interval-valued data.
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Figure 4. Dendrogram obtained by HC applied on worst data.

Table 1. Comparison of the performances obtained by interval-valued approach and conventional
approach.

Interval-Valued Approach Conventional Approach
Estimate Lower 95% Upper 95% Estimate Lower 95% Upper 95%

Sensitivity 0.613 0.544 0.679 0.080 0.047 0.125
Specificity 0.905 0.869 0.933 1.000 0.990 1.000
Pos.Pred.Val. 0.793 0.723 0.852 1.000 0.805 1.000
Neg.Pred.Val. 0.798 0.755 0.836 0.647 0.605 0.687
LR+ 6.439 4.596 9.020 58.826 3.556 973.204
LR− 0.427 0.360 0.508 0.920 0.883 0.957
Accuracy 0.796 0.761 0.829 0.657 0.617 0.696

In columns 1 and 4 of the table are shown the estimated values of diagnostic evaluation
measures obtained by HC-ID and HC approaches, respectively; in columns 2–3 and 5–6 are
shown the estimated confidence intervals at 95% (i.e., Lower 95% and Upper 95% are the
lower limits and the upper limit of the confidence interval) on the diagnostic evaluation
measures obtained by HC-ID and HC approaches, respectively.

4. Discussion

In this work, an unsupervised hierarchical classification method for interval-valued
multivariate data (HC-ID) is performed for diagnosis of the breast cancer. In particular, a
methodology able to discriminate between benign or malignant breast masses has been
proposed. Moreover, in order to show the good performance of the proposed classifica-
tion model comparison with the conventional (unsupervised) hierarchical classification
approach is carried out.

The principal novelty of the proposed approach is the use of an unsupervised classifi-
cation approach. In fact, the most important previous proposals ([9–11], etc.) are based on
the use of classification methodologies where the observed diagnosis groups are known.
However, in some real cases, this information could not be available.

For application purpose, an analysis of the Breast Cancer Wisconsin (Diagnostic)
dataset (https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(diagnostic)
accessed on 27 June 2022) created by [36] is performed. In particular, we have used the
10 worst features as the centers of the interval data, while the standard deviations are the radii.
In this way, the classification procedure includes also the degree of uncertainty (i.e., vari-

https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(diagnostic)
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ability) characterizing data and more homogeneous and separated groups are guaranteed.
In fact, the results show that our proposal performs better than the conventional procedure
(i.e., the HC approach) in terms of accuracy, sensitivity and negative predictive value.
However, the specificity and the positive predictive value obtained by the usual procedure
are equal to 1 but, unfortunately, also the false-negative rate increases. Moreover, the LR+
obtained by HC is characterized by high variability and shows a very large confidence in-
terval. We think that this result is affected by the high degree of variability (i.e., uncertainty)
characterizing the worst data. Moreover, we think that the high rate of false-negative in
cancer detection fields is a serious problem. In particular, false-negative tests at diagnosis
of early disease and of relapse resulted in diagnostic and therapeutic delays.

We think that the principal advantages of the HC-ID approach consist of (i) to include
the uncertainty of the data in the classification procedure that leads to more homogeneous
partitions of subjects; (ii) the possibility to consider a multi-group approach that encour-
ages the use of the procedure for different purposes (e.g., stages detection or identification
of prognosis classes); (iii) the external procedure of uncertainty estimation that leads to
fix a different kind of measures (e.g., IQR, specific percentile differences, other intervals
symmetrical or not symmetrical with respect the point data, etc.).

Whereas, the principal disadvantages consist of (i) the correct estimation of uncertainty
since it is not simple; (ii) to fix a constant uncertainty measure of the subjects is a very
strong assumption. The subjects could have some characteristics to affect the variability
degree in different measures; (iii) the approach is not very adequate in cases with small
sample sizes. In these cases, the radii of the imprecise datum could be very high and the
risk to associate the biggest weight to the uncertainty than the point data is hard to handle.
However, in Appendix A a validation study is proposed in order to study the HC-ID model
behavior for different sample size.

Finally, we think that our proposed approach is very useful for cancer diagnostic
purposes in the cases where there is a marked variability in the subjects’ features and
where the outcome information is incomplete or not available. For future research, could be
interesting to provide a validation of the results using other datasets and other cancer types,
because at moment this is a real limit of this work. Additionally, the comparison with other
classification statistical models could be an interesting development for this research line.
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Appendix A. Validation Study

In order to study the HC-ID model behavior for different sample size, the model
has been applied on two sub-samples of 150 and 300 subjects random selected, without
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replacement, from the Breast Cancer Wisconsin dataset. Then, in the first case dataset
consists of 150 patients, where 55 (36.67%) have a malignant breast cancer and 95 (63.33%)
have the one benign; in the second case dataset consists of 300 patients, where 114 (37.26%)
have a malignant breast cancer and 186 (62.74%) have the one benign. Tables A1 and A2
show the results obtained by HC-ID model compared with those one obtained by the
conventional HC model.

Table A1. Comparison of the performances obtained by interval-valued approach and conventional
approach on a randomized sub-sample of 150 subjects.

Interval-Valued Approach Conventional Approach
Estimate Lower 95% Upper 95% Estimate Lower 95% Upper 95%

Sensitivity 1.000 0.962 1.000 0.036 0.004 0.125
Specificity 0.709 0.571 0.824 1.000 0.962 1.000
Pos.Pred.Val. 0.856 0.776 0.915 1.000 0.158 1.000
Neg.Pred.Val. 1.000 0.910 1.000 0.642 0.559 0.719
LR+ 3.438 2.275 5.193 8.571 0.419 175.363
LR− 0.007 0.000 0.118 0.964 0.915 1.014
Accuracy 0.893 0.833 0.938 0.647 0.565 0.723

Table A2. Comparison of the performances obtained by interval-valued approach and conventional
approach on a randomized sub-sample of 300 subjects.

Interval-Valued Approach Conventional Approach
Estimate Lower 95% Upper 95% Estimate Lower 95% Upper 95%

Sensitivity 0.935 0.890 0.966 0.009 0.000 0.048
Specificity 0.623 0.527 0.712 1.000 0.980 1.000
Pos.Pred.Val. 0.802 0.743 0.853 1.000 0.025 1.000
Neg.Pred.Val. 0.855 0.761 0.923 0.622 0.564 0.677
LR+ 2.480 1.953 3.149 4.878 0.200 118.743
LR− 0.104 0.059 0.182 0.991 0.974 1.008
Accuracy 0.817 0.768 0.859 0.623 0.566 0.678

The two tables show that HC-ID performs better than the conventional HC model
except in specificity and positive predictive value. In particular, we can see that the results
are not affected by the sample size since they are very similar than the results reported
in Table 1.

References
1. Tao, Z.; Shi, A.; Lu, C.; Song, T.; Zhang, Z.; Zhao, J. Breast cancer: Epidemiology and etiology. Cell Biochem. Biophys. 2015,

72, 333–338. [CrossRef] [PubMed]
2. Huang, J.; Chan, P.S.; Lok, V.; Chen, X.; Ding, H.; Jin, Y.; Yuan, J.; Lao, X.Q.; Zheng, Z.J.; Wong, M.C. Global incidence and

mortality of breast cancer: A trend analysis. Aging 2021, 13, 5748. [CrossRef] [PubMed]
3. Wang, L. Early diagnosis of breast cancer. Sensors 2017, 17, 1572. [CrossRef] [PubMed]
4. Al-Dhabyani, W.; Gomaa, M.; Khaled, H.; Fahmy, A. Dataset of breast ultrasound images. Data Brief 2020, 28, 104863. [CrossRef]
5. Kolb, T.M.; Lichy, J.; Newhouse, J.H. Comparison of the performance of screening mammography, physical examination, and

breast US and evaluation of factors that influence them: An analysis of 27,825 patient evaluations. Radiology 2002, 225, 165–175.
[CrossRef]

6. Bagui, S.C.; Bagui, S.; Pal, K.; Pal, N.R. Breast cancer detection using rank nearest neighbor classification rules. Pattern Recognit.
2003, 36, 25–34. [CrossRef]

7. Karabatak, M.; Ince, M.C. An expert system for detection of breast cancer based on association rules and neural network. Expert
Syst. Appl. 2009, 36, 3465–3469. [CrossRef]

8. Cheng, H.D.; Shan, J.; Ju, W.; Guo, Y.; Zhang, L. Automated breast cancer detection and classification using ultrasound images: A
survey. Pattern Recognit. 2010, 43, 299–317. [CrossRef]

9. Bazazeh, D.; Shubair, R. Comparative study of machine learning algorithms for breast cancer detection and diagnosis. In
Proceedings of the 2016 5th International Conference on Electronic Devices, Systems and Applications (ICEDSA), Ras Al Khaimah,
United Arab Emirates, 6–8 December 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–4.

http://doi.org/10.1007/s12013-014-0459-6
http://www.ncbi.nlm.nih.gov/pubmed/25543329
http://dx.doi.org/10.18632/aging.202502
http://www.ncbi.nlm.nih.gov/pubmed/33592581
http://dx.doi.org/10.3390/s17071572
http://www.ncbi.nlm.nih.gov/pubmed/28678153
http://dx.doi.org/10.1016/j.dib.2019.104863
http://dx.doi.org/10.1148/radiol.2251011667
http://dx.doi.org/10.1016/S0031-3203(02)00044-4
http://dx.doi.org/10.1016/j.eswa.2008.02.064
http://dx.doi.org/10.1016/j.patcog.2009.05.012


Entropy 2022, 24, 926 10 of 10

10. Chaurasia, V.; Pal, S. A novel approach for breast cancer detection using data mining techniques. Int. J. Innov. Res. Comput.
Commun. Eng. 2017, 2, 1–17.

11. Amrane, M.; Oukid, S.; Gagaoua, I.; Ensari, T. Breast cancer classification using machine learning. In Proceedings of the 2018
Electric Electronics, Computer Science, Biomedical Engineerings’ Meeting (EBBT), Istanbul, Turkey, 18–19 April 2018; IEEE:
Piscataway, NJ, USA, 2018; pp. 1–4.

12. Ramadan, S.Z. Methods used in computer-aided diagnosis for breast cancer detection using mammograms: A review. J. Healthc.
Eng. 2020, 2020, 9162464. [CrossRef]

13. Carrizosa, E.; Morales, D.R. Supervised classification and mathematical optimization. Comput. Oper. Res. 2013, 40, 150–165.
[CrossRef]

14. Bandyopadhyay, S.; Saha, S. Unsupervised Classification: Similarity Measures, Classical and Metaheuristic Approaches, and Applications;
Springer: Berlin/Heidelberg, Germany, 2013.

15. Gharibdousti, M.S.; Haider, S.M.; Ouedraogo, D.; Susan, L. Breast cancer diagnosis using feature extraction techniques with
supervised and unsupervised classification algorithms. Appl. Med. Inform. 2019, 41, 40–52.

16. Dubey, A.K.; Gupta, U.; Jain, S. Analysis of k-means clustering approach on the breast cancer Wisconsin dataset. Int. J. Comput.
Assist. Radiol. Surg. 2016, 11, 2033–2047. [CrossRef] [PubMed]

17. Muhammad, M.; Zeebaree, D.; Brifcani, A.M.A.; Saeed, J.; Zebari, D.A. Region of interest segmentation based on clustering
techniques for breast cancer ultrasound images: A review. J. Appl. Sci. Technol. Trends 2020, 1, 78–91.
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